同位素测年原理与方法
U-Th He测年

目
录
一、(U-Th)/He测年技术原理
二、(U-Th)/He测年技术的方法步骤 三、(U-Th)/He测年技术的地质意义
一、(U-Th)/He测年技术原理
1.1技术原理 (U-Th) /He定年原理是根据矿物颗粒中U、Th放射性衰变产生He发 展而来的。通过测量矿物样品中放射性衰变产物 4 He 、母体同位素
(顶部)榍石的He年龄由18.6+1.5 Ma变化为195±15 Ma,显示了较大变化,而这 种变化表明西部地质体在15~16 Ma BP时经历过地热梯度的变化,即该区发生 了新的热事件,利用之对该区热演化过程及样式进行反演。 Lippolt用(U-Th)/He定年方法获得了意大利厄尔巴(Elba)赤铁矿矿床内 镜铁5.39±0.46Ma 的He表观年龄,提出(U-Th)/He技术对地质体热演化的探讨 可扩展到上新世之后。 显然(U-Th)/He年龄既可以用于年代很新的地质体的定年,也可以约束时 代较老的地质体最后一次热事件发生的时间,结合其它封闭温度较高的同位素 定年体系可以进行系统的热演化分析。
(1-2)
式中:4He、238U、235U、232Th均为时刻t矿物中这些元素的含量, λ238= 1.55125×10-10,λ235= 9.8485×10-10,λ232= 0.49475×10-10,
238U/235U=137.88±0.14(丰度之比),t为累积时间,即所要
求取的年龄值。
方程(1-2)假定在定年矿物晶体中没有原始4He的存在,大多数情况下这个假设 成立。因为在大气中 4 He 的含量为 5 × 10 -6 左右 ( 体积比 ),因此在运用 (U-Th) /He 定年时可忽略大气中 4 He 混入的影响。在这种情况下 , 通过测定矿物中
同位素地质年代测定原理

同位素地质年代测定原理作者:徐向辉查道函来源:《西部资源》2012年第02期摘要:本文阐述了同位素测年的原理、前提、方法,重点介绍了Rb—Sr法的原理、使用要求、适用范围、原理、结果解释及优缺点。
关键字:同位素测定原理 Rb—Sr法1. 测年原理和前提同位素地质年龄,简称同位素年龄(绝对年龄),指利用放射性同位素衰变定律,测定矿物或岩石在某次地质事件中,从岩浆熔体、流体中结晶或重结晶后,至今时间。
放射性同位素进入其中后,含量随时间作指数衰减,放射成因子体积累。
若化学封闭,无母体、子体与外界交换而带进带出,测定现在岩石或矿物中母子体含量,根据衰变定律得到矿物、岩石同位素地质年龄。
这种年龄测定称做同位素计时或放射性计时。
计时的基本原理就是依据天然放射性同位素的衰变规律,由此测定的地质事件或宇宙事件的年龄,谓之同位素年龄。
应用同位素方法测定地质年龄,必须满足以下前提:(1)放射性同位素的衰变常数须精确地测定,并且衰变的最终产物是稳定的。
(2)样品及其测得的N和D值能代表想要得到年龄的那个体系。
(3)已知母体元素的同位素种类和相应的同位素丰度。
并且无论是在不同时代的地球物质中,还是在人工合成物甚至天体样品中,这些元素的同位素都具有固定的丰度值。
(4)体系形成时不存在稳定子体,即D0= 0(对于衰变系列,也不存在任何初始的中间子体),或者通过一定的方法能对样品中混人的非放射成因稳定子体的初始含量D0作出准确地扣除或校正。
(5)岩石或矿物形成以来,母体和子体既没有自体系中丢失也没有从休系外获得。
也就是说,岩石或矿物对于母体和子体是封闭体系。
其中(1)和(3)两个前提是基本的,(4)和(5)两个条件则决定了岩石或矿物地质历史的一个模式。
2. 同位素测年主要方法在同位素年代学上,除了利用天然放射性的衰变定律直接进行年龄侧定外,还可以根据衰变射线和裂变碎片对周围物质作用所产生的次生现象来计时。
