2021年广东省中考数学模拟试卷五

合集下载

2020-2021学年广东省中考数学模拟试卷及答案解析

2020-2021学年广东省中考数学模拟试卷及答案解析

广东省中考数学模拟试卷一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.2.下列图形是中心对称图形的是()A. B. C.D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=107.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= .12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E 顺时针旋转180°,点D运动到点F的位置,则S△ADE:S四边形DBCF是.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= cm2.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.参考答案与试题解析一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看第二层是三个小正方形,第一层左边一个小正方形,故选:A.2.下列图形是中心对称图形的是()A. B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【考点】二次函数图象与几何变换.【分析】根据图象左移加,可得答案.【解答】解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的判别式.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m【考点】相似三角形的应用.【分析】求出△ABE和△DCE相似,根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵AB⊥BC,CD⊥BC,∴∠ABE=∠DCE=90°,又∵∠AEB=∠DEC,∴△ABE∽△DCE,∴=,即=,解得AB=40m.故选B.6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x ﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π【考点】圆锥的计算.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π【考点】扇形面积的计算;旋转的性质.【分析】图中S阴影=S扇形ABB′+S△AB′C′﹣S△ABC.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:A.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.【解答】解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= 1 .【考点】特殊角的三角函数值.【分析】将cos45°=,tan30°=,sin60°=代入即可得出答案.【解答】解:cos245°+tan30°•sin60°=+×==1.故答案为:1.12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E 顺时针旋转180°,点D运动到点F的位置,则S△ADE:S四边形DBCF是1:4 .【考点】相似三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED=1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱DBCF的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S▱DBCF=1:4,故答案为:1:4.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= 4 cm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式S扇形=×弧长×半径,求出面积即可.【解答】解:由题可知,弧长=8﹣2×2=4cm,∴扇形的面积=×4×2=4cm2,故答案为:4.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为1或﹣2 .【考点】反比例函数的图象;一次函数的图象.【分析】根据一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),求出k,b的值,代入方程kx+b=,求得方程的解.【解答】解:一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),则一次函数y=kx+b过点(1,2),又过点(﹣2,﹣1),故k=1,b=1,即y=x+1.关于x的方程kx+b=可化为x+1=,它的解为1或﹣2.故答案为:1或﹣2.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.【考点】作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1,从而得到△OA1B1;(2)由于点A所走过的路线是以点O为圆心,OA为半径,圆心角为90°所对的弧,然后根据弧长公式求解.【解答】解:(1)如图,△A1OB1为所作;(2)OA==,所以A1旋转经过的路程长==π.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.【考点】列表法与树状图法.【分析】(1)随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,由此可知随机从中抽出一张牌牌面是K的概率=.(2)分别求出甲获胜与乙获胜的概率,进行比较,即可得出结论.【解答】解:(1)∵随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,∴随机从中抽出一张牌,牌面是K的概率==.故答案为(2)乙获胜的可能性大.理由如下,进行一次游戏所有可能出现的结果如下表:从上表可以看出,一次游戏可能出现的结果共有16种,而且每种结果出现的可能性相等,其中两次取出的牌中都没有K的有(J,J),(J,Q),(Q,J),(Q,Q)等4种结果.∵P(两次取出的牌中都没有K)=.∴P(甲获胜)=,P(乙获胜)=.∵<,∴乙获胜的可能性大.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=80米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,,则,∴;在Rt△BCD中,tan48°=,则,∴.∵AD+BD=AB,∴,解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;(2)可证明△ABC∽△BDC,则=,即可得出BC=.【解答】(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.【考点】反比例函数综合题.【分析】(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式列式计算即可得解;(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:(1)过点C作CG⊥OA于点G,∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=OG•tan60°=1•=,∴点C的坐标是(1,),由=,得:k=,∴该双曲线所表示的函数解析式为y=;(2)过点D作DH⊥AF于点H,设AH=a,则DH=a.∴点D的坐标为(4+a,),∵点D是双曲线y=上的点,由xy=,得(4+a)=,即:a2+4a﹣1=0,解得:a1=﹣2,a2=﹣﹣2(舍去),∴AD=2AH=2﹣4,∴等边△AEF的边长是2AD=4﹣8.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.【考点】四边形综合题.【分析】(1)如答图1所示,过点A作AG⊥BC于点G,构造Rt△APG,利用勾股定理求出AP的长度;(2)如答图2所示,符合条件的点P有两个.解直角三角形,利用特殊角的三角函数值求出角的度数;(3)先判断出AP∥FQ,进而得出AP⊥BC,即可求出AP=BP=CP=,最后用四边形的面积公式即可得出结论.【解答】解:(1)依题意画出图形,如答图1所示:由题意,得∠CFB=60°,FP为角平分线,则∠CFP=30°,∴CF=BC•tan30°=3×=,∴CP=CF•tan∠CFP==1.过点A作AG⊥BC于点G,则AG=BC=,∴PG=CG﹣CP=﹣1=.在Rt△APG中,由勾股定理得:AP==.(2)由(1)可知,FC=.如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=.过点A过AG⊥BC于点G,则AG=BC=.在Rt△AGP1中,cos∠P1AG==;∴∠P1AG=30°,∴∠P1AB=45°﹣30°=15°;同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°.∴∠PAB的度数为15°或75°.(3)如答图3,∵以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,∴AP∥QF,∴∠APC=∠BCF,∵∠BCF=90°,∴∠APC=90°,在R△ABC中,∠ABC=45°,BC=3,∴AC=AB=,∴AP=BP=CP=BC=,∴S平行四边形APFQ=AP×PC=×=,即:点P运动到BC中点的位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,且面积是.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点.由切割线定理得到Q2P=Q1P=2,EQ2=1设点Q2的坐标为(m,n)则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②①﹣②得n=2m﹣5③将③代入到①得到m1=3(舍,为Q1)m2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴K CD×K OE=﹣1,∴K OE=,∴l OE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴K EA==,∵K AD=,∴K EA×K AD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),∵Q1Q2被EP垂直平分,垂足为H,∴K Q1Q2×K EP=﹣1,∴K EP==﹣,K Q1Q2=2,∵Q1(3,1),∴l Q1Q2:y=2x﹣5,∵l EP:y=﹣x+,∴x=,y=,∴H(,),∵H为Q1Q2的中点,∴H x=,H Y=,∴Q2(x)=2×﹣3=,Q2(Y)=2×﹣1=,∴Q2(,).。

