广东中考数学模拟题.doc

合集下载

广东中考第二次模拟检测《数学试题》含答案解析

广东中考第二次模拟检测《数学试题》含答案解析

广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.432.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m25.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行7.某青少年篮球队有12名队员,队员的年龄情况统计如下: 年龄(岁) 12 13 14 15 16 人数 31251则这12名队员年龄的众数和中位数分别是( ) A. 15岁和14岁 B. 15岁和15岁 C. 15岁和14.5岁 D. 14岁和15岁8.已知下列命题: ①若a >b ,则ac >bc; ②若a=1a ③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( ) A. 1个B. 2个C. 3个D. 4个9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 3 210.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A 20° B. 35° C. 40° D. 55°11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 612.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=2EM;④BN2+EF2=EN2;⑤AE•AM =NE•FM,其中正确结论的个数是( )A 2 B. 3 C. 4 D. 5二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =(3﹣2,﹣2),OH =(3+2,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >mx的解集是_____.16.如图,Rt △ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三.解答题(共7小题)17.计算:3016sin 45227()(20192019)2-︒+-+.18.先化简2728333x x x x x -⎛⎫+-÷⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A:非常了解;B:比较了解;C:了解较少;D:不了解“四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m=______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)22.如图,AB是⊙O直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.答案与解析一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.43【答案】B 【解析】【分析】根据负数的绝对值等于它的相反数即可得出34的绝对值.【详解】解:|-34|=34,故选:B.【点睛】本题考查求一个数的绝对值.理解一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解决此题的关键.2.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.【答案】A【解析】分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m2【答案】B【解析】【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【详解】A.2m3+3m2,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选B.【点睛】本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.5. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台【答案】C【解析】试题分析:首先设去年购置计算机数量为x台,则今年购置计算机的数量为3x台,根据题意可得:x+3x=100,解得:x=25,则3x=3×25=75(台),即今年购置计算机的数量为75台.考点:一元一次方程的应用.6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行【答案】B【解析】【分析】根据轴对称图形的性质和纸片上的四个灰色小正方形,确定出对称轴,即可得出小正方形的位置.【详解】解:根据题意得:涂成灰色的小方格在第二列第一行.故选B.点评:此题考查了利用轴对称设计图案,解答此题的关键是根据题意确定出对称轴,画出图形.7.某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁) 12 13 14 15 16人数 3 1 2 5 1则这12名队员年龄的众数和中位数分别是( )A. 15岁和14岁B. 15岁和15岁C. 15岁和14.5岁D. 14岁和15岁【答案】C【解析】【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是1512名队员的年龄数据里,第6和第7个数据的平均数14152=14.5,因而中位数是14.5.故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.已知下列命题:①若a>b,则ac>bc;②若a=1,则a =a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1,则a =a 是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 32【答案】B【解析】【分析】由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABD ABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,据此求解可得. 【详解】16ABC S ∆=、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆,//A E AB ∴',DA E DAB '∴∆~∆,则2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍), 故选.【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A. 20°B. 35°C. 40°D. 55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE,BE的长,根据菱形的面积为5AE的长,在Rt△AEB中,即可得出k的值.【详解】过点A作x轴的垂线,交CB的延长线于点E,∵A,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B(2k ,2), ∴AE=2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为25,∴BC×AE=25,即BC 5=, ∴AB=BC 5=,在Rt△AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k=4.故选C .【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 12.如图,以矩形ABCD 对角线AC 为底边作等腰直角△ACE ,连接BE ,分别交AD ,AC 于点F ,N ,CD =AF ,AM 平分∠BAN .下列结论:①EF ⊥ED ;②∠BCM =∠NCM ;③AC =2EM ;④BN 2+EF 2=EN 2;⑤AE •AM =NE •FM ,其中正确结论的个数是( )A 2B. 3C. 4D. 5【答案】C【解析】【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,证明BE平分∠ABC,再证明点M是△ABC的内心即可;③正确,证明∠EAM=∠EMA可得EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可.【详解】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,BD直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM+∠ABM,∠ABM=∠EAC=45°,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=2EA=2EM,故③正确,如图2中,将△ABN绕点A逆时针旋转90°,得到△AFG,连接EG,∵将△ABN绕点A逆时针旋转90°,得到△AFG,∴∠NAB=∠GAF,∠GAN=∠BAD=90°,AG=AN,GF=BN,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,∵∠AFG=∠ABN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴EC EN FM AM,∴只有△ECN∽△MAF才能成立,∴∠AMF =∠CEN ,∴CE ∥AM ,∵AE ⊥CE ,∴MA ⊥AE (矛盾),∴假设不成立,故⑤错误,故选:C .【点睛】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,圆等知识.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.【答案】9(m ﹣2n )(m +2n ).【解析】【分析】先提取公因式9,再利用平方差公式(22()()a b a b a b -=+-)因式分解即可.【详解】解:原式=9(m 2﹣4n 2)=9(m ﹣2n )(m +2n ),故答案为:9(m ﹣2n )(m +2n ).【点睛】本题考查综合运用提公因式法和公式法因式分解.一般来说,因式分解时,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG ,﹣2),OH 12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵33cos301tan45sin60322⨯+⋅=+=, ∴OE 与OF 不垂直. ③∵()()()13232202-++-⨯=, ∴OG 与OH 垂直. ④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=m x(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >m x的解集是_____.【答案】x <﹣1或0<x <2.【解析】【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式m kx b x+>的解集. 【详解】解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=m x (m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2,∴不等式kx +b >m x的解集是x <﹣1或0<x <2, 故答案为:x <﹣1或0<x <2.【点睛】本题考查一次函数图象与反比例函数图象的交点问题,主要考查了由函数图象求不等式的解集.利用数形结合思想分析是解题的关键.16.如图,Rt△ABC,AB=3,AC=4,点D在以C为圆心3为半径的圆上,F是BD的中点,则线段AF的最大值是_____.【答案】4【解析】【分析】取BC的中点N,连接AN,NF,DC,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得AN和NF的长,然后确定AF的范围.【详解】解:取BC的中点N,连接AN,NF,DC,∵Rt△ABC,AB=3,AC=4,∴BC22AB AC5,∵N为BC的中点,∴AN=12BC=52,又∵F为BD的中点,∴NF是△CDB的中位线,∴NF=12DC=32,∵52﹣32≤AF ≤52+32,即1≤AF ≤4. ∴最大值为4,故答案为:4.【点睛】本题考查圆的综合问题,三角形中位线定理,直角三角形斜边上的中线,勾股定理.熟练掌握直角三角形中线定理和三角形中位线定理,能正确构造辅助线是解题关键.三.解答题(共7小题)17.计算:3016sin 457()(20192-︒+-+.【解析】【分析】原式利用特殊角的三角函数值,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.【详解】原式6781=--+= 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值. 【答案】42x x+;1x =时,原式52=(或当2x =时,原式32=.) 【解析】【分析】根据分式的运算法则进行化简,再选择使分式有意义的值代入. 【详解】解:原式22162833x x x x x --=÷-- (4)(4)332(4)x x x x x x -+-=⋅-- 42x x+= ∵0,3,4x ≠,∴当1x =时,原式52=(或当2x =时,原式32=.) 【点睛】本题考查了分式化简求值.,解题的关键是熟练掌握运算法则.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A :非常了解;B :比较了解;C :了解较少;D :不了解 “四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.【答案】(1)20(2)500(3)12【解析】分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校”非常了解”与”比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校”非常了解”与”比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)【答案】74.7米【解析】【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【详解】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=40°,∠BDF=52.44°,∴CM=60tan400.84AM≈︒≈71.43(米),DN=60tan52.44 1.3BN︒≈≈46.15(米),∴AB=CD+DN﹣CM=100+46.15﹣71.43≈74.7(米),即A、B两点的距离是74.7米.【点睛】本题考查的知识点是解直角三角形,读懂题目,作出合适的辅助线是解此题的关键.21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)【答案】(1)进价为180元;(2)至少打6折.【解析】分析】(1)根据题意,列出等式24003370025x x⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x元,则24003370025x x⨯=+,解得180x=.经检验,180x=是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:3700370022580%225(180%)0.13700440 18051805y⨯⨯+⨯⨯-⨯-≥++,解得6y≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.22.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【答案】(1)证明见解析;(2)BH=125.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线; (2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OC OE BF EB=,∵OB=2,∴OC=OB=2,AB=4,23 OEEB=,∴223 BF=,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=12AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.【答案】(1)y =14x 2+x ;(﹣2,﹣1);y =x +4;(2)(﹣163,169);(3)P (﹣22,2﹣22). 【解析】【分析】 (1)根据对称轴可求得A 点坐标,再根据B 点坐标,利用待定系数法即可求得抛物线以及一次函数解析式,再利用对称轴为x =﹣2可求得抛物线顶点坐标;(2)证明四边形GDHD′为正方形,点D (-2,-1),则点G (-5,-1),则正方形的边长为3,则点D′(-5,2),求得直线BD′的解析式,与抛物线联立即可求解;(3)证明四边形PQHO 为平行四边形,则x Q -x P =x H -x O ,即可求解.【详解】解:(1)对称轴为直线x =﹣2,则点A (﹣4,0),将点A 、B 的坐标代入抛物线表达式得0=1648164a b a b -⎧⎨=+⎩ ,解得141a b ⎧=⎪⎨⎪=⎩. 故抛物线的表达式为:y =14x 2+x …①, 当x=-2时,21(2)(2)14y =⨯-+-=- ∴顶点D 的坐标为:(﹣2,﹣1),设直线AB 的表达式为y kx c =+,将点A 、B 的坐标代入一次函数表达式0484k c k c =-+⎧⎨=+⎩,解得14k c =⎧⎨=⎩, 所以,直线AB 的表达式为:y =x +4…②,故答案为:y =14x 2+x ;(﹣2,﹣1);y =x +4; (2)作点D 关于AB 的对称点D ′,分别过点D 、D ′作x 轴的平行线交直线AB 与点G 、H ,则','DH D H D G DG ,'D GH HGD ,∵直线AB 的解析式为y =x +4,'D H ∥x 轴,GD ∥x 轴,∴'45D HGHAO HGD , ∴''45D GHHGD D HG , ∴'90D GD ,''DH D H D G DG ,则四边形GDHD ′为正方形,根据点D (﹣2,﹣1),可得点G (﹣5,﹣1),所以,正方形的边长为3,则点D ′(﹣5,2),设直线BD ′的表达式为:11y k x c ,所以11112584k c k c =-+⎧⎨=+⎩,解得1123163k c ⎧=⎪⎪⎨⎪=⎪⎩, 所以,直线BD ′的表达式为:y =23x +163…③; 联立①③并解得:x =﹣163或4(舍去), 故点E (﹣163,169); (3)取OB 的中点H (2,4),则S △OQH =12S △OBQ ,而S △POQ :S △BOQ =1:2,故S △OQH =S △POQ ,∵PQ ∥OH ,故PQ =OH (四边形PQHO 为平行四边形),则x Q ﹣x P =x H ﹣x O ,设点P (m ,14m 2+m ), 直线OB 的表达式为:y =2x ,则直线PQ 的表达式为:y =2x +b 1,将点P 的坐标代入上式得21124m m m b +=+,解得2114b m m =-, 所以,直线PQ 的表达式为:y =2x +14m 2﹣m …④, 联立②④并解得:x Q =﹣14m 2+m +4, 而x Q ﹣x P =x H ﹣x O , 即﹣14m 2+m +4﹣m =2,解得:m =-或m =(舍去),故点P (﹣,2﹣).【点睛】本题考查二次函数综合,求一次函数解析式,正方形的性质和判定,平行四边形的性质和判定.(1)能利用对称轴求得A 点坐标是解题关键;(2)中能巧用轴对称的性质,得出作点D 关于AB 的对称点D ′时,∠D ′BA =∠ABD 是解题关键;(3)证明四边形PQHO 为平行四边形是解题关键.。

原创2023学年广州地区中考数学预测模拟考试卷 (含解析)

原创2023学年广州地区中考数学预测模拟考试卷 (含解析)