因此,总体上可将同位素年龄测定方法分为两大类:第一类为直接法,它们是基于放射性同位素自发地进行衰变,按照衰变定律来测定年龄。
火成岩同位素测年

火成岩同位素测年是一种用于确定火成岩形成时代的地质测年方法。
它基于岩石中放射性同位素的衰变过程,通过测量岩石中不同同位素的比例来计算岩石的年龄。
常用的火成岩同位素测年方法有以下几种:
1. 钾-钒(K-Ar)和氩-氩(Ar-Ar)测年:这种方法基于钾同位素的放射性衰变为氩同位素的过程。
通过测量岩石中的钾和产生的氩同位素的比例,可以计算出岩石的年龄。
2. 铅-铅(Pb-Pb)测年:这种方法利用铅同位素之间的放射性衰变关系来确定岩石的年龄。
通过
测量岩石中不同铅同位素的比例,可以计算出岩石的形成时代。
3. 锆石U-Pb测年:锆石是一种常见的火成岩矿物,其中含有锆石中的铀和钍同位素。
通过测量
岩石中锆石中的铀和钍同位素的比例,可以计算出岩石的年龄。
4. 长寿命同位素测年:长寿命同位素如铀-铅(U-Pb)和钍-铅(Th-Pb)系统,可用于测定较古
老的火成岩,因为它们具有相对长的半衰期。
通过对火成岩中不同同位素的测量和分析,结合各种同位素衰变过程的知识,可以推导出岩石形成的年代。
这些方法在地质学中广泛应用,帮助科学家了解地球历史、构建地质时间尺度以及研究火山活动和构造运动等重要地质事件的发生时间。
U-Th He测年

R—球状矿物的半径。
二、(U-Th)/He测年技术的方法步骤 —以磷灰石为例
1、样品制备
筛选矿物→挑选晶体→计算校正参数FT
采集的岩石样品首先要进行矿物的分选,包括破碎、碾磨、过筛、淘洗、重液 分离和磁选分离,得到磷灰石矿物颗粒(锆石颗粒同理)。
然后在双目显微镜下从分选出来的重矿物精矿中手工挑选自形磷灰石晶体。
(1-2)
式中:4He、238U、235U、232Th均为时刻t矿物中这些元素的含量, λ238= 1.55125×10-10,λ235= 9.8485×10-10,λ232= 0.49475×10-10,
238U/235U=137.88±0.14(丰度之比),t为累积时间,即所要
求取的年龄值。
方程(1-2)假定在定年矿物晶体中没有原始4He的存在,大多数情况下这个假设 成立。因为在大气中 4 He 的含量为 5 × 10 -6 左右 ( 体积比 ),因此在运用 (U-Th) /He 定年时可忽略大气中 4 He 混入的影响。在这种情况下 , 通过测定矿物中
Farley等(1996)通过研究停止距离对球状、桶状和立方体状矿物晶体中He保存性 的影响,从理论上推导出He的保存率和年龄校正公式。可以简单地表示如下:
F
T
3S S 1 4 R 16R
3
3
(1-3)
实测年龄 校正年龄 F
T
(1-4)
式中:FT—He的总保存率; S—α粒子的停止距离;
3.2 在低温热演化史上的应用
由于(U-Th)/He的衰变与扩散间的关系特性,使(U-Th)/He年龄值与样品的海 拔高度有密切的相关性 ,像裂变径迹年龄特性一样 ,在没有异常热扰动情况下 , 海拔高的样品有较 高的(U-Th)/He年龄值,而且利用其封闭温度可以了解热事 件发生的时间,因此人们可利 用(U-Th)/He系统进行地质体热演化及折返样式 研究。 House等就通过磷灰石(U-Th)/He的定年开展了对美国加里佛尼亚内华达 (Nevada) 山脉中部地区新生代热演化研究 ,得出海拔最低处的He年龄最年轻, 样品的He年龄值随海拔高度的增加而增加。该区约塞米蒂(Yosemite) 峡谷的 He 年龄为43~84 Ma BP, 金斯(Kings) 河谷的He年龄为32~74 Ma BP, 怀特 (Whintney)山的He年龄为23~75Ma BP;从约塞米蒂峡谷到怀特山(由东向西) 同一海拔的样品,其He年龄趋变年青,反映出该区冷却发生方向为由东向西 ,暗
