锆石U_Pb同位素定年的原理_方法及应用_高少华
锆石U_Pb同位素定年的原理_方法及应用_高少华

立年龄; 定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,
灵活选择; 锆石 U-Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应
用时要结合地质背景,对定年结果进行合理解释。
关键词: 锆石; U-Pb 同位素; 原理; 定年方法; 地质应用
收稿日期: 2013 - 04 - 11; 修订日期: 2013 - 05 - 30 作者简介: 高少华( 1986 - ) ,男,在读硕士,专业方向: 沉积盆地物源分析研究。
·364·
江西科学
2013 年第 31 卷
1 锆石的地球化学特征和内部结构
1. 1 锆石的地球化学特征 锆石 的 氧 化 物 中 ω ( ZrO2 ) 占 67. 2% 、ω
Abstract: This article discusses geochemical characteristics and internal structure of zircon,the principle of zircon U-Pb isotopic dating,the advantages and disadvantages of dating method and the application of geological problems through consulting a large number of Chinese and foreign literature and combined with the author's experiments. The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics. Principle is that by using of the U-Pb decay equation getting three independent ages of 206 Pb / 238 U、207 Pb / 235 U and 207 Pb / 206 Pb. Dating methods have advantages and disadvantages,please accord to the quantity,size,internal structure and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly. Zircon U-Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone. The dating results are reasonable explanation to combined with the geological background. Key words: Zircon,U-Pb isotope,The principle,Dating method,The geological applications
锆石U-Pb定年工作原理及方法

“同位素年代学=提供年龄数据”。
许多地质学家的想法,一种错误的认识!
同位素年代学需要同位素和地质两方面 的知识结构。
年龄表
数据内容 数据排列顺序 有效位数 样品多时,最好一个样品有一个表头 表注 >1.2Ga (or >1.4 Ga)锆石,尽可能用 7/6年龄,而不是上交点年龄
科学性和有利于读者阅读
鲁西地区新太古代晚期岩浆事件 (Wan et al., 2010)
鲁西地区新太古代早期岩浆事件 (万渝生未发表)
滹沱群底砾岩中石英岩砾石的碎屑锆石阴极发光图像 (万渝生等,2010)
万东 渝焦 生群 等浅 ,变 质 碎 屑 )沉 积 岩 中 碎 屑 锆 石 特 征
( 2010
长城系
所有数据
鞍山地区古元古代变质辉长岩的斜锆石 和锆石阴极发光图像(董春艳等,2012)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石二次电子图像(董春艳等,2012)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石年龄图(董春艳等,2012)
鲁西新太古代变质辉石岩的锆石阴极发光和年龄图 (万渝生等,未发表)
大青山地区变质超基性岩石的锆石阴极发光和年龄图 (Wan et al., 2013)
锆石U-Pb定年
万渝生
为什么锆石U-Pb定年可信?
1、U-Pb体系 2、锆石
Zircons are forever!
锆石是最理想的测年对象
最常见副矿物,广泛存在于不同地质体中 抗风化能力强 无或很低的普通铅,而U含量适当 U-Pb同位素体系保存良好 可判断体系是否封闭 应用CL等方法,可对锆石进行成因研究 SHRIMP等原位分析方法应用
胶东中生代玲珑超单元二长花岗岩中锆石阴极发光图像
锆石定年原理锆石U-Pb定年3

TIMS的优缺点
优点: 分析精度高
不足: 需要高标准的超净实验室 繁琐的化学处理 无法微区分析, 存在不同期锆石混合的危险 时间长,价钱高
206Pb/238U? 207Pb/206Pb?
加权平均年龄
161.8±1.5 Ma (MSWD=1.4)
上交点年龄
Hale Waihona Puke 上交点年龄Jack Hills, Yilgarn Craton, W Aus (S.A. Wilde et al, 2001, Nature)
下交点年龄
安徽大龙山花岗岩
(Zhao ZF et al, 2004)
表明年龄的取舍
206Pb/238U, 207Pb/235U, 207Pb/206Pb表面年龄。 对单个样品的分析,如果三个表明年龄不一致, 即不谐和年龄,一般取舍标准是: 年轻的锆石以206Pb/238U表面年龄为准, 老锆石则以207Pb/206Pb表面年龄作为形成时代。 但是,界线在哪里?