绝密*启用前数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时102分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2023学年胡文广东广州,1,3分)如果+10%表示“增加10%”,那么“减少8%”可以记作()A.-18%B.-8%C.+2%D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.【答案】B【涉及知识点】负数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2023学年胡文广东广州,2,3分)将图1所示的直角梯形绕直线l旋转一周,得到的立体图开是()lA. B.C.D.图1【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3.(2023学年胡文广东广州,3,3分)下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.【答案】D【涉及知识点】去括号【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x 相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好.【推荐指数】★★4. (2023学年胡文广东广州,4,3分)在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( )A .2.5B .5C .10D .15【分析】由D 、E 分别是边AB 、AC 的中点可知,DE 是△ABC 的中位线,根据中位线定理可知,DE =12BC =2.5. 【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★5. (2023学年胡文广东广州,5,3分)不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( ) A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3【分析】解不等式①,得:x >-3;解不等式②,得:x ≤2,所以不等式组的解集为-3<x <2.【答案】B【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★6. (2023学年胡文广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2A .41B .21C .43D .1【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是41.【答案】A【涉及知识点】中心对称图形 概率【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P (A )=m n,其中0≤P (A )≤1.【推荐指数】★★★★7. (2023学年胡文广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是( )A .52B .32C .24D .9主视图 俯视图【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位.【答案】C【涉及知识点】三视图【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【推荐指数】★★★★8. (2023学年胡文广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项2中a·b<0可得a、b异号,所以错误;C项中a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零.【答案】D【涉及知识点】乘法法则命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.【推荐指数】★★9.(2023学年胡文广东广州,9,3分)若a<11=()A.a﹣2B.2﹣a C.a D.﹣aa =1=11a--,由于a<1,所以a-1<0,因此11a--=(1-a)-1=-a.【答案】D【涉及知识点】二次根式的化简【点评】本题主要考查二次根式的化简,难度中等偏难.【推荐指数】★★★10.(2023学年胡文广东广州,10,3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【答案】A【涉及知识点】阅读理解【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.(2023学年胡文广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2023学年胡文年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105.【答案】3.58×105【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★12.(2023学年胡文广东广州,12,3分)若分式51-x 有意义,则实数x 的取值范围是_______.【分析】由于分式的分母不能为0,x -5在分母上,因此x -5≠0,解得x ≠5.【答案】5≠x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★13.(2023学年胡文广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S =51、2乙S =12.则成绩比较稳定的是_______(填“甲”、“乙”中的一个).【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于2甲S >2乙S ,所以乙的成绩比甲的成绩稳定.【答案】乙【涉及知识点】数据分析【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大.【推荐指数】★★★14.(2023学年胡文广东广州,14,3分)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________. (结果保留π) 【分析】扇形弧长可用公式:180n r l π=求得,由于本题n =90°,r =2,因此这个扇形的弧长为π.【答案】π【涉及知识点】弧长公式【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.【推荐指数】★★★★15.(2023学年胡文广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【分析】3ab 2+a 2b =ab (3b +a ).【答案】ab (3b +a )【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★16.(2023学年胡文广东广州,16,3分)如图4,BD 是△ABC 的角平分线,∠ABD =36°,∠C =72°,则图中的等腰三角形有_____个.AB C D【分析】由于BD 是△ABC 的角平分线,所以∠ABC =2∠ABD =72°,所以∠ABC =∠C =72°,所以△ABC 是等腰三角形.∠A =180°-2∠ABC =180°-2×72°=36°,故∠A =∠ABD ,所以△ABD 是等腰三角形∠DBC =∠ABD =36°,∠C =72°,可求∠BDC =72°,故∠BDC =∠C ,所以△BDC 是等腰三角形.【答案】3【涉及知识点】等腰三角形的判定【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.【推荐指数】★★★★三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2023学年胡文广东广州,17,9分)解方程组.1123,12⎩⎨⎧=-=+y x y x 【答案】.112312⎩⎨⎧=-=+②①y x y x ①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x .【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握. 【推荐指数】★★★18.(2023学年胡文广东广州,18,9分)如图5,在等腰梯形ABCD 中,AD ∥BC .求证:∠A +∠C =180°AB CD【分析】由于AD ∥BC ,所以∠A +∠B =180°,要想说明∠A +∠C =180°,只需根据等腰梯形的两底角相等来说明∠B =∠C 即可. 【答案】证明:∵梯形ABCD 是等腰梯形,∴∠B =∠C 又∵AD ∥BC , ∴∠A +∠B =180° ∴∠A +∠C =180°【涉及知识点】等腰梯形性质【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题. 【推荐指数】★★★19.(2023学年胡文广东广州,19,10分)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

广州数学中考模拟试题

广州数学中考模拟试题

广州数学中考模拟试题一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2+2=5B. 3x+2=5xC. 4^2=16D. (a+b)^2=a^2+b^22. 已知圆的半径为r,求圆的面积。

A. πr^2B. 2πrC. πrD. r^23. 计算以下表达式的值:A. 3x - 2x = 1B. 4x^2 - 2x^2 = 2x^2C. 5y + 3y = 8yD. 6z^3 - 3z^3 = 3z^34. 如果一个三角形的两边长分别为3和4,且这两边夹角为90度,那么这个三角形的面积是多少?A. 6B. 12C. 3D. 45. 以下哪个函数是一次函数?A. y = 2x^2 + 3B. y = 5x + 1C. y = 4/xD. y = x^3 - 26. 计算以下几何体的体积:一个长方体,长为5cm,宽为3cm,高为2cm。

A. 30cm^3B. 15cm^3C. 10cm^3D. 20cm^37. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 1, 2D. 三边长分别为4, 5, 68. 计算以下代数式的值:(2x - 3)(x + 4) = ?A. 2x^2 + 5x - 12B. 2x^2 - 5x + 12C. 2x^2 + 5x + 12D. 2x^2 - 5x - 129. 已知一个二次函数y = ax^2 + bx + c,当x=1时,y=0,当x=-1时,y=0,那么a+b+c的值是多少?A. 0B. 1C. -1D. 210. 计算以下三角函数的值:sin(30°) = ?A. 1/2B. √3/2C. 1D. 0二、填空题(每题3分,共15分)11. 一个数的平方根是它本身的数是_________。

12. 一个等差数列的前三项分别为2, 5, 8,那么这个数列的第n项可以表示为_________。

【中考冲刺】2023年广东省中考数学模拟试卷(附答案)

【中考冲刺】2023年广东省中考数学模拟试卷(附答案)