同位素地质年龄测

同位素地质年龄测定 钾-氩法
方法 1、体积法 2、同位素稀释法 40 3、快中子活化法(又称内标稀释法或 Ar39 Ar法) 该钾-氩法是上世纪末发展建立的,是 40 基于岩石和矿物中的 K经快中子照射后产 39 40 生 Ar,这样可不必测定样品中的 K含量, 40 39 而是根据 Ar/ Ar含量值,按有关公式算 得岩石、矿物形成年龄。
同位素地质年龄测定 钾-氩法
样品要求
②样品重量取决于样品地质年龄的大小,样 品中母、子同位素含量和测试方法灵敏度 (表) 40 39 单矿物纯度应高于98%( Ar/ Ar法单 矿物样品纯度要求100%,其中不应含其它钾 矿物包裹体)
同位素地质年龄测定 钾-氩法
样品要求 ③试样粒度为0.25-0.63mm;伟晶岩中的云母 可剪成宽3-5mm的细条;全岩样品粒度0.40.6mm。 测量时要求样品中40Ar在矿物形成后就成 为封闭体系,没有逸出过。同时,矿物形 成后对钾也是封闭的,矿物中钾的同位素 组成正常。
40
39
同位素地质年龄测定 钾-氩法
钾-氩法缺点
被测定的岩石或矿物易受后期各种叠加地质作用的影 响,使其中放射成因的氩逸失,导致年龄测定值偏低(在这 种情况下,年龄测定值可视为实际年龄值上限)。所以,不 宜用钾-氩法测定古生代及古生代以前的地质样品。 氩是气体,它可以在变质期间从矿物和岩石中丢失。 由于这个原因,钾-氩法提供的是花岗质岩石最后一次热 事件的年龄,变质岩最后一次变质的年龄,或者一个地区 最后一次重要上升和剥蚀的年龄。因为氩丢失的可能性大, 所以一般认为钾-氩法得出的数据,代表着岩石的最低限 年龄,然而有的情况用钾氩法测得的年龄又太老。如果变 质作用期间它不完全丢失,Ar40可以从沉积岩里原先的矿 物继承下来,变质岩测出的年龄就比真正变质作用的时代 要老。在测定浅变质岩(如板岩)时,会有这种问题。此 外,有些矿物可以吸附外来的氩,对这种矿物用钾氩法测 得的年龄数据一般偏大。
地球化学研究中的同位素测年技术

地球化学研究中的同位素测年技术地球化学研究中的同位素测年技术被广泛应用于地质学、地球科学、考古学等领域,为我们揭示了地球历史的面纱。
同位素测年技术是通过分析地质物质中不同同位素的比例来确定物质的年龄,其原理基于同位素在自然界中的稳定性和放射性衰变的特性。
本文将介绍同位素测年技术的原理、应用领域及其在地球化学研究中的重要性。
一、同位素测年技术的原理同位素是同一个元素中具有相同原子序数但质量数不同的核素。
同位素的稳定性是同位素测年技术有效应用的基础,而放射性同位素的衰变性质则被用于测定物质的年龄。
同位素测年技术的核心原理是根据衰变速率和父母同位素与子女同位素之间的比例关系来计算样品的年龄。
放射性同位素的衰变速率是稳定的,衰变过程中父母同位素的逐渐减少,而子女同位素的比例逐渐增加。
通过测量样品中父母同位素和子女同位素的含量,可以计算出样品的年龄。
二、同位素测年技术的应用领域同位素测年技术广泛应用于地质学、地球科学和考古学等领域,为研究地球历史和人类活动提供了重要的依据。
在地质学中,同位素测年技术可以用于确定岩石和矿石的形成时间,揭示地球地质演化的过程。
例如,铀系同位素测年方法可以用于测定岩石的年龄,帮助我们了解地球各个时期的构造变化和地球表面的历史。
在地球科学中,同位素测年技术被用于研究地球大气和海洋的循环过程,揭示气候变化的规律。
通过分析大气和海洋中的同位素比例,可以推断过去的气候环境,为预测未来的气候变化提供参考依据。
在考古学中,同位素测年技术被用于确定考古遗址中文物和生物化石的年代,揭示人类活动的发展历程。