1000 Ma? 540 Ma?
LA-ICP-MS设备
MC-ICP-MS Hf 同位素分析
GLITTER 4.4 program
GLITTER 4.4
GLITTER 4.4 program
LA-ICP-MS and SHRIMP
东部斑岩
分析 次数
15
SHRIMP 均方差 35.2±0.4 2.77
分析 LA-ICP-MS 均方差 次数
SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法用于U-Pb年龄测定的样品(号码)用常规的重选和磁选技术分选出锆石。
将锆石样品颗粒和锆石标样Plésovice (Sláma et al., 2008) (或TEMORA, Black et al., 2004)和Qinghu (Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。
对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构、帮助选择适宜的测试点位。
样品靶在真空下镀金以备分析。
U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Li et al. (2009)。
锆石标样与锆石样品以1:3比例交替测定。
U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008(或TEMORA (417Ma, Black et al., 2004))校正获得,U含量采用标准锆石91500 (81 ppm, Wiedenbeck et al., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD = 1.5%, Li et al., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu (159.5 Ma, Li et al., 2009) 作为未知样监测数据的精确度。
普通Pb校正采用实测204Pb值。
由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。
同位素比值及年龄误差均为1σ。
数据结果处理采用ISOPLOT软件(文献)。
参考文献Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S., Foudoulis, Chris., 2004.Improved 206Pb/238U microprobe geochronology by the monitoring of atrace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS andoxygen isotope documentation for a series of zircon standards. Chem. Geol.,205: 115-140.Jiří Sláma, Jan Košler, Daniel J. Condon, James L. Crowley, Axel Gerdes, John M.Hanchar, Matthew S.A. Horstwood, George A. Morris, Lutz Nasdala, Nicholas Norberg, Urs Schaltegger, Blair Schoene, Michael N. Tubrett , Martin J.Whitehouse, 2008. Plešovice z ircon —A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35Li, Q.L., Li, X.H., Liu, Y., Tang, G.Q., Yang, J.H., Zhu, W.G., 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen floodingtechnique. Journal of Analytical Atomic Spectrometry 25, 1107-1113.Li, X.-H., Y. Liu, Q.-L. Li, C.-H. Guo, and K. R. Chamberlain (2009), Precise determination of Phanerozoic zircon Pb/Pb ageby multicollector SIMS without external standardization, Geochem. Geophys. Geosyst., 10, Q04010,doi:10.1029/2009GC002400.Ludwig, K.R., 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication. No. 1a, 56 pp.Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26, 207-221.Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., V onquadt, A., Roddick, J.C., Speigel, W., 1995. Three natural zircon standards for U-Th-Pb,Lu-Hf, trace-element and REE analyses. Geostand. Newsl. 