2023年广东省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2021的绝对值是( )A .2021-B .12021-C .2021D .12020 2.剪纸是我国古老的民间艺术,下列四个剪纸图案为轴对称图形的是( ) A . B .C .D .3.某几何体的三视图如图所示,则此几何体是( )A .圆锥B .圆柱C .长方体D .四棱柱 4.下列运算正确的是( )A .235a a a +=B .3412a a a ⋅=C .32a a a÷= D .()236236a b a b -= 5.关于x 的一元一次不等式58x x ≥+的解集在数轴上表示为( )A .B .C .D .6.如图,直线a ,b 被直线c 所截,若//a b ,170∠=︒,则2∠的度数是( )A .70°B .100°C .110°D .120°7.计算22111m m m m ----的结果是( ) A .1m + B .1m - C .2m - D .2m -- 8.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒9.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =k x(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣3010.如图,在Rt △ABC 中,△A =30°,△C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A.B.C.2D.3二、填空题11.因式分解:2728a-=________.12.解决全人类温饱问题是“世界杂交水稻之父”袁隆平先生的毕生追求.2020年中国粮食总产量达到657 000 000吨,已成为世界粮食第一大国.将657 000 000用科学记数法表示为________.13.不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为2S甲、2 S 乙,则2S甲___2S乙.(填“>”、“=”、“<”)15.如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是__.16.若实数x满足210x x--=,则3222021x x-+=__.17.如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=__________.三、解答题18.计算:(π﹣1)0+2|﹣(13)﹣1+tan60°.19.如图,在菱形ABCD中,点M、N分别在AB、CB上,且ADM CDN∠=∠,求证:BM BN=.20.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?21.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)所抽取的学生作品的样本容量是多少?(2)补全条形统计图.(3)本次活动共征集作品1200件,估计绘画作品有多少件.22.某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC的高度.如图所示,其中观景平台斜坡DE的长是20米,坡角为37︒,斜坡DE底部D与大楼底端C的距离CD为74米,与地面CD垂直的路灯AE的高度是3米,从楼顶B测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度. (参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?24.如图,AB 是O 的直径,C 、D 是O 上两点,且BD CD =,过点D 的直线DE AC ⊥交AC 的延长线于点E ,交AB 的延长线于点F ,连接AD 、OE 交于点G . (1)求证:DE 是O 的切线;(2)若23DG AG =,O 的半径为2,求阴影部分的面积;(3)连结BE ,在(2)的条件下,求BE 的长.25.如图1,二次函数()()34y a x x =+-的图象交坐标轴于点A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数()()34y a x x =+-的表达式;(2)过点P 作PQ x ⊥轴分别交线段AB ,抛物线于点Q ,C ,连接AC .当1OP =时,求ACQ 的面积;(3)如图2,将线段PB 绕点P 逆时针旋转90得到线段PD .△当点D 在抛物线上时,求点D 的坐标;△点52,3E ⎛⎫- ⎪⎝⎭在抛物线上,连接PE ,当PE 平分BPD ∠时,直接写出点P 的坐标.参考答案:1.C【解析】【分析】根据绝对值的定义即可得出正确选项.【详解】解:-2021的绝对值是2021故选:C.【点睛】本题考查求绝对值,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.2.C【解析】【分析】过一个图形的一条直线,把这个图形分成可以完全重合的两个部分,这个图形就叫做轴对称图形;根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【解析】【详解】解:圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.【点睛】本题考查三视图.4.C【解析】【分析】根据合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方的性质逐项计算可判断求解.【详解】解:A.2a与3a不是同类项,不能合并,故A选项不符合题意;B.347a a a⋅=,故B选项不符合题意;C.32÷=,故C选项符合题意;a a aD.3262-=,故D选项不符合题意,(3)9a b a b故选:C.【点睛】本题考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方,掌握以上知识是解题的关键.5.B【解析】【分析】求出不等式的解集,并表示出数轴上即可.【详解】≥+x x58x≥解得2x≥表示在数轴上,如图将2故选B【点睛】本题考查了解一元一次不等式,并将不等式的解集表示在数轴上,数形结合是解题的关键.6.C【解析】【分析】由已知条件//a b ,可得1370==︒∠∠,由平角的性质可得23180∠+∠=︒代入计算即可得出答案.【详解】解:如图,//a b ,1370∴∠=∠=︒,23180∠+∠=︒,2180318070110∴∠=︒-∠=︒-︒=︒.故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键. 7.B【解析】【分析】根据分式的减法法则可直接进行求解.【详解】 解:()2221212111111m m m m m m m m m m ---+-===-----; 故选B .【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.8.B【解析】【分析】根据切线的性质得到BA△AD,根据直角三角形的性质求出△B,根据圆周角定理得到△ACB=90°,进而求出△BAC,根据垂径定理得到BA△EC,进而得出答案.【详解】解:△AD是△O的切线,△BA△AD,△△ADB=58.5°,△△B=90°-△ADB=31.5°,△AB是△O的直径,△△ACB=90°,△△BAC=90°-△B=58.5°,△点A是弧EC的中点,△BA△EC,△△ACE=90°-△BAC=31.5°,故选:B.【点睛】本题考查的是切线的性质、圆周角定理、垂径定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.A【解析】【分析】过A点作AC△OB,利用等腰三角形的性质求出点A的坐标即可解决问题.【详解】解:过A点作AC△OB,△AO=AB,AC△OB,OB=6,△OC=BC=3,在Rt△AOC中,OA=5,△AC4,△A(﹣3,4),把A(﹣3,4)代入y=kx,可得k=﹣12故选:A.【点睛】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.B【解析】【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,在Rt△BB'H中,B'H=HB=3,可求MH=1,在Rt△MHB'中,B'M=PB+PM的最小值为【详解】解:作B点关于AC的对称点B',连接B'M交AC于点P,△BP=B'P,BC=B'C,△PB+PM=B'P+PM≥B'M,△PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,△△A =30°,△C =90°,△△CBA =60°,△AB =6,△BC =3,△BB '=BC +B 'C =6,在Rt △BB 'H 中,△B 'BH =60°,∴△BB 'H =30°,△BH =3,由勾股定理可得:'B H =△AH =AB -BH =3,△AM =13AB , △AM =2,△MH =AH -AM =1,在Rt △MHB '中,'B M =△PB +PM 的最小值为故选:B .【点睛】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.11.7(2)(2)a a +-【解析】【分析】先提取公因式7,然后再使用平方差公式求解即可.【详解】解:原式2=7(4)7(2)(2)a a a -=+-,故答案为:7(2)(2)a a +-.【点睛】本题考查了因式分解的方法,先提公因式,再看能否套平方差公式或完全平方式. 12.6.57×108【解析】【分析】由题意结合科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,且n 比原来的整数位数少1,据此进行分析即可.【详解】解:将657 000 000用科学记数法表示为6.57×108.故答案为:6.57×108.【点睛】本题主要考查用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.13.563x < 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式51x -<,得:6x <,解不等式350x -,得:53x , 则不等式组的解集为563x <, 故答案为:563x <. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.>【解析】【分析】先计算两组数据的平均数,再计算它们的方差,即可得出答案.【详解】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,则x甲=110×(6+7×3+8×2+9×3+10)=8,x乙=110×(6+7×2+8×4+9×2+10)=8,△S甲2=110×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]=110×[4+3+3+4]=1.4;S乙2=110×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=110×[4+2+2+4]=1.2;△1.4>1.2,△S甲2>S乙2,故答案为:>.【点睛】题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.120°【解析】【分析】多边形的内角和可以表示成(n ﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x ,故又可表示成6x ,列方程可求解.【详解】解:设这个正六边形的每一个内角的度数为x ,则6x =(6﹣2)•180°,解得x =120°.故答案为:120°.【点睛】本题考查根据多边形的内角和计算公式及求正多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.16.2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.17.25【解析】【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ △Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM △△BQP 可求解.【详解】解:连接OQ ,OP ,△将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,△OA =OD ,△OAQ =△ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD=⎧⎨=⎩, △Rt △OAQ △Rt △ODQ (HL ),△QA =DQ ,同理可证:CP =DP ,△BQ :AQ =3:1,AB =3,△BQ =94,AQ =34, 设CP =x ,则BP =3-x ,PQ =x +34, 在Rt △BPQ 中,由勾股定理得:(3-x )2+(94)2=(x +34)2, 解得x =95, △BP =65, △△AQM =△BQP ,△BAM =△B ,△△AQM △△BQP ,△13AM AQ BP BQ ==, △1635AM =,△AM =25. 故答案为:25. 【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA =DQ ,CP =DP 是解题的关键.18.0【解析】【分析】根据011(1)1,()223π--===60°角的正切值解题即可. 【详解】解:原式123=+0=.【点睛】本题考查实数的混合运算,涉及零指数幂、负整指数幂、绝对值、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.见解析【解析】【分析】菱形ABCD 中,四边相等,对角相等,结合已知条件ADM CDN ∠=∠,可利用三角形全等进行证明,得到AM CN =,再线段之差相等即可得证.【详解】四边形ABCD 是菱形,,BA BC DA DC A C ∴==∠=∠在AMD 和CND △中A C DA DCADM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AMD ≌CND △(ASA)AM CN ∴=BA BC =BA AM BC CN ∴-=-即BM BN =.【点睛】本题考查了三角形全等的证明,菱形的性质,根据题意找准三角形证明的条件,利用角边角进行三角形全等的证明是解题的关键.20.(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【解析】【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=, 解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得: ()842001150m m +-≤,解得:87.5m ≤,△m 为正整数,△m 的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.21.(1)120;(2)图形见解析;(3)360件【解析】【分析】(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;(3)求出样本中绘画作品的百分比,乘以1200即可得到结果.【详解】解:(1)根据题意得:1210%120÷=(件),所抽取的学生作品的样本容量是120;(2)绘画作品为120(423012)36-++=(件),补全统计图,如图所示:(3)根据题意得:361200360120⨯=(件),则绘画作品约有360件.答:本次活动共征集作品1200件时,绘画作品约有360件.【点睛】本题主要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.96米【解析】【分析】延长AE 交CD 延长线于M ,过A 作AN△BC 于N ,则四边形AMCN 是矩形,得NC=AM ,AN=MC ,由锐角三角函数定义求出EM 、DM 的长,得出AN 的长,然后由锐角三角函数求出BN 的长,即可求解.【详解】延长AE 交CD 于点M ,过点A 作AN BC ⊥,交BC 于点N ,由题意得,90AMC NCM ANC ∠=∠=∠=︒,△四边形AMCN 为矩形,△NC AM =,NA CM =.在Rt EMD △中,90EMD ∠=︒, △sin EM EDM ED ∠=,cos DM EDM ED ∠=, △sin 3720EM ︒=,cos3720MD ︒=, △320sin 3720125EM =⋅≈⨯=︒, △420cos3720165DM =⋅︒≈⨯=. 在Rt BNA △中,90BNA ∠=︒, △tan BN BAN AN ∠=, △tan 42.67416BN ︒=+, △990tan 42.6908110BN =≈⨯=︒, △8131296BC BN AE EM =++=++=.答:大楼BC 的高度约为96米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(1)y =10x +100;(2)这种消毒液每桶实际售价43元【解析】【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解.【详解】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(1,110)、(3,130)代入一次函数表达式得:1101303k b k b =+⎧⎨=+⎩, 解得:10100k b =⎧⎨=⎩, 故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=,整理,得210240x x --=.解得112x =,22x =-(舍去).所以5543x -=.答:这种消毒液每桶实际售价43元.【点睛】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.24.(1)见解析;(2)23π;(3【解析】【分析】(1)根据同圆中等弧所对的圆周角相等得到△CAD =△DAB ,根据等边对等角得到△DAB =△ODA ,则△CAD =△ODA ,即可判定OD △AE ,进而得到OD △DE ,据此即可得解;(2)连接BD ,根据相似三角形的性质求出AE =3,AD△DAB =30°,则△EAF =60°,△DOB =60°,DFS 阴影=S △DOF -S 扇形DOB 即可得解;(3)过点E 作EM △AB 于点M ,连接BE ,解直角三角形得到AM =32,EM MB =52,再根据勾股定理求解即可. 【详解】解:(1)证明:如图,连接OD ,BD CD =,CAD DAB ∴∠=∠,OA OD =,DAB ODA ∴∠=∠,CAD ODA ∴∠=∠,//OD AE ∴,DE AC ⊥,OD DE ∴⊥, OD 是O 的半径,DE ∴是O 的切线;(2)解://OD AE ,OGD EGA ∴∆∆∽, ∴DG OD AG AE=, 23DG AG =,O 的半径为2, ∴223AE=, 3AE ∴=,如图,连接BD ,AB 是O 的直径,DE AE ⊥,90AED ADB ∴∠=∠=︒,CAD DAB ∠=∠,AED ADB ∴∆∆∽, ∴AE AD AD AB=, 即34AD AD =,AD ∴=在Rt ADB ∆中,cos AD DAB AB ∠= 30DAB ∴∠=︒,60EAF ∴∠=︒,60DOB ∠=︒,30F ∴∠=︒,2OD =,2tan30DF ∴=︒216022223603DOF DOB S S S ππ∆⨯∴=-=⨯⨯=阴影扇形; (3)如图,过点E 作EM AB ⊥于点M ,连接BE ,在Rt AEM ∆中,13cos60322AM AE =⋅︒=⨯=,sin 60EM AE =⋅︒ 35422MB AB AM ∴=-=-=,BE ∴ 【点睛】此题是圆的综合题,考查了切线的判定与性质、扇形的面积、相似三角形的判定与性质、解直角三角形,熟练掌握切线的判定与性质、相似三角形的判定与性质并证明△OGD △△EGA 求出AE 是解题的关键.25.(1)211266y x x =--;(2)34;(3)△(3,1)D -或(8,10)-;△1(,0)3-或(2,0). 【解析】【分析】(1)根据B 点的坐标以及已知条件,将B 的坐标代入即可求得a 的值,进而求得抛物线的解析式;(2)依题意根据(1)的解析式求得A 的坐标,进而求得1tan 2OAB ∠=,据此求得PQ ,根据1OP =进而求得C 的坐标,根据12ACQ S QC AP =⋅⋅△即可求得ACQ 的面积;(3)△过D 作DF x ⊥轴,分D 点在x 轴上方和下方两种情况讨论,证明BOP PFD △≌△,设(,0)P a ,(2,)D a a +-将点D 的坐标代入(1)中抛物线解析式中即可求得D 点的坐标情形2,方法同情形1;△分当PE 不平行于y 轴和//PE y 轴两种情况讨论,当当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,证明BOP MHB △≌△进而可得P 的坐标,当//PE y 轴时,结合已知条件即可求得P 的坐标.【详解】(1)二次函数()()34y a x x =+-的图象经过()0,2B -∴122a -=- 解得16a = ∴()()34y a x x =+-1(3)(4)6x x =+- ∴211266y x x =-- (2)由1(3)(4)6y x x =+-,令0y = 解得123,4x x =-=(4,0),4A OA ∴=21tan 42OB OAB OA ∠=== ∴当1OP =时,413PA OA OP =-=-=13tan 322PQ PA OAB =⋅∠=⨯= ∴1C x =,则()()1131426C y =+-=- 111332224ACQ S QC AP ∴=⋅⋅=⨯⨯=△; (3)如图,当点D 在x 轴下方时,过点D 作DF AP ⊥于点F ,由211266y x x =--,令0x =, 解得2y =-(0,2)B ,2OB =90FPD PDF ∴∠+∠=︒,将线段PB 绕点P 逆时针旋转90得到线段PD ,90BPD ∴∠=︒90OPB FPD ∴∠+∠=︒OPB PDF ∴∠=∠90,BOP PFD PB DP ∠=∠=︒=∴BOP PFD △≌△2BO PF ∴==,OP DF =,设(0)OP DF a a ==>,2OF OP PF a ∴=+=+(2,)D a a ∴+-D 点在抛物线上,∴()()123246a a a +++-=- 解得121,10a a ==-(舍)(3,1)D ∴-当点D 在x 轴上方时,如图,过点D 作DF AP ⊥于点F ,设OF a =(0)a >同理可得BOP PFD △≌△2,2BO PF DF OP a ∴====+(,2)D a a ∴-+ D 点在抛物线上, ∴()()13426a a a -+--=+ 解得128,3a a ==-(舍去),(8,10)D ∴-综上所述,(3,1)D -或(8,10)-;△当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,如图,PE 平分BPD ∠,PD PB ⊥,45BPE ∴∠=︒,BP BM ⊥,90HBM PBO ∴∠+∠=︒,90,BOP BHM PB BM ∠=∠=︒=90HBM PBO ∴∠+∠=︒90BPO PBO ∠+∠=︒BPO HBM ∴∠=∠90,BOP BHM PB BM ∴∠=∠=︒=BOP MHB ∴△≌△2HM OB ∴==2M x ∴=∴当PE 不平行于y 轴时,,E M 重合,BOP MHB △≌△,52,3E ⎛⎫- ⎪⎝⎭ ∴51233OP BH OB OH ==-=-=- 1(,0)3P ∴- 当PE //y 轴时,如图,此时P E x x =则(2,0)P综上所述,当PE平方BPD∠时,点P的坐标为1(,0)3-或(2,0).【点睛】本题考查了待定系数法求二次函数解析式,二次函数与坐标轴交点,正切的定义,三角形全等的性质与判定,分类讨论是解题的关键.。

2023学年广东省佛山市禅城区四校联考中考三模数学试题(解析版)

2023学年广东省佛山市禅城区四校联考中考三模数学试题(解析版)