通过测定遗址中的有机物的同位素比例,可以推断人类定居和活动的时间,帮助我们了解古代文明的兴衰和民族迁徙的历史。
三、同位素测年技术在地球化学研究中的重要性同位素测年技术在地球化学研究中具有重要的地位和作用。
首先,同位素测年技术是地球化学研究的重要方法之一,通过分析样品中同位素的比例,可以确定样品的年龄和形成过程,从而揭示地球的演化历史。
化学反应中的同位素测年

化学反应中的同位素测年同位素测年是指利用同位素所具有的稳定性和放射性特性,通过测量化石、岩石或其他地质样品中同位素的相对含量和衰变速率来确定地质年代的方法。
在地质学和考古学研究中,同位素测年技术被广泛应用,为科学家们提供了重要的时间框架,帮助理解地球和生命的演化历史。
本文将介绍同位素测年的原理和方法,以及它在地质学和考古学中的应用。
一、同位素的概念和特性同位素是指具有相同原子序数(即原子核内的质子数相同)但质量数不同的原子核。
例如,碳的同位素有碳-12、碳-13和碳-14,它们的质量数分别为12、13和14。
同位素之间的差异主要体现在核外电子的数目上,因此在化学反应中,同位素的性质和化学行为基本相同。
不同的同位素具有不同的衰变特性,其中一些同位素是放射性的,其原子核会自发地发生衰变并释放出粒子或辐射。
放射性同位素的衰变速率是稳定同位素的几百万倍,这种特性为同位素测年提供了可靠的依据。
二、同位素测年的原理同位素测年基于同位素的衰变。
放射性同位素不断地以一定的速率衰变为稳定同位素,这个速率是固定的,被称为半衰期。
半衰期是元素所特有的,不同的放射性同位素具有不同的半衰期。
通过测量化石或岩石中放射性同位素的相对含量和稳定同位素的比例,可以计算出样本的年龄。
这是因为化石或岩石形成时的初始同位素比例是已知的,存活下来的同位素数量随着时间的推移而减少。
通过测量当前的同位素比例,可以推断出已经发生的衰变次数,从而计算出样本的年龄。
三、同位素测年的方法同位素测年有多种方法,不同方法适用于不同的年代范围和地质材料。
1. 碳14测年法碳14测年法是最常用的同位素测年方法之一,适用于测定地质年代和考古年代。
地球大气中的氮14与宇宙射线相互作用产生碳14,然后通过食物链进入生物体内。
当生物体死亡后,碳14开始衰变,通过测量化石或有机物样品中碳14的相对含量与稳定同位素碳12的比例,可以计算出样品的年龄。
2. 钾-氩测年法钾-氩测年法适用于测定年代在几万年至几亿年的岩石和矿物。
同位素测年方法评述

同位素测年方法评述同位素测年方法是一种用于确定地质年代的科学方法,通过测量地质样品中的同位素含量来确定其年龄。
同位素测年方法是地质学、地球科学和考古学中常用的一种技术手段,它可以帮助我们了解地球的演化历史以及古生物的进化过程。
同位素测年方法基于同位素的不稳定性。
同位素是同一元素中具有相同原子序数但质量数不同的原子,它们具有相同的化学性质,但却具有不同的物理性质。
相同元素的不同同位素在核内的质子和中子的数量不同,因此具有不同的原子量。
同位素测年方法中常用的同位素有放射性同位素和稳定同位素。
放射性同位素具有不稳定的原子核,会随着时间的推移发生衰变,最终变成稳定同位素。
放射性同位素的衰变速率是可以测量的,因此我们可以利用放射性同位素的衰变速率来确定地质样品的年龄。
放射性同位素测年方法包括放射性碳测年、钾-铷法、铀系列测年等。
其中,放射性碳测年是最为常用的一种方法。
放射性碳测年是通过测量地质样品中放射性碳同位素14C的含量来确定年龄。
地球大气中的14C同位素会不断地与生物体发生交换,当生物体死亡后,14C同位素的含量会逐渐减少。
通过测量地质样品中14C的含量与稳定同位素12C的含量的比值,可以计算出样品的年龄。