19: 1-23.SIMS U-Pb dating methodsSamples XXX for U-Pb analysis were processed by conventional magnetic and density techniques to concentrate non-magnetic, heavy fractions. Zircon grains, together with zircon standard 91500 were mounted in epoxy mounts which were then polished to section the crystals in half for analysis. All zircons were documented with transmitted and reflected light micrographs as well as cathodoluminescence (CL) images to reveal their internal structures, and the mount was vacuum-coated with high-purity gold prior to secondary ion mass spectrometry (SIMS) analysis.Measurements of U, Th and Pb were conducted using the Cameca IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing. U-Th-Pb ratios and absolute abundances were determined relative to the standard zircon 91500 (Wiedenbeck et al., 1995), analyses of which were interspersed with those of unknown grains, using operating and data processing procedures similar to those described by Li et al. (2009). A long-term uncertainty of 1.5% (1 RSD) for 206Pb/238U measurements of the standard zircons was propagated to the unknowns (Li et al., 2010), despite that the measured 206Pb/238U error in a specific session is generally around 1% (1 RSD) or less. Measured compositions were corrected for common Pb using non-radiogenic 204Pb. Corrections are sufficiently small to be insensitive to the choice of common Pb composition, and an average of present-day crustal composition (Stacey and Kramers, 1975) is used for the common Pb assuming that the common Pb is largely surface contamination introduced during sample preparation. Uncertainties on individual analyses in data tables are reported at a 1 level; mean ages for pooled U/Pb (and Pb/Pb) analyses are quoted with 95% confidence interval. Data reduction was carried out using the Isoplot/Ex v. 2.49 program (Ludwig, 2001).。
锆石U-Pb同位素年代学测试技术概论及定年方法(PPT)

4
6
8
207Pb/235U
10
12
Tera-Wasserburg图解对于含普通Pb锆石的年龄计算非常合适(Jackson et al., 2004, CG)
超镁铁岩
不适合
锆石U-Pb定年 不是形成年龄,反应交代作用时间
基性侵入岩 玄武岩 闪长岩-花岗岩 安山岩-流纹岩
可以
必须正确区分岩浆结晶锆石和捕获锆石
700 680 660 640 620 600 580 560 540 520
Mean = 601.9±5.7 [0.95%] 95% conf. Wtd by data-pt errs only, 0 of 33 rej. MSWD = 0.50, probability = 0.992 (error bars are 2s)
20
207P b/235U 238U/232T h
206P b/238U Int egral
40 T ims 60
80
207P b/235U
206P b/238U
238U/232T h
Int egral
40 T ims 60
80
207P b/235U
206P b/238U
238U/232T h
Int egral
TIMS SIMS MC-ICP-MS
离子计数器
Q-ICP-MS
Krogh (1982b)
气磨锆石 无磁性锆石 弱磁性锆石
气磨、无磁性、弱磁性锆石
束斑直径: 通常10-30μm
Yang et al. (2012, JAAS)
束斑直径 1280: 5-- μm
NanoSIMS: Pb-Pb <2 μm U-Pb <5 μm
锆石U-Pb同位素定年方法分析研究

锆石U-Pb同位素定年方法分析研究摘要本文主要阐述了对锆石U-Pb进行同位素测年体系的常用方法,并对各方法自身的特点进行了较为详细的介绍与对比。