2021年广东省珠海市香洲区中考数学模拟试卷及答案解析

2021年广东省珠海市香洲区中考数学模拟试卷及答案解析

2021年广东省珠海市香洲区中考数学模拟试卷一.选择题(共10小题,每小题3分,满分30分)1.﹣4的倒数是( )A .14B .−14C .4D .﹣42.5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为( )A .13×105B .1.3×105C .1.3x 106D .1.3×1073.计算(2a )3•b 4÷12a 3b 2的结果是( )A .16b 2B .32b 2 C .23b 2 D .2b 23a 2 4.已知实数a ,b ,c 满足a =4b ﹣7,b =12c +2.①当23<c <3时,总有a >b >c ;②当2<c <4时,则b +c >a .上述结论,( )A .①正确②正确B .①正确②错误C .①错误②正确D .①错误②错误5.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个6.如图,将△ABC 绕点C 顺时针旋转35°,得△A ′B ′C ,若AC ⊥A ′B ′,则∠BAC =( )A .65°B .75°C .55°D .35°7.一元二次方程x 2﹣2kx +k 2﹣k +2=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣2B .k <﹣2C .k <2D .k >28.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.659.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.10.如图,平行四边形ABCD中,AC、BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,S△AEF=4,则下列结论:①FD=2AF;②S△BCE=36;③S△ABE=16;④△AEF∽△ACD,其中一定正确的是()A.①②③④B.①②C.②③④D.①②③二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:a2b﹣25b=.12.(4分)分式方程13x =2x−2的解为.13.(4分)一个多边形的内角和等于1800°,则该多边形的边数n等于.14.(4分)已知a2﹣a﹣2=0,则3a﹣3a2的值为.15.(4分)如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC=8,那么PD等于.。