2023年初三模拟考试数学满分为120分,考试时间90分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数为( )A. 13−B. 1C.D. π 【答案】A【解析】【分析】先根据负指数幂进行计算,再根据实数的大小比较法则比较数的大小,即可得到答案. 【详解】解:1133−= , 11π3∴<<<, 故选:A .【点睛】本题考查了实数的大小比较,负指数幂,熟练掌握:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2. 如图,a b ∥,130∠=°,则2∠的度数是( )A. 150°B. 145°C. 35°D. 30°【答案】D【解析】 【分析】根据两直线平行,内错角相等可直接得到答案.【详解】∵,130a b ∠=° ,∴2130∠=∠=°,故选:D .【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.3. 当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.下列图案是我国的一些国产新能源车企的车标,车标图案既是轴对称图形,又是中心对称图形的是( )A.B. C. D.【答案】C【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、该图形不是轴对称图形,也不是中心对称图形,不符合题意;B 、该图形是轴对称图形,不是中心对称图形,不符合题意;C 、该图形既是中心对称图形又是轴对称图形,符合题意;D 、该图形不是轴对称图形,是中心对称图形,不符合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的概念是解题关键. 4. 下列各式中,正确的是( )A. B. 5=C. 6=D. = 【答案】D【解析】【详解】解:AB ,故本选项错误,不符合题意;CD故选:D .【点睛】本题主要考查了二次根式的加法、乘法、除法等知识点,熟练掌握二次根式的相关运算法则是解题的关键.5. 在平面直角坐标系中,将点(1,1)−向右平移2个单位后,得到点的坐标是( )A. (3,1)−B. (1,1)C. (1,3)−D. (1,1)−− 【答案】B【解析】【分析】把点()1,1−的横坐标加2,纵坐标不变,据此即可解答.【详解】解:点()1,1−向右平移2个单位长度后得到的点的坐标为()1,1.故选:B .【点睛】本题主要考查了坐标与图形变化﹣平移.掌握平移的规律“左右横,上下纵,正加负减”是解答本题的关键.6. 如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 三角形两边之和大于第三边【答案】B【解析】【分析】由直线公理可直接得出答案. 法用几何知识解释应是:两点确定一条直线.故选:B .【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.7. 如图是一个可以自由转动的转盘.转动转盘,当指针停止转动时,指针落在红色区域的概率是( )A. 1B. 23C. 12D. 13【答案】D【解析】【分析】用红色区域的圆心角除以周角度数即可. 【详解】解:转动转盘,当指针停止转动时,指针落在红色区域的概率是12013603°=°, 故选:D .【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.8. 如图,以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,已知13OA OA =',若四边形ABCD 的面积是2,则四边形A B C D ′′′′的面积是( )A. 3B. 6C. 9D. 18【答案】D【解析】 【分析】直接利用位似图形的性质得出面积比进而得出答案.【详解】解: 以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,13OA OA =', 21139ABCDA B C D S S ′′′′ ∴== 四边形四边形, 四边形ABCD 的面积是2,∴四边形A B C D ′′′′的面积是18,故选:D .【点睛】本题主要考查了位似变换,正确得出面积比是解决此题的关键.9. 如图,在ABC 中,AB AC BC >>,按如下步骤作图.第一步:作BAC ∠的平分线AD 交BC 于点D ;第二步:作AD 的垂直平分线EF ,交AC 于点E ,交AB 于点F ;第三步:连接DE .则下列结论正确的是( )A. DE AB ∥B. EF 平分ACC. CD DE =D. CD BD =【答案】A【解析】 【分析】如图,由角平分线和垂直平分线的性质可得1223∠=∠∠=∠、,进而得到13∠=∠,最后运用平行线的判定定理即可说明B 选项正确.【详解】解:如图:∵AD 是BAC ∠的角平分,EF AD 的中垂线,∴12∠=∠,AE DE =,∴23∠∠=,∴13∠=∠,∴DE AB ∥.故选:A .【点睛】本题主要考查了角平分线的定义、垂直平分线的性质以及平行线的判定,灵活运用相关知识成为解答本题的关键.10. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R >C. 当1000R >时,0.22I >D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R >,利用待定系数法求出()2200I R R>,然后求出当1000R =时, 2200.221000I =,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可. 【详解】解:设I 与R 的函数关系式是()0U IR R >, ∵该图象经过点()8800.25P ,, ∴()0.250880U R =>, ∴220U =,∴I 与R 的函数关系式是()2200IR R >,故B 不符合题意; 当1000R =时, 2200.221000I=, ∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 若实数a ,b 满足2(2)|3|0a b −++=,则ab =_________.【答案】6−【分析】根据非负数的性质列出算式求出a ,b 的值,代入计算即可得到答案.【详解】解: 2(2)|3|0a b −++=,2(2)|3|00a b ≥−+≥,, 2030a b ∴−=+=,,23a b ∴==−,,()236ab ∴=×−=−,故答案为:6−.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 12. 如果一个三角形两边的长分别等于一元二次方程217660x x −+=的两个实数根,那么这个三角形的第三边的长可能是20吗?__________.(填“可能”或“不可能”)【答案】不可能【解析】【分析】先求出方程的解,再根据三角形三边关系定理判断即可得到答案.【详解】解: 217660x x −+=,()()1160x x ∴−−=, 11x ∴=或6x =,即三边为6、11、20,61120+< ,不符合三角形三边关系定理,∴这个三角形的第三边的长不可能是20,故答案为:不可能.【点睛】本题考查了解一元二次方程,三角形三边关系定理的应用,能求出一元二次方程的解是解此题的关键.13. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.【答案】16【分析】根据题目中的图形,可以发现“H ”的个数的变化特点,然后即可写出第7个庚烷分子结构式中“H ”的个数.详解】解:由图可得:甲烷分子结构中“H ”的个数是:2214+×=,乙烷分子结构中“H ”的个数是:2226+×=,丙烷分子结构中“H ”的个数是:2238+×=,……∴庚烷分子结构中“H ”的个数是:22716+×=,故答案为:16.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现“H ”的个数的变化特点. 14. 如图,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,依次连接E 、G 、F 、H 得到四边形是__________.【答案】平行四边形【解析】【分析】根据中位线性质和平行四边形的判定条件,即可解答;【详解】解: E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,,GF DC EH DC ∴∥∥,且11,22GF CD EH CD ==, GF EH ∴∥且GF EH =,∴四边形GFHE 为平行四边形,故答案为:平行四边形.【点睛】本题考查了中位线的性质,平行四边形的判定,能判断出GF 是BCD △的中位线,EH 是ACD 的中位线是解题的关键.15. 如图,AD 是一根3cm 的绳子,一端拴在柱子(点A )上,另一端(点D )拴着一只羊,EABC 为一道围墙,3AE >cm ,2AB =cm ,120ABC ∠=°,则羊最大的活动区域的面积是__________.(结果保【的留π)【答案】229cm 12π 【解析】【分析】羊最大的活动区域的面积是一个扇形+一个小扇形的面积.详解】解:如图所示:大扇形的圆心角是90度,半径是3, ∴面积229039cm 3604ππ°×°==, 小扇形圆心角是18012600°−°=°,半径是1, ∴面积226011cm 3606ππ°×°==,则羊最大的活动区域的面积是()2929cm 412ππ=, 故答案为:229cm 12π. 【点睛】本题关键是从图中找出小羊的活动区域是由哪几个图形组成的.三、解答题(一)(本大题共3小题,每小题8分,共24分)16. 求不等式组()3135131x x x x + >− −≥−的解集,并把不等式组的解集在数轴上表示出来.【答案】不等式组的解集为13x −≤<,图见解析【解析】【分析】先分别求出每一个不等式的解集,再根据不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无处找,即可得到解集,在数轴上画出解集即可.【【详解】解:()3135131x x x x + >− −≥−①②,解不等式①可得:()331x x +>−,333x x +>−,333x x −>−−,26x −>−,3x <,解不等式②可得:5133x x −≥−,5313x x −≥−,22x ≥−,1x ≥−,∴不等式组的解集为13x −≤<,在数轴上表示为:.大中间找,大大小小无处找,是解题的关键.17. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,调查统计了部分学生一周的课外阅读时长(单位:小时),整理数据后绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为__________,图①中m 的值为__________;(2)求统计的这部分学生一周课外阅读时长的平均数、众数和中位数.【答案】(1)20;30(2)统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8【解析】【分析】(1)用条形统计图中的数据除以扇形统计图中对应的占比,即可得到总人数;再用学生一周的课外阅读时长为9小时的人数除以总人数,即可得到m的值;(2)按照平均数,众数和中位数的概念,依次求出即可.【小问1详解】解:本次接受调查的人数为315%20÷=(人);根据条形统计图,学生一周的课外阅读时长为9小时的人数为6人,故学生一周的课外阅读时长为9小时的人数占比为6200.330÷==%,30m∴=,故答案为:20;30【小问2详解】解:36748596210820x×+×+×+×+×=,观察条形统计图,9出出现的次数最多,故众数为9;将这组数据从小到大排列,其中位于中间的两个数都是8,故中位数为8,∴统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8.键.18. 按下列程序计算,把答案填写在表格内,并回答下列问题:(1)根据上述计算你发现了什么规律?(2)你能说明你发现的规律是正确的吗?【答案】(1)输入除0以外的数,输出结果都为1;(2)见解析【解析】【分析】(1)输入-2时,输出结果为1,输入13−时,输出结果为1,即可得;(2)结合题意可将程序表示:221()(0)x x x x x+÷−≠,进行计算即可得. 【详解】解:(1)输入-2时,输出结果为1,输入13−时,输出结果为1,故可得规律:输入除0以外的数,输出结果都为1; (2)结合题意可将程序表示为:221()(0)x x x x x+÷−≠, 222221111()11x x x x x x x x x x x+÷−=+−=+−=,所以发现的规律是正确的.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序和运算法则.四、解答题(二)(本大题共3小题,每小题9分,共27分)19. 佛山奇龙大桥犹如一架巨大的竖琴,横跨于东平水道上,是禅城区的“东大门”,大桥采用独塔斜拉桥结构,全长395米,已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD 、AC 与桥面BC 的夹角分别为60°和45°,两固定点D 、C 之间的距离约为60m ,求主塔AB 的高度.(结果保留整数,参考数1.41≈1.73≈)【答案】141m 【解析】【分析】在Rt △ABD中,利用正切的定义求出=AB ,然后根据45C ∠=°得出AB BC =,列方程求出BD 即可解答. 【详解】解:∵AB BC ⊥,∴90ABC ∠=°, 在Rt △ABD中,tan 60AB BD =⋅°=,在Rt ABC △中,45C ∠=°,为∴AB BC=,∴AB BD CD=+,60BD=+,∴)301 BD=m,∴)16090141.3141 AB BC==30++=+=≈m.答:主塔AB的高度约为141m.【点睛】本题主要考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.20. 某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?【答案】(1)y1=273x−+;y2=13x2﹣4x+13;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=+=,解得237kb=−=.∴y1=﹣23x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+13.(2)收益W =y 1﹣y 2, =﹣23x+7﹣(13x 2﹣4x+13) =﹣13(x ﹣5)2+73, ∵a =﹣13<0,∴当x =5时,W 最大值=73. 故5月出售每千克收益最大,最大为73元. 【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21. 如图,在△ABC 中,以边AB 为直径作⊙O ,交AC 于点D ,点E 为边BC 上一点,连接DE .给出下列信息:①AB =BC ;②∠DEC =90°;③DE 是⊙O 的切线.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论,组成一个命题.你选择的两个条件是______,结论是______(只要填写序号).判断此命题是否正确,并说明理由; (2)在(1)的条件下,若CD =5,CE =4,求⊙O 的直径.【答案】(1)①和②,③,真命题,证明见解析;(答案不唯一) (2)254【解析】【分析】(1)选择①和②为条件,③为结论,连接OD ,由等边对等角可得出∠A =∠C ,∠A =∠ODA ,即可推出∠C =∠ODA ,从而可证明//OD BC ,再根据平行线的性质和∠DEC =90°,可证明∠ODE =∠DEC =90°,即OD DE ⊥,说明DE 是⊙O 的切线;(2)连接BD ,由直径所对圆周角为直角得出DB AC ⊥.再结合等腰三角形三线合一的性质可得出AD =CD =5.又易证 ABD CDE ,即得出AB ADCD CE=,代入数据即可求出AB 的长. 【小问1详解】解:选择①和②为条件,③为结论,且该命题为真命题. 证明:如图,连接OD , ∵AB =BC , ∴∠A =∠C . ∵OA =OD , ∴∠A =∠ODA , ∴∠C =∠ODA , ∴//OD BC . ∵∠DEC =90°,∴∠ODE =∠DEC =90°,即OD DE ⊥, ∴DE 是⊙O 的切线.故答案为:①和②,③;(答案不唯一) 【小问2详解】 解:如图,连接BD , ∵AB 为直径,∴90ADB ∠=°,即DB AC ⊥. ∵AB =BC , ∴AD =CD =5.在ABD △和CDE 中90ADB DEC A C ∠=∠=° ∠=∠,∴ ABD CDE , ∴AB AD CD CE=,即554AB =, ∴254AB =. 故圆O 的直径为254.【点睛】本题考查等腰三角形的性质,平行线的判定和性质,切线的判定和性质,圆周角定理以及三角形相似的判定和性质.解题的关键是连接常用的辅助线.五、解答题(三)(本大题共2小题,每小题12分,共24分)22. 在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”,例如(3,3)−−、(1,1)、(2023,2023)都是“不动点”,已知双曲线9y x=. (1)求双曲线9y x=上的“不动点”; (2)若抛物线23y ax x c =−+(a 、c 为常数)上有且只有一个“不动点”. ①当1a >时,求c 的取值范围; ②如果1a =,过双曲线9y x=图象上第一象限的“不动点”作平行于x 轴的直线l ,若抛物线上有四个点到l 的距离为m ,直接写出m 的取值范围.【答案】(1)双曲线9y x=上的“不动点”为()3,3和()3,3−−; (2)①04c <<;②504m <<【解析】【分析】(1)根据定义设“不动点”为(),x x ,即可求解;(2)①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x ,根据抛物线上有且只有一个“不动点”,列不等式求解;②根据题意先求出抛物线解析式和直线l ,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C ,可得AB 即可求出答案. 【小问1详解】 解:设双曲线9y x=上的“不动点”为(),x x ,则9x x=,解得:13x =,23x =-, ∴双曲线9y x=上的“不动点”为()3,3和()3,3−−; 【小问2详解】解:①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x , 则23x ax x c =−+,∵抛物线上有且只有一个“不动点”,∴关于x 的一元二次方程240ax x c −+=有两个相等的实数根, ∴()224440b ac ac −−−==, 解得:4a c=, ∵1a >, ∴4>1c, ∴04c <<; ②当1a =时,则41c=, 解得:4c =,∴抛物线为234y x x =−+, 由(1)得:双曲线9y x=在第一象限上的“不动点”为()3,3, ∴直线l 即直线3y =,∵223734+24y x x x =−+=−, ∴抛物线顶点坐标为37,24,对称轴为直线32x =,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C , ∴AC m =,3,32A, ∴75344AB =−=, 设直线t 与直线r 关于直线l 对称,∵当点C 在点B 上方时,抛物线上四个点到l 的距离为m , ∴504m <<; 【点睛】本题考查反比例函数图像与性质、二次函数的图像与性质、新定义问题的求解等,综合性强、难度大.23. 如图1,在矩形ABCD 中,5AB =,3AD =,点P 在线段AB 上运动,设AP x =,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 为折痕与AD 或AB 的交点,点F 为折痕与BC 或CD 的交点),再将纸片还原.(1)①当0x =时,折痕EF 的长为__________; ②当x =__________时,点E 与点A 重合.(2)当点P 与点B 重合时,在图2中画出四边形DEPF ,求证:四边形DEPF 为菱形,并求出菱形DEPF 的周长;(3)如图3,若点E 在边AD 上,点F 在边CD 上,线段DP 与EF 相交于点M ;连接EP ,FP ,用含x 的代数式表示四边形DEPF 的面积. 【答案】(1)①5;②3 (2)证明见解析,周长为685(3)33271224x x x++【解析】【分析】(1)①当0x =时,折痕EF 的长正好等于矩形的长为5;②当点E 与点A 重合时,画出符合要求的图形,根据折叠的性质即可得到答案;(2)由由折叠的性质可得:DE PE DF PF DEF PEF ==∠=∠,,,由矩形的性质可得AB CD ,从而得到PEF DFE ∠=∠,则DFE DEF ∠=∠,从而得到DE PD DF PF ===,即可得证,设DF x =,则DF PF x ==,5CF x =−,在Rt CFP △中,222CF PC PF +=,解方程即可得到答案; (3)作FGAB ⊥,交AB 于G ,在Rt AEP △中,222AE AP EP +=,由勾股定理可得,296xAE −=,则296x DE PE +==,通过证明AEP GPF ∽,可得AP EP FG PF =,即2963x x PF+=,可得29+2x PF x=,最后由APE DEPFAPFD S S S =− 四边形梯形即可得到答案. 【小问1详解】解:① 折叠纸片,使点D 与点P 重合,得折痕EF ,∴当0AP x ==时,点D 与点P 重合,即为A D 、重合,B C 、重合,5EF AB CD ∴===,故答案为:5;②当点E 与点A 重合时,如图所示:由折叠的性质可得:3AD AP ==,∴当3x =时,点E 与点A 重合,故答案为:3; 【小问2详解】,由折叠性质可得:DE PE DF PF DEF PEF ==∠=∠,,, 四边形ABCD 为矩形,AB CD ∴∥,PEF DFE ∴∠=∠,DFE DEF ∴∠=∠,DE PD DF PF ∴===,∴四边形DEPF 为菱形,设DF x =,则DF PF x ==,5CF x =−,的在Rt CFP △中,222CF PC PF +=,()22253x x ∴−+=, 解得:751x =, ∴菱形DEPF 的周长为1768455×=; 【小问3详解】 解:如图所示,作FGAB ⊥,交AB 于G ,,则四边形ADFG 为矩形,3FG AD ∴==,由折叠的性质可得:90DE PE DF PF EPF EDF ==∠=∠=°,,, 设AE a =,则3DE PE a ==−, 在Rt AEP △中,222AE AP EP +=, 即()2223a x a +=−,解得:296x a −=,296x AE −∴=,296x DE PE +==, 9090EPA FPG EPA AEP ∠+∠=°∠+∠=° ,, AEP FPG ∴∠=∠,90EAP FGP ∠=∠=° , AEP GPF ∴ ∽,AP EP FG PF∴=,即2963x x PF+=,29+2x PF x∴=,第21页/共22页22319+19327322261224APE DEPF APFD x x x x S S S x x x x−=−=+×−⋅=++ 四边形梯形. 【点睛】本题主要考查了折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质、勾股定理,熟练在掌握折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质,添加适当的辅助线,是解题的关键.第22页/共22页。