关键词锆石U-Pb;同位素定年法;分析研究0 引言近年来,随着同位素地质年代学的飞速发展,锆石U-Pb法一直是地质学者讨论地质事件时代的重要方法之一,以下分别对各种其U-Pb同位素测年法进行分析。
1 单颗粒微量热电离质谱法目前应用最广泛的锆石定年方法是微量和单颗粒热电离质谱法,在近几年人们试着利用样品量达亚微克级的逐步溶解技术和单颗粒锆石碎片技术对其加以改进。
单颗粒锆石热电离质谱法是锆石定年技术的进展之一,该方法具有高精度、要求样品量少,所以作为基准的锆石U-Pb定年方法。
这中方法上存在着局限性:单颗粒微量热电离质谱法前期处理过程比较复杂,耗费时间,在实验流程本底要求特别低,一般整个流程铅、铀空白分别为0.03ng~0.05ng、0.002ng~0.004ng;该方法存在着最大缺陷是不能对复杂锆石内部微区U/Pb和207Pb/206Pb的年龄信息进行准确测定。
2 单颗粒锆石蒸发法在80年代单颗粒锆石蒸发法才发展起来的,这种方法不采用化学处理。
单颗粒锆石蒸发法主要是应用锆石逐层蒸发法,采用热离于发射质谱计直接对单颗粒锆石207Pb/206Pb年龄进行测定,获得207Pb/206Pb年龄信息。
它能够揭示锆石内部的信息,此种方法已在我国广泛推广和应用,并且取得不少成果。
该方法有一定的局限性:该方法只能提供207Pb/206Pb年龄,对U/Pb年龄不能测定,不能有效判断U-Pb同位素体系是否封闭;由于精度差不能精确的对地质事件定年,只能在初选样品的时候用该方法。
3 单颗粒锆石U-Pb同位素稀释测定法该方法是将一个岩石中的锆石按照晶形和颜色分开,加入稀释剂对U,Pb 同位素进行测定,在根据不一致线对岩石年龄进行确定。
这种方法由于操作方法简单,受到地质工作者的青睐,在我国得到了广泛推广和应用,也取得了显着成果。
锆石L—1)h同位素定年的原理、方法及应用

收稿日期:2013-04-11;修订日期:2013-05-30作者简介:高少华(1986-),男,在读硕士,专业方向:沉积盆地物源分析研究。
第31卷 第3期2013年6月江 西 科 学JIANGXI SCIENCEVol.31No.3Jun.2013 文章编号:1001-3679(2013)03-0363-07锆石U⁃Pb 同位素定年的原理、方法及应用高少华,赵红格,鱼 磊,刘 钊,王海然(西北大学地质学系,陕西 西安710069)摘要:通过查阅大量中外文献,结合作者实验经过,对锆石的地球化学特征和内部结构,锆石U⁃Pb 同位素定年的原理、定年方法的优缺点及地质应用等问题进行了讨论。
结果表明,岩浆锆石与变质锆石在地化和内部结构方面具有不同的特征;定年的原理是利用U⁃Pb 衰变方程得到206Pb /238U 、207Pb/235U 和207Pb /206Pb 3个独立年龄;定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,灵活选择;锆石U⁃Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应用时要结合地质背景,对定年结果进行合理解释。
关键词:锆石;U⁃Pb 同位素;原理;定年方法;地质应用中图分类号:P597+.3 文献标识码:AZircon U⁃Pb Isotopic Dating of Principle ,Method and Application GAO Shao⁃hua,ZHAO Hong⁃ge,YU Lei,LIU Zhao,WANG Hai⁃ran(Department of Geology,Northwest University,Shanxi Xi′an 710069PRC)Abstract :This article discusses geochemical characteristics and internal structure of zircon,the prin⁃ciple of zircon U⁃Pb isotopic dating,the advantages and disadvantages of dating method and the ap⁃plication of geological problems through consulting a large number of Chinese and foreign literature and combined with the author′s experiments.The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics.Principle is that by using of the U⁃Pb decay equation getting three independent ages of206Pb /238U、207Pb /235U and 207Pb /206Pb.Dating methods have advantages and disadvantages,please accord to the quantity,size,internal struc⁃ture and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly.Zircon U⁃Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone.The dating results are reasonable explanation to combined with the geological background.Key words :Zircon,U⁃Pb isotope,The principle,Dating method,The geological applications0 前言锆石是沉积岩、岩浆岩、变质岩和月岩中常见的副矿物,主要化学成分是ZrSiO 4,含有U、Th、Pb放射性元素及稀土等微量元素[1~5]。