2024年广东省中考数学模拟卷答案

2024年广东省中考数学模拟卷答案

2024年广东省初中数学中考模拟卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.35【答案】C2.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.6【答案】B3.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1【答案】A4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b【答案】C5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-94【答案】B6.如图所示,水平放置的几何体的俯视图是()A. B. C. D.【答案】C7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π【答案】B8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.59【答案】A9.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.10【答案】A10.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A.3 B.√10 C.9√15D.√152【答案】D【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy2﹣2x=.【答案】2x(y+1)(y-1)12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .【答案】60°13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .【答案】1.48×10714.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .【答案】40°15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .【答案】(1,)三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-4【答案】2√317.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ② 【答案】x ≤98【分析】先分别求出每个不等式得解集,然后根据夹逼原则求出不等式组的解集即可.【详解】解∶�2(3xx−1)≤−2xx+7①3xx+52≥53+2xx②解不等式①,得x≤98,解不等式②,得x≤53,∴不等式组的解集为x≤9818. (8分)先化简,再求值:(1+)÷,其中a=+1.解:原式=÷=•=,当a=+1时,原式==.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。

2021年广东省东莞市七校联考中考数学模拟试卷(解析版)

2021年广东省东莞市七校联考中考数学模拟试卷(解析版)

2021年广东省东莞市七校联考中考数学模拟试卷一.选择题(共10小题).1.下列实数中,无理数是()A.0B.﹣4C.D.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣83.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.804.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)5.正多边形的内角和是1440°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形6.若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.107.不等式组的解集在数轴表示正确的是()A.B.C.D.8.在半径为3的圆中,150°的圆心角所对的弧长是()A.πB.πC.πD.π9.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为()A.18B.25C.32D.3610.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4二.填空题(共7小题,满分28分,每小题4分)11.计算:20210+=.12.分式有意义的条件是.13.分解因式:1﹣16n2=.14.若2m+n=4,则代数式6﹣2m﹣n的值为.15.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.16.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有根小棒.三.解答题(共8小题,满分62分)18.先化简,再求值:()÷,其中x=﹣1.19.如图,△ABC是等边三角形,D,E分别是BA,CB延长线上的点,且AD=BE.求证:AE=CD.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.21.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品30件,B种物品20件,共需680元;如果购买A种物品50件,B种物品40件,共需1240元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共300件,总费用不超过4000元,那么A种防疫物品最少购买多少件?22.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.23.如图,已知点P是⊙O外一点,直线PA与⊙O相切于点B,直线PO分别交⊙O于点C、D,∠PAO=∠PDB,OA交BD于点E.(1)求证:OA∥BC;(2)当⊙O的半径为10,BC=8时,求AE的长.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,D为第一象限内抛物线上一点,过D做DT⊥x轴交x轴于T,交BC于点K,设D点横坐标为m,线段DK的长为d,求d与m之间的关系式;(3)如图3,在(2)的条件下,D在对称轴右侧,Q、H为直线DT上一点,Q点纵坐标为4,H在第四象限内,且QD=TH,过D作x轴的平行线交抛物线于点E,连接EQ 交抛物线于点R,连接RH,tan∠ERH=2,求点D的坐标.25.