钾-铷法是一种利用钾同位素40K的衰变来测定地质样品年龄的方法。
40K衰变为40Ar和40Ca,通过测量地质样品中40K和40Ar 的含量,可以计算出样品的年龄。
铀系列测年是通过测量地质样品中铀同位素238U和其衰变产物的含量来确定年龄。
根据铀的衰变速率,可以计算出样品的年龄。
稳定同位素测年方法主要用于确定古代岩石和化石的年龄。
稳定同位素的含量在地质过程中不会发生变化,因此可以用来确定岩石和化石的形成年代。
稳定同位素测年方法主要包括氢氧同位素测年、氧同位素测年和碳氧同位素测年等。
氢氧同位素测年是通过测量地质样品中氢同位素2H和氧同位素18O的含量来确定年龄。
地质样品中的氢氧同位素含量受到气候和地质作用的影响,因此可以用来重建古气候和古环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
ppm表示一百万份重量的溶液中所含溶质的重
量(用溶质质量占全部溶液质量的百万分比来表
88Sr
87Rb→β- → 87Sr
86Sr 84S.r
二:化学处理
1:化学分离前必须将岩石样品转化为溶液 即溶样。 岩石、矿物样品能否彻底溶解,是得 到可信的析数据的先决条件。岩石中有 相当一部分微量元素,包括放射成因母 子体元素,分布在难溶副矿物中,保证 其全部溶解是十分重要的。此外,还要 求溶矿过程中引入尽可能少的试剂和污 染。
3:β-衰变-- β-衰变是核内放射出带负电荷的电子流, 在一定的条件下多余的中子转变为质子过程中产生 电子。
.
4:铅同位素---在自然界中铅有四个同位素:
238U→8α+ 6β-→206Pb 235U→7α+4β-→ 207Pb 232Th→6α+4β-→208Pb
204Pb 5锶同位素---在自然界中铅有四个同位素:
1000ppb。
.
ppb表示十亿分重量的溶液中所含溶质的重量, 十亿分之几就叫几个ppb,
ppb=溶质的重量/溶液的重量*109。 Ppm ppb的概念现在不用,用法定计量单位。 (mol·L-1 )或质量浓度单位 (g·L-1)。
.
• 3:不同样品溶解
•
1 、一般岩石样品都用以HF为主的混
合酸(HF+HCI+HNO3),加少量的HClO4 溶解。
• 2、金属矿物用以HCl为主的混合酸
(HCl+HNO3),加少量的HF,再加少量 HClO4溶解。
Hale Waihona Puke .4:U-Th-Pb高压釜溶样
•
锆石是一种非常难溶的矿物。一般
酸是溶该矿物的。为保证溶矿完全采用
特别设计的聚四氟乙烯“弹”,外加热
缩管套,然后整个放入不锈钢外套中.并
在“弹”内造成高压以利分解。这种装
.
2、化学分析中常用的计量单位
• 计量单位应严格执行国家标准GB3100~3201-1993 《量和单位》的规定,使用法定计量单位,不再使用 N(当量浓度)、M(克分子浓度)、百分比浓度 [%(V/V)、%(m/m)]等已废 除的非标准计量单位和 符号。
• 1 ) 重量单体表示法 • 用μg(微克-6)、ng(纳克-9)、Pg(皮克-12)和fg(飞克-
示的浓度,也称百万分比浓度)。百万分之几,
就叫几个ppm。
ppm=mg/kg=mg/L
ppm=溶质的重量/溶液的重量*106。
1ppm可表示为1×10-6克
1升极稀的水溶液其密度可作为1,因此1
升水的重量为106毫克。若1升极稀水溶液中含1
毫克的某物质,则其浓度相当于1ppm。
1毫克=1000微克,因此该物质的浓度又为
• 环境同位素地球化学
•
放射同位素
•
.
同位素测年技术
Rb—Sr法年龄测定--古人类迁移
U—Th--Pb法年龄测定 Sm--Nd法年龄测定
Pb—Pb等时线法
普通Pb法--监测环境污染
.