考古学中的锆石定年技术

考古学中的锆石定年技术考古学是一门研究人类历史文化遗存的科学,旨在通过对各个历史时期的文物、人类遗址和物质文化遗存等的研究,探讨人类社会的演变和发展。
而锆石定年技术则是考古学中的一种用于确定古代文化遗存时代的重要手段。
下面本文将详细阐述锆石定年技术在考古学中的应用和意义。
一、锆石定年技术的原理及方法锆石定年技术,是利用锆石中的天然放射性元素,通过测量其衰变产物的量来确定其年龄。
具体来说,就是利用锆石中U元素的放射性衰变将U元素变成Pb元素的过程,来确定锆石时间的方法。
锆石定年是基于锆石中存在缺陷位点导致的掺杂和不稳定核素的半衰期测量得到的年代数据。
锆石定年技术主要有两种方法:一种是利用共聚焦激光剥蚀质谱(CLA)扫描锆石,另一种是利用电感耦合等离子体质谱(ICP-MS)扫描锆石。
这两种方法都是利用现代仪器测量锆石中含有的钍、铀、铅等元素的比例,然后通过计算它们的半衰期来确定年龄。
二、锆石定年技术在考古学中的应用锆石定年技术在考古学中有着广泛的应用,可以用于不同类型的文物、石器、土壤等样品的年代测定。
以下是一些常见的应用:1.考古遗址的年代测定考古学家通过在考古遗址中发现的不同文物、器物等,可以了解到不同历史时期的人类生活和社会文化。
而通过利用锆石定年技术,可以精确地确定这些文物和器物的年代,从而有效地推测出考古遗址的实际年代。
2.地层学的年代测定锆石定年技术也可以应用于地层学中,通过采集地质样品进行测量,获得该地质样品所在的地层年代数据。
这对于了解地壳构造、地貌演化以及地震活动等方面都有着重要的意义。
3.古生物学的年代测定古生物学是一门关于古代生物的学科。
利用锆石定年技术,可以测定一些古代动植物化石的年龄,从而确定它们出现和灭绝的历史时期,为了解生物演化提供了有力的支持。
三、锆石定年技术的意义1.精确测定年代与传统的考古学方法相比,锆石定年技术可以更加精准地测定古代文物、地质样品和古生物化石的年代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法。
扇形环带,这是由于锆石结晶时外部环境的变化
1. 3. 1 岩浆锆石 岩浆锆石是直接从岩浆中结 导致各晶面的生长速率不一致造成的[16]。
晶形成的,双目镜下无色透明,有时带淡黄、淡褐 1. 3. 2 变质锆 石 变 质 锆 石 这 一 术 语 最 早 由
色或淡紫色,自形程度较高,常为半自形到自形, Pidgeon[17]等提出,是指在变质作用过程中形成的
收稿日期: 2013 - 04 - 11; 修订日期: 2013 - 05 - 30 作者简介: 高少华( 1986 - ) ,男,在读硕士,专业方向: 沉积盆地物源分析研究。
·364·
江西科学
2013 年第 31 卷
1 锆石的地球化学特征和内部结构
1. 1 锆石的地球化学特征 锆石 的 氧 化 物 中 ω ( ZrO2 ) 占 67. 2% 、ω
Abstract: This article discusses geochemical characteristics and internal structure of zircon,the principle of zircon U-Pb isotopic dating,the advantages and disadvantages of dating method and the application of geological problems through consulting a large number of Chinese and foreign literature and combined with the author's experiments. The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics. Principle is that by using of the U-Pb decay equation getting three independent ages of 206 Pb / 238 U、207 Pb / 235 U and 207 Pb / 206 Pb. Dating methods have advantages and disadvantages,please accord to the quantity,size,internal structure and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly. Zircon U-Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone. The dating results are reasonable explanation to combined with the geological background. Key words: Zircon,U-Pb isotope,The principle,Dating method,The geological applications
0 前言
锆石是沉积岩、岩浆岩、变质岩和月岩中常见 的副矿物,主要化学成分是 ZrSiO4 ,含有 U、Th、Pb 放射性元素及稀土等微量元素[1 ~ 5]。由于其分布
广泛,物理化学性质稳定,富含 U、Th 放射性 元 素,普通铅含量很低,U-Pb 体系封闭温度高,成为 U-Pb 同位素定年最合适的矿物,并在地质学中广 泛应用[3,6,7]。
1)
( 6)
通过测定样品中的235 U、238 U、207 Pb 和206 Pb 含
量,由式( 4) ~ 式( 6) 可知,一个样品可以同时获 得 3 个独立的年龄( 即206 Pb / 238 U 年龄、207 Pb / 235 U 年龄和207 Pb / 206 Pb 年龄) 。如果这 3 个年龄在误