如图1,在平面直角坐标系中,已知矩形OABC的顶点A(6,0),C(0,2),将矩形OABC绕点O逆时针旋转得到矩形ODEF,使得点A的对应点D恰好落在对角线OB上,OE交BC于点G.(1)求证:△BGO是等腰三角形;(2)求点E的坐标;(3)如图2,矩形ODEF从点O出发,沿OB方向移动,得到矩形O′D′E′F′,当移动到点O′与点B重合时,停止运动,设矩形O'D'E′F′与△OBC重叠部分的面积为y,OO′=x,求y关于x的函数关系式.参考答案一.选择题(共10小题,满分30分,每小题3分)1.下列实数中,无理数是()A.0B.﹣4C.D.解:0,﹣4是整数,属于有理数;是分数,属于有理数;无理数是.故选:C.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8解:0.0000000099=9.9×10﹣9,故选:C.3.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.4.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)解:∵点A关于原点的对称点A1(3,﹣2),∴点A的坐标为(﹣3,2),故选:A.5.正多边形的内角和是1440°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形是正十边形.故选:D.6.若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.10解:∵关于x的方程x2+6x﹣a=0无实数根,∴△=62﹣4×1×(﹣a)<0,解得:a<﹣9,∴只有选项A符合,故选:A.7.不等式组的解集在数轴表示正确的是()A.B.C.D.解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.8.在半径为3的圆中,150°的圆心角所对的弧长是()A.πB.πC.πD.π解:弧长==π,故选:A.9.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为()A.18B.25C.32D.36解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由折叠的性质得:∠AFE=∠D=90°,EF=ED,AF=AD,∴tan∠EFC==,设CE=3k,则CF=4k,由勾股定理得DE=EF==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF==tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36(cm),故选:D.10.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.计算:20210+=﹣2.解:原式=1+3﹣6=﹣2.故答案为:﹣2.12.分式有意义的条件是x≠﹣1.解:要使分式有意义,必须x+1≠0,解得,x≠﹣1,故答案是:x≠﹣1.13.分解因式:1﹣16n2=(1﹣4n)(1+4n).解:1﹣16n2=(1﹣4n)(1+4n).故答案为:(1﹣4n)(1+4n).14.若2m+n=4,则代数式6﹣2m﹣n的值为2.解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.15.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.解:作OC⊥AB于C,连接OA,如图,∵OC⊥AB,∴AC=BC=AB=×4=2,在Rt△AOC中,OA=5,∴OC===,即圆心O到AB的距离为.故答案为:.16.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是①④.(把所有正确结论的序号都填在横线上)①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;不正确;正确的是①④.故答案为:①④.17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有31根小棒.解:观察图形的变化可知:第1个图案中有6根小棒,即5×1+1=6;第2个图案中有11根小棒,即5×2+1=11;第3个图案中有16根小棒,即5×3+1=16;…,则第6个图案中有:5×6+1=31(根)小棒.故答案为:31.三.解答题(共8小题,满分62分)18.先化简,再求值:()÷,其中x=﹣1.解:原式=•=x+2,当x=﹣1时,原式=﹣1+2=1.19.如图,△ABC是等边三角形,D,E分别是BA,CB延长线上的点,且AD=BE.求证:AE=CD.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠BAC=60°,∴∠ABE=∠CAD=180°﹣60°=120°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS),∴AE=CD.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)画树状图如下:共有12个等可能的结果,恰好抽到同性别学生的结果有4个,∴恰好抽到同性别学生的概率为=.21.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品30件,B种物品20件,共需680元;如果购买A种物品50件,B种物品40件,共需1240元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共300件,总费用不超过4000元,那么A种防疫物品最少购买多少件?解:(1)设A种防疫物品x元/件,B种防疫物品y元/件,依题意得:,解得:.答:A种防疫物品12元/件,B种防疫物品16元/件.(2)设A种防疫物品购买m件,则B种防疫物品购买(300﹣m)件,依题意得:12m+16(300﹣m)≤4000,解得:m≥200.答:A种防疫物品最少购买200件.22.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.