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4

数学模拟试卷(四)(满分:120分,时间:90分钟)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·云南)某地区2021年元旦的最高气温为9 ℃,最低气温为-2 ℃,那么该地区这天的最低气温比最高气温低()A .7 ℃B .-7 ℃C .11 ℃D .-11 ℃2.(2022·安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A .B .C .D .3.(2022·安徽)据统计,2021年我省出版期刊总印数3 400万册,其中3 400万用科学记数法表示为()A .3.4×108B .0.34×108C .3.4×107D .34×1064.下列说法正确的是()A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是s 2甲=0.4,s 2乙=0.6,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨D .了解一批电视机的使用寿命,适合用普查的方式5.(2022·吉林长春)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A .a >0B .a <bC .b -1<0D .ab >06. 二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位7.(2022·河池)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中错误的是()A .AB =AD B .AC ⊥BD C .AC =BD D .∠DAC = ∠BAC第7题图 第8题图 第9题图8.(2022·海南)如图,直线m ∥n ,△ABC 是等边三角形,顶点B 在直线n 上,直线m 交AB于点E ,交AC 于点F ,若∠1=140°,则∠2的度数是()A .80°B .100°C .120°D .140°9.(2022·海南)如图,在△ABC 中,AB =AC ,以点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠ABC 的内部相交于点P ,画射线BP ,交AC 于点D ,若AD =BD ,则∠A 的度数是()A .36°B .54°C .72°D .108°10.(2022·陕西)在同一平面直角坐标系中,直线y =-x +4与y =2x +m 相交于点P (3,n ),则关于x ,y 的方程组⎩⎨⎧x +y -4=0,2x -y +m =0的解为() A .⎩⎨⎧x =-1,y =5 B .⎩⎨⎧x =1,y =3C .⎩⎨⎧x =3,y =1 D .⎩⎨⎧x =9,y =-5二、填空题:本大题共5小题,每小题3分,共15分.11.(2022·河池)若二次根式a -1有意义,则a 的取值范围是____.12.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要_____元.(用含m 的代数式表示)13.(2022·长春)若关于x 的方程x 2+x +c =0有两个相等的实数根,则实数c 的值为____.14.(2022·海南)如图,射线AB 与⊙O 相切于点B ,经过圆心O 的射线AC 与⊙O 相交于点D ,C ,连接BC ,若∠A =40°,则∠ACB =____°.第14题图 第15题图15.(2022·陕西)如图,在菱形ABCD 中,AB =4,BD =7.若M ,N 分别是边AD ,BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E ,F ,则ME +NF 的值为______.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(1)计算:(-3)2×3-1+(-5+2)+||-2;(2)解方程组:⎩⎨⎧2x -y =3, ①x +y =6. ②17.(2022·吉林)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.18.(原创)解方程:(1)x(x-2)=2x-4; (2)x-2 0232-1=0.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(2022·江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.20.(2022·河池)为喜迎中国共产党第二十次全国代表大会的召开,某中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是____,圆心角β=____度;(2)补全条形统计图;(3)已知红星中学共有1 200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A ,B ,C ,D 四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A ,C 两人同时参赛的概率.21.(2022·滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(2021·湘潭)如图,四边形ABCD 为矩形,E 为BC 边中点,连接AE ,以AD 为直径的⊙O交AE 于点F ,连接OC ,FC ,OC 交⊙O 于点G .(1)若∠COD =60°,AD =6,求DG ︵的长;(2)求证:四边形AOCE 是平行四边形;(3)求证:CF 是⊙O 的切线.23.(2022·牡丹江、鸡西)如图,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题:①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.。