立年龄; 定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,
灵活选择; 锆石 U-Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应
用时要结合地质背景,对定年结果进行合理解释。
关键词: 锆石; U-Pb 同位素; 原理; 定年方法; 地质应用
变质锆石的一个亚类,即大多数为经过热液蚀变 岩常形成于高温条件下,微量元素扩散快,常形成
作用而形成的热液锆石。将锆石的阴极发光图 较宽的结晶环带; 酸性岩浆岩形成温度相对较低,
像、背散射电子图像、痕量元素组成及矿物包裹体 特征的结合研究,是进行锆石成因鉴定的有效方
在低温条件下微量元素的扩散速度慢,一般形成 窄而密集的岩浆振荡环带[1]; 岩浆锆石中还出现
为了对锆石年龄进行合理的地质解释,在定 年前需对锆石内部结构进行研究,以便确定其成 因类型和同一锆石不同晶域的成因类型。不同成 因锆石的内部结构特征不同。常用的揭示锆石内 部结 构 的 方 法 有 HF 酸 蚀 刻 图 像、背 散 射 电 子 ( BSE) 图像和阴极发光电子( CL) 图像等。
1. 2. 1 HF 酸蚀刻图像 锆石不同区域表面的微 量元素含量和蜕晶化程度的差异导致其稳定性和 抗 HF 酸腐蚀能力不同,在 HF 酸的作用下,锆石 的内部结构就会显示出来[13]( 图 1( a) ) 。这种方 法优点是操作简单,不需要大型仪器设备,不足是 可能会对锆石表面造成不同程度的损害。 1. 2. 2 背散射电子( BSE) 图像 背散射电子图 像揭示的 是 锆 石 表 面 平 均 分 子 量 的 差 异[14]。 背 散射电子发射系数随原子序数的增大而增大,在 图像中呈现出成分衬度,清晰地显示锆石表面不 同原子序数成分的分布状况( 图 1( b) ) 。 1. 2. 3 阴极发光( CL) 图像 阴极发光图像显示 的是锆石表面部分微量元素的含量和 / 或晶格缺 陷的差异,一般锆石中 U、REE 和 Th 等微量元素 含量越 高,锆 石 阴 极 发 光 的 强 度 越 弱[13] ( 图 1 ( c) ) 。
第3 期
高少华等: 锆石 U-Pb 同位素定年的原理、方法及应用
·365·
锆石,由众多的晶面组成,常呈浑圆粒状、椭圆粒 状及长粒状等形态[18]。内部结构多样,常有无分 带、弱分带、云雾状分带、扇形分带、面状分带等。 形成作用有结晶、变质重结晶及热液蚀变等。不 同变质条件下形成的锆石具有不同的外形和内部 结构[11]。
和238 U 以不同衰变速率分别衰变成207 Pb 和206 Pb;
232 Th 衰变成208 Pb。衰变过程中中间子体寿命很
短可以忽略,因此可将207 Pb、206 Pb、208 Pb 视为由235
U、238 U、232 Th 直接形成。衰变方程为:
206 Pb = 206 Pbi + 238 U( eλ238t - 1)
摘要: 通过查阅大量中外文献,结合作者实验经过,对锆石的地球化学特征和内部结构,锆石 U-Pb 同位素定
年的原理、定年方法的优缺点及地质应用等问题进行了讨论。结果表明,岩浆锆石与变质锆石在地化和内部 结构方面具有不同的特征; 定年的原理是利用 U-Pb 衰变方程得到206 Pb / 238 U、207 Pb / 235 U 和207 Pb / 206 Pb 3 个独
化为:
206 Pb = 238 U( eλ238t - 1)
( 4)
207 Pb = 235 U( eλ235t - 1)
( 5)
由于238 U / 235 U = 137. 88,式( 5) 除以式( 4) 可得:
207 Pb / 206 Pb = 1 /137. 88 ( eλ235t - 1 ) / ( eλ238t -
中图分类号: P597 + . 3
文献标识码: A
Zircon U-Pb Isotopic Dating of Principle,Method and Application
GAO Shao-hua,ZHAO Hong-ge,YU Lei,LIU Zhao,WANG Hai-ran
( Department of Geology,Northwest University,Shanxi Xi'an 710069 PRC)
( 1)
207 Pb = 207 Pbi + 235 U( eλ235t - 1)
( 2)
பைடு நூலகம்
208 Pb = 208 Pbi + 232 Th( eλ232t - 1)
( 3)
由于锆石中富含 U 和 Th,贫普通 Pb,可以认
为锆石形成时不含普通 Pb,即测定的所有 Pb 都
为 U 和 Th 衰变而成。则上述方程( 1) 、( 2) 可简
差范围内一致,说明矿物形成以来其 U-Pb 体系
是封闭的,其 U-Pb 同位素年龄是谐和的,这 3 个
年龄中的任何一个都可以代表矿物形成的年龄;
( SiO2 ) 占 32. 8% ,ω( HfO2 ) 占 0. 5% ~ 2. 0% ,P、 Th、U、Y、REE 以微量组分出现。锆石的常量元 素、微 量 元 素 在 不 同 类 型 的 岩 石 中 具 有 一 定 规 律[3,8],岩浆锆 石 具 有 晶 体 核 部 到 边 缘 或 环 带 内 侧到外 侧 ZrO2 / HfO2 减 小,而 HfO2 、UO2 + ThO2 增大; 变质锆石与之相反[9]。成因不同的锆石具 有不同 Th、U 含量及 Th / U 比值[10]: 岩浆锆石 Th、 U 含量较高、Th / U 比值较大( 一般 > 0. 4) ; 变质锆 石 Th、U 含量低、Th / U 比值小( 一般 < 0. 1) 。 [11,12] 在一些组分特殊的岩浆中,锆石具有异常 Th / U 比值,因此 Th / U 比值有时并不能鉴别锆石成因。 锆石富含稀土元素,超镁铁质岩→镁铁质岩→花 岗岩,丰度总体升高。 1. 2 内部结构