一;同位素基本概念
1:同位素---具有相同质子数和不同中子数的同一类 元素的不同原子。
2:α衰变--α衰变是放射原子核所放出α粒子的过程, α粒子实际上是氦的原子核(4He2)是带正电荷的两个 质子和两个中子单元。
换剂与溶液中离子之间发生交换反应来进
行分离的方法。
.
分离Rb、Sr和REE时用强酸性阳 离子交换树脂,活性基团如--S03H,
可交换离子为H+。 分离Pb和U,Th使用强碱性的阴 离子交换树脂,活性基团为碱性基 团,可交换离子为Cl-或NO3-。
• .
图4.1离子交换示意图
.
.
溶矿 在溶矿中我们已不使用HCLO4 ,因为HCLO4空白较高以及在侵析样品时富集Al与Ca,当往干 燥的样品中加入混合溶剂在干燥的样品中CLO4-离子的存在引起了样品的“胶化”。特别是当 残渣增加的情况下往往会降低铅在溶液中的含量。我们重新提纯的16mol/L HNO2代替HCLO4, 溶解样品用HF和HFO3混合液(每ml样品1:1的HNO2和HF混合液0.2ml)。 首先准确称量约0.50g样品,加入HF与HNO3,浸泡6—10个小时,盖上盖在600C加温2个小 时左右,取下盖子在800C情况下蒸干样品,因为某些氟化物类在稀酸中往往含沉淀,因此蒸 干的样品需要重溶在1 mol/L HNO3中然后蒸干。此步骤反复几次。(以上的步骤需要非常仔 细,防止溶江中的丢失影响同位素结果的测定)。蒸干的样品加入适量的超纯水,在高灵敏度 的天平上把药品分成两份。一份测定同位素组成,一份准确的加入铅与铀的稀释剂测定同位素 的含量。等分后的 样品蒸发完全干燥,然后加入2ml94%CH2OH—6%16mol/L HNO2的混合 液(CH2OH与Pb形成之阴离子),用已处理好的聚四氟乙小棒仔细捣碎残渣以防止包裹元素 铅和铀。然后仔细的把烧杯中的溶液仔细的倒入石英离心管中,用少量的混合液洗一下烧杯把 其溶液合并到石英离心管中,离心分离准确过柱。 2、化学分离 1)阴离子交换 柱高为10cm,直径为0.5cm,底部用高纯的石英作为滤板。把浸泡在94%CH2OH—16% mol/L HNO3,混合液的Dowexlx8阴离子交换树脂装到交换柱上,其树脂高度为5cm。装柱以 后首先用3ml混合液洗一下树脂床,流干。然后把离心管中的样品液小心的倒入到交换柱中流 干。用8ml70% CH2OH30%(3.3mol/L)HNO2混合液洗去干扰元素(此溶液要用已处理好的 10ml石英烧杯接以便分析U)。最后用8ml0.5 mol/L HNO2 洗下铅(用10ml石英烧杯接)。蒸 干样品,加入0.5ml 1.5NCl,蒸干样品。准确的加入0.25ml 1.5N HCl 。准备过阳柱。 2)阳离子交换 阳离子交换柱的尺寸大小与阴离子交换柱一样,浸泡在4mol/HCl中的 Dowex50×8 装到交换 柱上,树脂高度为2.5cm。用5ml4mol/L HCl洗柱,然后用3ml1.5mol/L HCl淋洗树脂,流干, 把阴离子交换柱下来的 溶液小心地倒入此交换柱中,流干,最后用2ml1.5mol/LHCl洗下Pb(用 5ml石英烧杯),蒸干样品准备上质谱计。 3)铀的离子交换 铀是以氯形成络阴离子吸附在阴离子树脂上与其它元素分离的。只有一个主要的元素Fe与其 一起吸附在树脂上,加入抗坏血酸到HCl溶液中就是为了络合
置可以在较低温度(~200℃)下溶样。例
如:锆石,榍石,独居石的分解。
.
5:离子交换
•
为了用同位素稀释法测定放射性母体
元素含量或测定放射成因子体同位素的比
值, 都要求先把纯元素分离出来,同时制
备成适于质谱测定的型式(一般为C1-或NO-
3)。
• 离子交换分离是放射性母子体元素分
离时最常用的方法。这是一种利用离子交