广东中考综合模拟检测《数学卷》含答案解析

广东中考综合模拟检测《数学卷》含答案解析

广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题10小题,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.3-倒数是( )A. B. 13 C. 13- D. 3-2.我国将在2020年发射火星探测器,开展火星全球性和综合性探测.已知地球与火星的最近距离约为5500万千米,将数据”5500万”用科学记数法可表示为( )A. 5.5×106B. 5.5×107C. 55×106D. 0.55×108 3.如图,AB=DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 是( )A. BC=BEB. ∠A=∠DC. ∠ACB=∠DEBD. AC=DE4.下列计算正确的是( )A. 22434a a a +=B. 22(5)25-=-a aC. 28(2)4a b ab ab ÷-=-D. 22()()a b a b a b +-=-5.使式子32x x +-有意义的的取值范围是( ) A. 2x ≠ B. 3x >-且2x ≠C. 3x ≥且2x ≠D. 3x ≥-且2x ≠ 6.已知线段,,小明用如图所示的方法作ABC ∆,他的具体作法是①作射线AM ,以点为圆心,线段的长为半径画弧,交射线AM 于点;②分别以点,为圆心,大于12AB 长为半径画弧,两弧交于,两点;③作直线DE ,交AB 于点;④以点为圆心,线段的长为半径画弧,交直线DE 于点,连接AC ,BC .下列关于小明作的ABC ∆的说法,错误的是( )A AF BF = B. CAB CBA ∠=∠ C. ACF BCF ∠=∠ D. AB BC =7.如图,AB 是半圆的直径,4AB =,点,在半圆上,OC AB ⊥,2BD CD =,点是OC 上的一个动点,则BP DP +的最小值为( )A. 23B. 22C.D. 338.在平面直角坐标系中,点的坐标为(),m n ,从,,这三个数中任取一个数作为的值,再从余下的两个数中任取一个数作为的值,则点在坐标轴上的概率是( )A. 13B. 12C. 23D. 349.如图,是一个几何体的三视图,则该几何体的表面积是( )A. 27cm πB. 2322cm π⎛⎫+ ⎪ ⎪⎝⎭C. 26cm πD. )235cm π 10.如图,在ABOC 中,对角线OA ,BC 交于点,双曲线k y x=()0k <经过,两点若ABOC 的面积为,则的值是( )A. 52-B. 103-C. 4-D.二、填空题(本大题7小题,请将下列各题的正确答案填写在答题卡相应的位置上)11.分解因式:2393a a ++=________.12.已知正n 边形的一个外角是45°,则n =____________13.如图,在四边形ABCD 中,对角线AC ,BD 交于点,OA OC =,OB OD =,试添加一个条件:________,使四边形ABCD 矩形.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、点E 分别是边AB 、AC 的中点,点F 在AB 上,且EF ∥CD .若EF=2,则AB= .15.如图,将半径为,圆心角为120︒的扇形OAB 绕点逆时针旋转,点,的对应点分别为点,.当点恰好落在AB 上时,阴影部分的面积为________.16.规定运算:对于函数n y x =(为正整数),规定1n y nx -=.例如:对于函数4y x =,有3y x '=.已知函数3y x =,若18y '=,则的值为_______.17.如图,正方形ABCD 的边长为2,为坐标原点,AB 和AD 分别在轴、轴上,点是BC 边的中点,过点的直线y kx =交线段DC 于点,连接EF ,若FA 平分DFE ∠,则的值为__________.三、解答题18.解不等351342163x x x x -<+⎧⎪--⎨⎪⎩式组,并把解集在数轴上表示出来.19.先化简,再求值22b a ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中31a =+,b =1. 20.港珠澳大桥(英文名称:Hong Kong-Zhuhai-Macao Bridge )是中国境内一座连接香港、广东珠海和澳门的桥隧工程,位于中国广东省珠江口伶洋海域内,为珠江三角洲地区环线高速公路南环段.港珠澳大桥于2009年月日动工建设;于2017年月日实现主体工程全线贯通;于2018年月日完成主体工程验收;同年月24日上午时开通运营.广东某校数学”综合与实践”小组的同学把”测量港珠澳大桥某一段斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间完成该桥斜拉索实地测量,测量结果如下表 项目内容 课题 测量港珠澳大桥某一段斜拉索顶端到桥面的距离测量示意图说明:两侧斜拉索AC ,BC 相交于点,分别与桥面交于,两点,且点,,在同一竖直平面内测量数据 A ∠的度数B 的度数 AC 的长度37︒29︒416米︒≈,(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点到AB的距离(参考数据:sin370.60︒≈,sin290.48︒≈,cos290.87︒≈,tan370.75cos370.80≈︒);︒,tan290.55≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)?21.北京和上海都有检测新冠肺炎病毒的仪器可供外地使用,其中北京有台,上海有台.(1)已知武汉需要台,温州需要台,从北京、上海将仪器运往武汉、温州的费用如下表所示,有关部门计划用8000元运送这些仪器.请你设计一种运送方案,使武汉、温州能得到所需仪器,而且运费正好够用.(2)为了节约运送资金,中央防控工作组统一调配仪器,分配到温州的仪器不能超过台,则如何调配?终点温州武汉起点北京400800上海30050022.书法是我国的文化瑰宝,研习书法能培养高雅的品格某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用,,,表示,并将测试结果绘制成如下两幅不完整的统计图.书写能力等级测试条形统计图:书写能力等级测试扇形统计图:请根据统计图中的信息解答以下问题:(1)本次抽取的学生共有______人,扇形统计图中所对应扇形的圆心角是_______;(2)把条形统计图补充完整;(3)依次将优秀、良好、及格、不及格记为分、分、70分、分,则抽取的这部分学生书写成绩的众数是_______,中位数是_______,平均数是________;(4)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有多少人?23.如图①,在ABC ∆中,AB AC =,点,分别是边BC ,AC 上的点,且ADE B ∠=∠.(1)若5AB =,6BC =,设BD x =,AE y =,求关于的函数关系式;(2)如图②,AB AC =,AD DE ⊥于点,BE DE ⊥于点,AF BC ⊥于点,点在线段DE 上,10BC =,8AF =,6AD =,9BE =,求DE 的长.24.如图,AB 是O 的直径,为O 上一点,点是半径OB 上一动点(不与,重合),过点作射线l AB ⊥,分别交弦BC ,BC 于,两点,在射线上取点,使FC FD =.(1)求证:FC 是O 的切线.(2)当是BC 的中点时;①若60BAC ∠=︒,求证:以,,,为顶点的四边形是菱形; ②若3tan 4ABC ∠=,且20AB =,求DE 的长. 25.如图,已知抛物线2y x bx c =-++与轴交于,两点,过点直线与抛物线交于点,其中点的坐标是()1,0,点的坐标是()2,3-,抛物线的顶点为点.(1)求抛物线和直线AC 的解析式.(2)若点是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点的坐标.(3)若抛物线的对称轴与直线AC 相交于点,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点,以,,M ,为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.答案与解析一、选择题(本大题10小题,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.3-的倒数是( )A. B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.我国将在2020年发射火星探测器,开展火星全球性和综合性探测.已知地球与火星的最近距离约为5500万千米,将数据”5500万”用科学记数法可表示为()A. 5.5×106B. 5.5×107C. 55×106D. 0.55×108【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】5500万=55000000=5.5×107,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )A. BC=BEB. ∠A=∠DC. ∠ACB=∠DEBD. AC=DE【答案】D【解析】【分析】 本题要判定△ABC ≌△DBE ,已知AB=DB ,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【详解】解:A 、添加BC=BE ,可根据SAS 判定△ABC ≌△DBE ,故正确;B 、添加∠ACB=∠DEB ,可根据ASA 判定△ABC ≌△DBE ,故正确.C 、添加∠A=∠D ,可根据ASA 判定△ABC ≌△DBE ,故正确;D 、添加AC=DE ,SSA 不能判定△ABC ≌△DBE ,故错误;故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.下列计算正确的是( )A. 22434a a a +=B. 22(5)25-=-a a C. 28(2)4a b ab ab ÷-=-D. 22()()a b a b a b +-=- 【答案】D【解析】【分析】直接根据合并同类项法则、完全平方公式、单项式除单项式法则及平方差公式计算即可.【详解】解:22234a a a +=,故选项A 错误; 22(5)1025a a a -=-+,故选项B 错误;28(2)4a b ab a ÷-=-,故选项C 错误;22()()a b a b a b +-=-,故选项D 正确;故选:D .【点睛】本题主要考查了合并同类项法则、完全平方公式、单项式除单项式法则及平方差公式的应用,熟练掌握相关运算法则及乘法公式是解决本题的关键.5.使式子32x x +-有意义的的取值范围是( ) A. 2x ≠ B. 3x >-且2x ≠C. 3x ≥且2x ≠D. 3x ≥-且2x ≠ 【答案】D【解析】【分析】先根据分式和二次根式有意义的条件列出不等式组,再求解即可.【详解】解:由题意得:3020x x +≥⎧⎨-≠⎩解得:3x ≥-且2x ≠故答案为D .【点睛】本题考查了分式和二次根式有意义的条件,根据题意列出不等式组是解答本题的关键. 6.已知线段,,小明用如图所示的方法作ABC ∆,他的具体作法是①作射线AM ,以点为圆心,线段的长为半径画弧,交射线AM 于点;②分别以点,为圆心,大于12AB 长为半径画弧,两弧交于,两点;③作直线DE ,交AB 于点;④以点为圆心,线段的长为半径画弧,交直线DE 于点,连接AC ,BC .下列关于小明作的ABC ∆的说法,错误的是( )A. AF BF =B. CAB CBA ∠=∠C. ACF BCF ∠=∠D. AB BC =【答案】D【解析】【分析】 根据垂直平分线的判定、等腰三角形的性质即可得到答案.【详解】解:由题意得:DE 垂直平分AB ,∴AF =BF (故A 选项正确),CF ⊥AB ,∴CA =CB ,∴∠CAB =∠CBA ,(故B 选项正确)∵CA =CB ,CF ⊥AB ,∴∠ACF =∠BCF ,(故C 项正确)不能证明AB=BC ,故D 错误;故选:D .【点睛】本题主要考查了垂直平分线的判定及性质、等腰三角形的性质,熟练掌握垂直平分线的判定是解决本题的关键.7.如图,AB 是半圆的直径,4AB =,点,在半圆上,OC AB ⊥,2BD CD =,点是OC 上的一个动点,则BP DP +的最小值为( )A. 23B. 22C.D. 33【答案】A【解析】【分析】 连接AD 与OC 相交于点P ,连接BD ,OD ,则由垂直平分线的性质,得到AP=BP ,则BP DP +的最小值为AD 的长度,由圆周角定理得到∠BOD=60°,即可求出的长度.【详解】解:连接AD 与OC 相交于点P ,连接BD ,OD ,如图:∵OC AB ⊥,点O 是AB 的中点,∴OC 垂直平分AB ,∴AP=BP ,∴BP DP +的最小值为AD 的长度;∵AB 为直径,则∠ADB=90°,∵∠BOC=90°,2BD CD=,∴∠BOD=60°,∴△OBD是等边三角形,∴BD=OB=12 2AB=,∴224223AD=-=;∴BP DP+的最小值为23;故选:A.【点睛】本题考查了圆周角定理,垂直平分线的性质定理,等边三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握所学的知识,正确求出BD的长度.8.在平面直角坐标系中,点的坐标为(),m n,从,,这三个数中任取一个数作为的值,再从余下的两个数中任取一个数作为的值,则点在坐标轴上的概率是()A. 13B.12C.23D.34【答案】C【解析】【分析】利用树状图得出所有的情况,从中找到使点P落在坐标轴上的结果数,再根据概率公式计算可得.【详解】解:画树状图如下由树状图知,共有6种等可能结果,其中使点P在轴上的有4种结果,∴点P在坐标轴上的概率是42 63 =故选:C【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.9.如图,是一个几何体的三视图,则该几何体的表面积是()A. 27cm πB. 2322cm π⎛⎫+ ⎪ ⎪⎝⎭C. 26cm πD. ()235cm π+ 【答案】A【解析】【分析】 先根据三视图确定立体图形的形状,然后再运用圆的面积、长方形的面积以及扇形的面积公式计算即可.【详解】解:由题意可知该立体图形为下部是圆柱、上部是圆锥,则侧面积包括一个圆形底面积,一个长方形侧面积和顶部圆锥的扇形侧面积圆形底面积为:22=2ππ⎛⎫ ⎪⎝⎭长方形侧面积为:2π·2=4π由题意可知:顶部圆锥的母线长为2顶部圆锥的扇形侧面积:1122222lr ππ=⨯⨯= 所以该立体图形的侧面积为7π故答案为A .【点睛】本题考查了由三视图确定立体图形的形状、扇形形面积的计算等知识点,其中通过三视图确定立体图形的形状是解答本题的关键.10.如图,在ABOC 中,对角线OA ,BC 交于点,双曲线k y x=()0k <经过,两点若ABOC 的面积为,则的值是( )A. 52-B. 103-C. 4-D.【解析】【分析】设E 的坐标是(m ,n),则mn=k ,平行四边形ABOC 中E 是OA 的中点,则A 的坐标是:(2m ,2n),C 的纵坐标是2n ,表示出C 的横坐标,则可以得到AC 即OB 的长,然后根据平行四边形的面积公式即可求得k 的值.【详解】解:设E 的坐标是(m ,n),则mn=k ,∵平行四边形ABOC 中E 是OA 的中点,∴A 的坐标是:(2m ,2n),C 的纵坐标是2n ,把y=2n 代入k y x= 得:x=2k n ,即C 的横坐标是:2k n . ∴OB=AC=2k n -2m ,OB 边上的高是2n , ∴(2k n,-2m)•2n=10, 即k-4mn=10,∴k -4k=10,解得:k=-103. 故选:B .【点睛】本题是平形四边形与反比例函数的综合应用,根据E 点的坐标表示出AC 的长度是关键.二、填空题(本大题7小题,请将下列各题的正确答案填写在答题卡相应的位置上)11.分解因式:2393a a ++=________.【答案】23(31)a a ++【解析】分析】原式提取公因式3即可.【详解】解:223933(31)a a a a ++=++,故答案为:23(31)a a ++.【点睛】此题考查了因式分解——提公因式法,熟练掌握因式分解的方法是解本题的关键.12.已知正n 边形的一个外角是45°,则n =____________【答案】8【详解】解:∵多边形的外角和为360°,正多边形的一个外角45°,∴多边形得到边数360÷45=8,所以是八边形.故答案813.如图,在四边形ABCD 中,对角线AC ,BD 交于点,OA OC =,OB OD =,试添加一个条件:________,使四边形ABCD 为矩形.【答案】AC =BD【解析】【分析】先证明四边形ABCD 是平行四边形,再由对角线相等即可得出四边形ABCD 是矩形.【详解】解:∵OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当AC =BD 时,四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故答案为:AC =BD .(答案不唯一)【点睛】本题考查了平行四边形的判定、矩形的判定方法,熟练掌握平行四边形和矩形的判定方法,并能进行推理论证是解决问题的关键.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、点E 分别是边AB 、AC 的中点,点F 在AB 上,且EF ∥CD .若EF=2,则AB= .【答案】8.【解析】【分析】由E 是AC 中点且EF ∥CD 知CD=2EF=4,再根据Rt △ABC 中D 是AB 中点知AB=2CD ,据此可得.【详解】解:∵E 是AC 中点,且EF ∥CD ,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为8.【点睛】本题主要考查三角形中位线定理,解题的关键是掌握中位线定理及直角三角形斜边上的中线的性质.15.如图,将半径为,圆心角为120︒的扇形OAB绕点逆时针旋转,点,的对应点分别为点,.当点恰好落在AB上时,阴影部分的面积为________.【答案】843 3π+【解析】【分析】连接OC,先证明△AOC是等边三角形,再根据S阴=S扇形ACD﹣(S扇形AOC﹣S△AOC)计算即可.【详解】解:如图,连接OC.由题意得:AO=AC=OC,∴△AOC是等边三角形,∴∠AOC=60°,∴S阴=S扇形ACD﹣(S扇形AOC﹣S△AOC)=21204360π⋅⋅﹣(2604360π⋅⋅﹣14232⨯⨯)=8433π+,故答案为:8433π+.【点睛】本题考查扇形面积计算,旋转变换,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.规定运算:对于函数n y x =(为正整数),规定1n y nx -=.例如:对于函数4y x =,有3y x '=.已知函数3y x =,若18y '=,则的值为_______. 【答案】±6【解析】【分析】首先根据新定义求出函数y=x 3中的n ,再与方程y′=18组成方程组得出:3x 2=18,用直接开平方法解方程即可.【详解】解:由函数y=x 3得n=3,则y′=3x 2,∴3x 2=18,x 2=6,x=±6,故答案为:±6.【点睛】本题考查了利用直接开平方法解一元二次方程,同时还以新定义的形式考查了学生的阅读理解能力;注意:①二次项系数要化为1,②根据平方根的意义开平方时,是两个解,且是互为相反数,不要丢解. 17.如图,正方形ABCD 边长为2,为坐标原点,AB 和AD 分别在轴、轴上,点是BC 边的中点,过点的直线y kx =交线段DC 于点,连接EF ,若FA 平分DFE ∠,则的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF =⎧⎨=⎩∴ Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1 ,222251AE AB BE GE AE AG ∴=+=∴=-=∵在 Rt △FCE 中,EF 2= FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23, ∴点F (23,2) 把点F 的坐标代入y kx =得:2=23k ,解得k=3 ②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2, 2)把点F 的坐标代入y kx =得: 2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..三、解答题18.解不等351342163x x x x -<+⎧⎪--⎨⎪⎩式组,并把解集在数轴上表示出来.【答案】23x -≤<.【解析】【分析】利用不等式的性质解不等式方程组,通过数轴标识出交集. 【详解】351? 342163x x x x -<+⎧⎪--⎨≤⎪⎩由351x x -<+ 得26, 3x x <<;由342163x x --≤ 得34216663x x --⨯≤⨯ 解得()34221x x -≤-, 2x ≥- 所以23x -≤< 是原不等式方程组的解集.如图,数轴中灰色部分为不等式方程解集.【点睛】本题考查解不等式方程组,利用不等式性质解不等式方程为本题的关键.19.先化简,再求值22b a ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中31a =,b =1. 【答案】1a b --,﹣33. 【解析】【分析】先计算括号里,再将除法转换成乘法,约分化简,最后将a 、b 的值代入计算. 【详解】原式=﹣a b a -÷222a ab b a-+=﹣2()a b a a a b --=﹣1a b-, 当a =3+1,b =1时,原式=﹣13=﹣33. 【点睛】考查了分式的化简求值,解题关键是熟记其计算法则,正确化简.20.港珠澳大桥(英文名称:Hong Kong-Zhuhai-Macao Bridge )是中国境内一座连接香港、广东珠海和澳门的桥隧工程,位于中国广东省珠江口伶洋海域内,为珠江三角洲地区环线高速公路南环段.港珠澳大桥于2009年月日动工建设;于2017年月日实现主体工程全线贯通;于2018年月日完成主体工程验收;同年月24日上午时开通运营.广东某校数学”综合与实践”小组的同学把”测量港珠澳大桥某一段斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间完成该桥斜拉索实地测量,测量结果如下表项目内容 课题 测量港珠澳大桥某一段斜拉索顶端到桥面的距离测量示意图说明:两侧斜拉索AC ,BC 相交于点,分别与桥面交于,两点,且点,,在同一竖直平面内测量数据 A ∠的度数B 的度数 AC 的长度37︒29︒416米(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点到AB 的距离(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin290.48︒≈,cos290.87≈︒,tan290.55≈︒);(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)? 【答案】(1)249.6m;(2)测量工具【解析】分析】(1)过点C作CD⊥AB于点D,构造直角三角形,利用∠A的正弦即可求解;(2)根据测量需要填写即可,这是一个开放性的问题,只要合理都行.【详解】解:(1)如图所示,过点C作CD⊥AB于点D.在Rt△ACD中,∠ADC=90°,∠A=37°,AC=416∴sin37CD AC︒=,即CD=AC·sin37°≈416×0.6=249.6(m)(2)测量工具、计算过程、人员分工、指导老师、活动经费、活动感受等.(答案合理即可)【点晴】本题考查了三角函数的实际应用,构造直角三角形是解题的关键.21.北京和上海都有检测新冠肺炎病毒的仪器可供外地使用,其中北京有台,上海有台.(1)已知武汉需要台,温州需要台,从北京、上海将仪器运往武汉、温州的费用如下表所示,有关部门计划用8000元运送这些仪器.请你设计一种运送方案,使武汉、温州能得到所需仪器,而且运费正好够用.(2)为了节约运送资金,中央防控工作组统一调配仪器,分配到温州的仪器不能超过台,则如何调配?终点起点温州武汉北京400800上海300500【答案】(1)从北京运往温州4台,运往武汉6台,从上海运往温州2台,运往武汉2台;(2)从上海配送4台到温州,从北京配送1台到温州,武汉9台【解析】【分析】(1)设北京运往温州x台,则上海运往温州y台,由题意得等量关系列出方程组,解方程组即可.(2)结合表格的数据,即可得到运送资金最低的方案.【详解】解:(1)解:设从北京运往温州x台,从上海运往温州y台.依题意,得6,400(10)800300(4)5008000, x yx x y y+=⎧⎨+-⨯++-⨯=⎩解得4,2. xy=⎧⎨=⎩从北京运往武汉:10-x=10-4=6(台);从上海运往武汉:4-y=4-2=2(台);答:从北京运往温州4台,运往武汉6台;从上海运往温州2台,运往武汉2台.(2)由表格中的数据可得出,上海运送到温州的费用最低,其次是北京运送到温州的费用,且分配到温州的仪器不能超过5台,∴为了节约资金,从上海配送4台到温州,从北京配送1台到温州,武汉9台.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用,得到北京和上海运往各地的机器台数的代数式是解决本题的突破点,得到总运费的等量关系是解决本题的关键.22.书法是我国的文化瑰宝,研习书法能培养高雅的品格某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用,,,表示,并将测试结果绘制成如下两幅不完整的统计图.书写能力等级测试条形统计图:书写能力等级测试扇形统计图:请根据统计图中的信息解答以下问题:(1)本次抽取的学生共有______人,扇形统计图中所对应扇形的圆心角是_______;(2)把条形统计图补充完整;(3)依次将优秀、良好、及格、不及格记为分、分、70分、分,则抽取的这部分学生书写成绩的众数是_______,中位数是_______,平均数是________;(4)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有多少人?【答案】(1)40,36;(2)见解析;(3)70,70,66.5;(4)280【解析】【分析】(1)由C等级人数及其所占百分比可得总人数,用360°乘以A等级人数所占比例即可得;(2)总人数减去A、C、D的人数可求出B等级的人数,从而补全图形;(3)根据众数、中位数及平均数的定义即可求得答案;(4)利用总人数乘以样本中A等级人数所占比例即可得.【详解】解:(1)本次抽取的学生人数是16÷40%=40(人),扇形统计图中A所对应扇形圆心角的度数是360°×440=36°,故答案为:40、36;(2)B等级人数为40﹣(4+16+14)=6(人),补全的条形统计图如下:(3)∵及格的人数最多,∴众数为70,∵抽取的总人数共40人,∴中位数是第20和第21个的平均数,∴中位数为70,平均数为4906801670145066.540⨯+⨯+⨯+⨯=故答案为:70、70、66.5;(4)等级达到优秀的人数大约有2800×440=280(人). 答:书写能力等级达到优秀的学生大约有280人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确它们各自的含义,利用数形结合的思想解答.23.如图①,在ABC ∆中,AB AC =,点,分别是边BC ,AC 上的点,且ADE B ∠=∠.(1)若5AB =,6BC =,设BD x =,AE y =,求关于的函数关系式;(2)如图②,AB AC =,AD DE ⊥于点,BE DE ⊥于点,AF BC ⊥于点,点在线段DE 上,10BC =,8AF =,6AD =,9BE =,求DE 的长.【答案】(1)216555y x x =-+;(25319+【解析】【分析】(1)先证明△ABD ∽△DCE ,进而可得AB•CE=BD•CD ,由此可得关于的函数关系式;(2)先利用等腰三角形的三线合一证得AF ⊥BC ,BF =5,再利用勾股定理计算即可求得答案.【详解】(1)证明:∵AB=AC ,∴∠B=∠C .∵∠ADC 为△ABD 的外角,∴∠ADC=∠ADE+∠EDC=∠B+∠DAB .∵∠ADE=∠B ,∴∠BAD=∠CDE .又∠B=∠C ,∴△ABD ∽△DCE .∴AB BD CD CE =, ∴AB•CE=BD•CD , 则5×(5-y )=x•(6-x ), 整理,得216555y x x =-+. (2)解:∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=5. ∴在Rt △ACF 中,AC=22228589AF CF +=+=. ∴在Rt △ACD 中,DC=2222(89)653AC AD -=-=. 在Rt △BCE 中,CE=222210919BC BE -=-=.∴DE=DC+CE=5319+.【点睛】本题考查了等腰三角形的性质、相似三角形的判定及性质、勾股定理的应用,熟练掌握相似三角形的判定及性质是解决本题的关键.24.如图,AB 是O 的直径,为O 上一点,点是半径OB 上一动点(不与,重合),过点作射线l AB ⊥,分别交弦BC ,BC 于,两点,在射线上取点,使FC FD =.(1)求证:FC 是O 的切线.(2)当是BC 的中点时;①若60BAC ∠=︒,求证:以,,,为顶点的四边形是菱形;②若3tan 4ABC ∠=,且20AB =,求DE 的长. 【答案】(1)见解析;(2)①见解析,②5【解析】【分析】(1)如图1,连接OC.则OC=OB,根据等腰三角形的性质等边对等角可得:∠OBC=∠OCB.再由垂直的定义可得∠BPD=90°.又根据三角形的内角和定理可得∠OBC+∠BDP=90°.由FC=FD可得∠FCD=∠FDC.又因为∠FDC=∠BDP,所以∠OCB+∠FCD=90°,从而可证明.(2)①如图2,连接OE,BE,CE.先由已知条件证出△BOE,△OCE均为等边三角形,再根据等边三角形的三条边相等可证得:OB=BE=CE=OC,从而根据四条边相等的四边形是菱形可证得结果.②构造直角三角形,利用三角函数和勾股定理求即可.【详解】(1)证明:如图1,连接OC.∵OB=OC,∴∠OBC=∠OCB.∵PF⊥AB,∴∠BPD=90°.∴∠OBC+∠BDP=90°.∵FC=FD,∴∠FCD=∠FDC.又∵∠FDC=∠BDP,∴∠OCB+∠FCD=90°,即∠OCF=90°.∴FC是⊙O的切线.图1(2)①证明:如图2,连接OE,BE,CE.∵AB是⊙O的直径,∴∠ACB=90°.∵∠BAC=60°,∴∠BOC=2∠BAC=120°.∵E是BC的中点,即BE EC,∴∠BOE=∠COE=60°.又∵OB=OE=OC,∴△BOE,△OCE均为等边三角形.∴OB=BE=CE=OC.∴四边形BOCE是菱形.②解:如图2,记OE与BC的交点为H.∵AB是⊙O的直径,∴∠ACB=90°.∴在Rt △ABC 中,tan ∠ABC=AC BC =34. 设AC=3k ,BC=4k (k >0).∵AC 2+BC 2=AB 2, ∴(3k)2+(4k)2=202,解得k=4.∴AC=12,BC=16.∵E 是BC 的中点,OE 是⊙O 的半径,∴OE ⊥BC ,BH=CH=12BC=8. ∵S △BOE=12OE·BH=12OB·PE ,OE=OB=12AB=10, ∴PE=OE BH OB ⋅=10810⨯=8. 在Rt △OPE 中,OP=22OE PE -=22108-=6.∴BP=OB-OP=10-6=4.在Rt △BPD 中,DP BP =tan ∠ABC=34,∴DP=34BP=34×4=3. ∴DE=PE-DP=8-3=5.图2【点晴】本题是圆的综合题,难度较大,灵活运用知识作出合理的辅助线构造直角三角形是解题的关键.25.如图,已知抛物线2y x bx c =-++与轴交于,两点,过点的直线与抛物线交于点,其中点的坐标是()1,0,点的坐标是()2,3-,抛物线的顶点为点.。

2023年中考数学全真模拟卷(广东卷02 教师版)

2023年中考数学全真模拟卷(广东卷02 教师版)

【赢在中考黄金八卷】备战2023年中考数学全真模拟卷(广东专用)第二模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个选项是最符合题意的)1.的相反数是()A.B.2C.D.【答案】A【分析】先化简绝对值,再利用相反数定义求出答案.【详解】∵=2,∴的相反数是-2,故选:A.【点睛】此题考查绝对值的化简,相反数的定义,熟记化简方法及定义即可正确解答.2.把科学记数法表示,结果是()A.B.C.D.【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:=;故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=6,则AB的长是().A.8B.1C.12D.4【答案】C【分析】根据含30度角的直角三角形的性质即可求解.【详解】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AC=6,∴AB的长是12.故选C.【点睛】本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键.4.一个暗箱中放有个除颜色外其他完全相同的球,这个球中只有个红球,每次将球搅拌均匀后,任意摸出个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到红球的频率稳定在,那么可以估算的值是()A.15B.10C.4D.3【答案】B【分析】因为除了颜色其他完全相同的球,在摸的时候出现的机会是均等的,通过大量重复摸球实验后发现,摸到红球的可能性稳定在20%,可知红球占总球数大约就是20%,问题就转化成了一个数的20%是2,求这个数,用除法计算即可.【详解】解:根据题意得:2÷20%=10(个),答:可以估算a的值是10;故选B.【点睛】考查了利用频率估计概率,解题关键是首先通过实验得到事件的频率,然后利用频率估计概率.5.下列计算正确的是()A.B.C.D.【答案】B【分析】根据同底数幂的除法底数不变指数相减;合并同类项系数相加字母及指数不变;同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘,可得答案.【详解】解:A、不是同类项不能加减,故A不符合题意;B、同底数幂的乘法底数不变指数相加,故B符合题意;C、,故C不符合题意;D、,故D不符合题意故选:B.【点睛】本题考查了幂的运算、合并同类项法则等知识,熟记法则并根据法则计算是解题关键.6.八个边长为1的正方形如图摆放在平面直角坐标系中,经过点的一条直线将这八个正方形分成面积相等的两部分,则该直线的解析式为().A.B.C.D.【答案】B【分析】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出点A的坐标,根据待定系数法即可得到该直线l的解析式.【详解】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP⋅AB=5,∴AB=2.5,∴OA=3−2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则解得∴直线l解析式为y=x+.故选B【点睛】此题考查正方形的性质,待定系数法求一次函数解析式,解题关键在于做辅助线7.如图,△ABC≌△DEF,AC∥DF,则∠C的对应角为()A.∠F B.∠AGE C.∠AEF D.∠D【答案】A【详解】试题分析:根据△ABC≌△DEF可得:∠B的对应角为∠DEF,∠BAC的对应角为∠D,∠C的对应角为∠F.考点:三角形全等的性质8.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.4【答案】B【分析】由三视图易得此几何体为底面是一个等腰直角三角形的直三棱柱,根据体积=底面积×高,把相关数值代入即可求解.【详解】解:由三视图可确定此几何体为底面是一个等腰直角三角形的直三棱柱,等腰直角三角形的直角边长为1,高为2,则,等腰直角三角形的底面积,体积=底面积×高,故选:B【点睛】此题主要考查了由三视图判断几何体,以及求三棱柱的体积,读懂题意,得出该几何体的形状是解决本题的关键.9.如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C【详解】试题解析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°-130°=50°.故选C.考点:1.平行线的性质;22.翻折变换(折叠问题).10.如图抛物线的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【详解】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1,∴2b﹣c=2,故①正确;故选C.点睛:本题考查了二次函数图象与系数的关系:对于二次函数(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.第II卷(非选择题)二、填空题(本大题共7小题,每小题4分,共28分)11.函数中自变量的取值范围是________.【答案】且【分析】根据二次根式的被开方数不能为负数,分式的分母不能为零解答;【详解】解:由二次根式的性质得:x≥0,由分式的分母不能为零的:x≠3,∴x≥0且x≠3,故答案为:x≥0且x≠3【点睛】本题考查二次根式和分式有意义的条件,掌握其有意义的条件是解题关键.12.不等式的解集是________.【答案】x<4【分析】去分母,去括号,移项合并,最后系数化为1即可.【详解】解:,去分母得:3(x+1)<18-(x-1),去括号得:3x+3<18-x+1,移项合并得:4x<16,解得:x<4.故答案为:x<4.【点睛】本题考查了解一元一次不等式,解题的关键是熟练掌握解法.13.若,则的值为__________.【答案】1949【分析】根据二次根式和偶次方的非负性求得x、y的值,然后代入代数式计算即可.【详解】解:∵∴x-9=0,y-4=0∴x=9,y=4将x=9,y=4代入得:9+4+(4×9+2×4)2=1949故答案为1949.【点睛】本题考查了二次根式和偶次方的非负性以及代数式求值,根据二次根式和偶次方的非负性求得x、y的值是正确解答本题的关键.14.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图,这6次成绩的中位数是_____.【答案】9.75【分析】将这组数有小到大排列,因为共有6个数,所以中位数为第3、4个数的平均数.【详解】由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.【点睛】本题考查了中位数的定义,根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.如图,以半圆O的半径OA为直径作一个半圆,点C为小半圆上一点,射线AC交半圆O于点D,已知的长为3,则的长为________.【答案】6【分析】连接OC,OD,O'C,利用圆周角定理可得∠ACO=90°,进而证得O'C是△AOD 的中位线,由O'C∥OD,得,由弧长公式可得结论.【详解】解:如图,连接OC,OD,O'C,∵OA为的直径,∴∠ACO=90°,∵OA=OD,∴AC=CD,∵O'A=O'O,∴O'C是△AOD的中位线,∴O'C∥OD,∴,∴的长=,∴弧的长=.故答案为:6.【点睛】此题主要考查了弧长计算公式的应用,求出的长=3是解答此题的关键.16.如图,在中,,,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;⑤作射线AF .若AF与PQ的夹角为,则_______°.【答案】56°【分析】根据直角三角形两锐角互余得∠BAC=68°,由角平分线的定义得∠BAM=34°,由线段垂直平分线可得△AQM是直角三角形,故可得∠AMQ+∠BAM=90°,即可求出α.【详解】解:∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=22°,∴∠BAC=90°−∠B=90°−22°=68°,由作图知:AM是∠BAC的平分线,∴∠BAM=∠BAC=34°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°−∠BAM=90°−34°=56°,∴α=∠AMQ=56°.故答案为:56°.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的定义,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.17.如图,在矩形中,,,P是矩形内一点,沿、、、把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】3026【分析】过点P作于点E,延长交于点F,证得四边形是矩形,得到,再利用面积相加得到阴影面积即可;利用勾股定理求得对角线AC的长,由得到当点P是对角线、的交点时,四边形的周长有最小值,即可计算四边形周长最小值.【详解】如解图①,过点P作于点E,延长交于点F,∵四边形是矩形,∴,.∴四边形是矩形.∴.又∵,∴;如解图②,连接,交于点,∵,,∴.∵,∴当点P是对角线、的交点时,四边形的周长有最小值.∴四边形周长的最小值为.故答案为:30,26.【点睛】此题考查矩形的判定及性质,最短路径问题,三角形的三边关系,勾股定理.题中最短路径问题是难点,解题中根据线段在同一直线上的思路使时周长最小来解题.错因分析较难题.失分的原因是:1.没有掌握矩形的性质;2.求拼接四边形周长最小值的时候没有联想到三角形的三边关系,两边之和大于第三边.三、解答题(本大题共3小题,每小题6分,共18分)18.先化简,再求值:,其中【答案】,【分析】将分子和分母通分,将除法转化为乘法,再约分计算,同时计算加法,最后算减法,代入计算即可.【详解】解:当时,原式.【点睛】此题考查了分式的化简求值,分母有理化,熟练掌握运算法则是解本题的关键.19.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.(1)求证:△AEH≌△BEC.(2)若AH=4,求BD的长.【答案】(1)见解析(2)BD=2【分析】(1)先根据角的代换求得∠DAC=∠EBC,再由“ASA”可证△AEH≌△BEC;(2)由全等三角形的性质可得AH=BC,由等腰三角形的性质可得答案.【详解】(1)证明:∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)解:∵△AEH≌△BEC,∴AH=BC=4,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD=4,∴BD=2.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定是本题的关键.20.2022年3月23日“天宫课堂”第二课在中国空间站正式开讲,“太空教师”翟志刚、王亚平、叶光富再次给大家带来一堂精彩的太空科普课.某校组织全校学生同步观看,直播结束后,教务处随机抽取了名学生,将他们最喜欢的太空实验分成四组,组:太空“冰雪”实验;B组:液桥演示实验;C组:水油分离实验;D组:太空抛物实验,并得到如下不完整的统计图表.请利用统计图表提供的信息回答下列问题:学生最喜欢的太空实验人数统计表分组A组B组C组D组人数a1520b(1)________,________,________;(2)补全条形统计图;(3)若全校同步观看直播的学生共有800人,请估计该校最喜欢太空抛物实验的人数.【答案】(1)50;5;10;(2)见详解(3)160【分析】(1)根据频率=可求出n的值,进而求出a、b的值;(2)根据(1)中的频数即可补全条形统计图;(3)求出样本中,“喜欢太空抛物”的学生所占调查学生的百分比即可估计总体中的百分比,进而计算相应的人数.【详解】(1)解:根据题意,;;;故答案为:50;5;10;(2)解:补全条形图如下:(3)解:该校最喜欢太空抛物实验的人数为:(人);【点睛】本题考查条形统计图、统计表以及样本估计总体,掌握频率=是解决问题的关键.四、解答题(本大题共3小题,每小题8分,共24分)21.一艘渔船从位于A海岛北偏东60°方向,距A海岛60海里的B处出发,以每小时30海里的速度沿正南方向航行.已知在A海岛周围50海里水域内有暗礁.(参考数据:)(1)这艘渔船在航行过程中是否有触礁的危险?请说明理由.(2)渔船航行3小时后到达C处,求A,C之间的距离.【答案】(1)没有危险,理由见解析;(2)79.50海里【分析】(1)过A点作于点D,在中求出AD与50海里比较即可得到答案;(2)在中求出BD得到CD,再根据勾股定理求出AC.【详解】解:(1)过A点作于点D,∴,由题意可得,∴在中,,∴渔船在航行过程中没有触礁的危险;(2)在中,,∵,∴,在中,,即A,C之间的距离为79.50海里.【点睛】此题考查解直角三角形的实际应用,正确理解题意,构建直角三角形,将已知的线段和角度放在直角三角形中,利用锐角三角函数解决问题是解题的关键.22.如图,在平面直角坐标系中,一次函数与反比例函数的图像交于两点,一次函数的图像与y轴交于点C.(1)求一次函数的解析式:(2)根据函数的图像,直接写出不等式的解集;(3)点P是x轴上一点,且的面积等于面积的2倍,求点P的坐标.【答案】(1)(2)或(3)或【分析】(1)利用待定系数法求出,的坐标即可解决问题.(2)观察图象写出一次函数的图象不在反比例函数的图象上方的自变量的取值范围即可解决问题.(3)根据,求出的面积,设,构建方程即可解决问题.【详解】(1)解:反比例函数的图象经过点,∴,解得,∴,把A、B的坐标代入得,解得,∴一次函数的解析式为;(2)解:观察图象,不等式的解集为:或;(3)解:连接,由题意,,设,由题意,解得,∴或.【点睛】本题考查了待定系数法求函数的解析式,根据函数的解析式求点的坐标,根据三角形的面积求点的坐标,注意数形结合思想的应用.23.如图,在中,以AC为直径的⊙O交AB边于点D,在AB边上取一点E,使得,连结CE,交⊙O于点F,且.(1)求证:BC是⊙O的切线.(2)若⊙O的直径为4,,求的长.【答案】(1)证明见解析;(2)【分析】(1)因为AC是直径,所以只需证明BC⊥AC即可;(2)求弧长,需已知半径和该弧所对的圆心角的度数,而半径已知,所以只需求出圆心角的度数即可,为此,连接OD,设法求∠AOD的度数即可.【详解】(1)证明:∵,∴.∵,∴.∴BC⊥AC.∴为的切线.(2)解:如图所示,连结,OD.∵为的直径,∴.∴,∴.∵∠ADC=∠ACB=90°,∴.∴.∴.∵,∴.设,则BE=2x,AB=BE+AE=2x+4.∴,解得,x1=2,x2=-4(不合题意,舍去).∴.在中,∵,∴.∵,∴∠AOD=2∠ACD=60°.∴.【点睛】本题考查了等腰三角形的性质、圆的切线的判定、相似三角形的判定与性质、圆周角定理及推论、弧长公式等知识点,熟知切线的判定方法、相似三角形的判定与性质、圆周角定理及推论是解决本题的关键.五、解答题(本大题共2小题,每小题10分,共20分)24.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,雪容融是2022年北京冬季残奥会的吉祥物,其以灯笼为原型进行设计创作,主色调为红色,面部带有不规则的雪块,身体可以向外散发光芒,某超市看好冰墩墩、雪容融两种吉祥物造型的钥匙扣挂件的市场价值,经调查冰墩墩造型钥匙扣挂件进价每个元,售价每个16元;雪容融造型钥匙扣挂件进价每个元,售价每个18元.(注:利润率(1)该超市在进货时发现:若购进冰墩墩造型钥匙扣挂件10个和雪容融造型钥匙扣挂件5个需要共170元;若购进冰墩墩造型钥匙扣挂件6个和雪容融造型钥匙扣挂件10个共需要200元.求,的值.(2)该超市决定每天购进冰墩墩、雪容融两种吉祥物钥匙扣挂件共100个,且投入资金不少于1160元又不多于1168元,设购买冰墩墩造型钥匙扣挂件个,求有哪几种购买方案(3)在(2)的条件下,超市在获得的利润(元取得最大值时,决定将售出的冰墩墩造型钥匙扣挂件每个捐出元,售出的雪容融造型钥匙扣挂件每个捐出元给当地福利院,若要保证捐款后的利润率不低于.请直接写出的最大值.【答案】(1)的值是10,的值是14(2)有3种购买方案:①购买冰墩墩造型钥匙扣挂件58个,购买雪容融造型钥匙扣挂42个,②购买冰墩墩造型钥匙扣挂件59个,购买雪容融造型钥匙扣挂41个,③购买冰墩墩造型钥匙扣挂件60个,购买雪容融造型钥匙扣挂40个(3)1.8【分析】(1)由购进冰墩墩造型钥匙扣挂件10个和雪容融造型钥匙扣挂件5个需要共170元;购进冰墩墩造型钥匙扣挂件6个和雪容融造型钥匙扣挂件10个共需要200元,得,即可解得的值是10,的值是14;(2)根据题意得,可解得有3种方案;(3),由一次函数性质可得W最大为(元),再根据题意即可解答.(1)购进冰墩墩造型钥匙扣挂件10个和雪容融造型钥匙扣挂件5个需要共170元;购进冰墩墩造型钥匙扣挂件6个和雪容融造型钥匙扣挂件10个共需要200元,,解得,答:的值是10,的值是14;(2)根据题意得:,解得,为整数,可取58,59,60,有3种购买方案:①购买冰墩墩造型钥匙扣挂件58个,购买雪容融造型钥匙扣挂42个,②购买冰墩墩造型钥匙扣挂件59个,购买雪容融造型钥匙扣挂41个,③购买冰墩墩造型钥匙扣挂件60个,购买雪容融造型钥匙扣挂40个;(3),,随增大而增大,时,最大=(元),此时购买冰墩墩造型钥匙扣挂件60个,购买雪容融造型钥匙扣挂40个,依题意得:,解得:.答:的最大值为1.8.【点睛】本题考查了二元一次方程组,一元一次不等式组和一次函数的应用,解决本题的关键是读懂题目意思,列出方程组,不等式组及函数关系式.25.已知抛物线,与轴交于点,(在的左边),与轴交于点,点为抛物线上一个动点,横坐标为,点为抛物线上另一个动点,横坐标为.(1)直接写出点,,的坐标.(2)将抛物线上点与点之间的部分记作图像,当图像的函数值的取值满足,求出的取值范围.(3)当点在第一象限时,以,为邻边作平行四边形,四边形的面积记为,求出关于的函数表达式,并写出的取值范围.(4)当以点点为端点的线段与抛物线之间的部分(包括、)有交点时,直接写出的取值范围.【答案】(1),,(2)(3)(4)或.【分析】(1)分别令,即可求解;(2)结合函数图象即可求解;(3)连接,交轴于点,求得直线的解析式,进而求得的长,根据平行四边形的性质即可求解;(4)根据点的坐标特征画出图形,然后根据特殊位置求得符合条件的的值,结合图象即可求解.【详解】(1)解:由,令,解得,∴,令,即,解得:,∴,;(2)解:∵,顶点坐标为,∵点为抛物线上一个动点,横坐标为,当图像的函数值的取值满足,∴,当时,点与点重合,此时,∴,(3)解:如图,连接,交轴于点,∵点为抛物线上一个动点,横坐标为,且在第一象限,则∴,设直线的解析式为,又,则解得:,∴直线的解析式为,∴,∴,∴,∴;(4)解:∵点点为端点的线段与抛物线之间的部分有交点,由,可知是直线以及上的点,且轴,如图,如图,当时,,此时点在点左侧,当时,或(舍),当E点在抛物线上时,,解得或,∴,当点在对称右侧时,当时,,点在点的左侧,当在抛物线上时,,当经过抛物线顶点时,如图,此时,∴当时,以点点为端点的线段与抛物线之间的部分有交点;综上所述,当以点点为端点的线段与抛物线之间的部分(包括、)有交点时,或.【点睛】本题考查了二次函数图象的性质,二次函数与坐标轴交点问题,特殊四边形与二次函数,面积问题,线段问题,数形结合是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东中考数学模拟题
广东中考数学知识点(一)
一、目标与要求
1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

二、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解ax+b=cx+d 类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。

三、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解
集正确地表示到数轴上。

广东中考数学知识点(二)
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。

2、矩形的性质
(1)具有平行四边形的一切性质(2)矩形的四个角都是直角
(3)矩形的对角线相等(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积S矩形=长宽=ab
广东中考数学知识点(三)
反比例函数的定义
定义:形如函数y=k/x(k为常数且k 0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质
函数y=k/x 称为反比例函数,其中k 0,其中X是自变量。

1.当k 0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k 0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k 0时,函数在x 0上同为减函数、在x 0上同为减函数;k
0时,函数在x 0上为增函数、在x 0上同为增函数。

3.x的取值范围是:x
y的取值范围是:y 0。

4..因为在y=k/x(k 0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数解析式的特征
⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数
⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

相关文档
最新文档