解:(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,,解得,,∴一次函数的关系式为y=2x﹣4,当x=3时,y=2×3﹣4=2,∴点C(3,2),∵点C在反比例函数的图象上,∴k=3×2=6,∴反比例函数的关系式为y=,答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=;(2)点P在反比例函数的图象上,点Q在一次函数的图象上,∴点P(n,),点Q(n,2n﹣4),∴PQ=﹣(2n﹣4),∴S△PDQ=n[﹣(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,∵﹣1<0,∴当n=1时,S最大=4,答:△DPQ面积的最大值是4.23.如图,已知点P是⊙O外一点,直线PA与⊙O相切于点B,直线PO分别交⊙O于点C、D,∠PAO=∠PDB,OA交BD于点E.(1)求证:OA∥BC;(2)当⊙O的半径为10,BC=8时,求AE的长.【解答】证明:(1)如图,连接OB,∵PA与⊙O相切于点B,∴∠ABO=90°,∴∠ABE+∠OBE=90°,∵OB=OD,∴∠OBD=∠ODB,∵∠PAO=∠PDB,∴∠PAO=∠OBD,∴∠ABE+∠PAO=90°,∴∠AEB=90°,∵CD是直径,∴∠CBD=90°,∴∠CBD=∠AEB,∴OA∥BC;(2)∵CD=2OD=20,BC=8∴BD===4,∵OE⊥BD,∴BE=DE=2,∵∠BAE=∠D,∠AEB=∠CBD=90°∴△ABE~△DCB,∴∴∴AE=21.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,D为第一象限内抛物线上一点,过D做DT⊥x轴交x轴于T,交BC于点K,设D点横坐标为m,线段DK的长为d,求d与m之间的关系式;(3)如图3,在(2)的条件下,D在对称轴右侧,Q、H为直线DT上一点,Q点纵坐标为4,H在第四象限内,且QD=TH,过D作x轴的平行线交抛物线于点E,连接EQ 交抛物线于点R,连接RH,tan∠ERH=2,求点D的坐标.解:(1)对于y=a(x+1)(x﹣3),令y=a(x+1)(x﹣3)=0,解得x=3或﹣1,令x=0,则y=﹣3a,∴A(﹣1,0),B(3,0),C(0,﹣3a),∵OB=OC=3,∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3;(2)由点BC的坐标得:直线BC解析式为y=﹣x+3,∴设D(m,﹣m2+2m+3),K(m,﹣m+3),∴d=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3);(3)连接EH,∵QH平行y轴,Q点的纵坐标为4,QD=TH,∴QT=DH=4,∴QD=4﹣(﹣m2+2m+3)=m2﹣2m+1,∵ED=2m﹣2,∴tan∠QED=,∴tan∠EHD=,∴∠QED=∠EHD,∴∠QEH=90°,过E作y轴平行线l,过R、H分别作直线l的垂线交l于M和N,连接EH,∵∠QEH=90°,∴∠REM+∠HEN=90°,∵∠EHN+∠HEN=90°,∴∠REM=∠EHN,∴Rt△RME∽Rt△ENH,∴=tan∠ERH=2,∵NH=DE=2m﹣2,∴ME=m﹣1,∴RF=﹣m2+3m+2,∵EN=DH=4,∴RM=2,∴FT=NH﹣MR=2m﹣4,∴OF=OT﹣OF=4,∴R(4﹣m,﹣m2+3m+2),将R点代入抛物线表达式得:﹣m2+3m+2=﹣(4﹣m)2+2(4﹣m)+3,解得:m=,当x=时,y=﹣x2+2x+3=,∴D(,).25.如图1,在平面直角坐标系中,已知矩形OABC的顶点A(6,0),C(0,2),将矩形OABC绕点O逆时针旋转得到矩形ODEF,使得点A的对应点D恰好落在对角线OB上,OE交BC于点G.(1)求证:△BGO是等腰三角形;(2)求点E的坐标;(3)如图2,矩形ODEF从点O出发,沿OB方向移动,得到矩形O′D′E′F′,当移动到点O′与点B重合时,停止运动,设矩形O'D'E′F′与△OBC重叠部分的面积为y,OO′=x,求y关于x的函数关系式.解:(1)由题意知:tan∠CBO=,∴∠CBO=30°,∵AO∥BC,∴∠BOA=∠CBO=30°,∵∠GOB=∠GBO=30°,∴GO=GB,∴△BGO是等腰三角形;(2)在Rt△BCO中,OC=2,BC=OA=6,∴OB=OE==4,作EH⊥x轴于点H,∵∠BOA=∠EOB=30°,∴∠EOH=∠BOA+∠EOB=60°,在Rt△EOH中,OE=4,∴OH=2,EH=6,故E点坐标为(2,6);(3)OO′=x,O′D′=6,D'B=4﹣x﹣6,令F'O'与CO交点为点M.,E'D'与CB交点为点N,S△OMO′=x2,S△ND′B=,S△OCB=6,当0≤x﹣6,y=6﹣x2﹣,当4﹣6<x,y=6﹣x2,当,y=.。

2021年九年级中考数学广东省广州市各区模拟真题汇编:三角形选择与填空

2021年九年级中考数学广东省广州市各区模拟真题汇编:三角形选择与填空

2021年九年级中考数学广东省广州市各区模拟真题汇编:三角形选择与填空一.选择题1.(2021•广州模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.2.(2021•广州模拟)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a3.(2021•广州模拟)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c24.(2021•广州模拟)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是()A.2 B.3 C.4 D.55.(2021•越秀区模拟)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB于点E,连接AD,AD将∠CAB分成两个角,且∠CAD:∠BAD=2:5,则∠ADC的度数是()A.70°B.75°C.80°D.85°6.(2021•白云区二模)直角三角形的斜边长为10,则斜边上的中线长为()A.2 B.3 C.4 D.57.(2021•广东模拟)如图,在△ABC中,AB=AC=8,AD是角平分线,BE是中线,则DE的长为()A.3 B.4 C.5 D.68.(2021•越秀区一模)如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.9.(2021•增城区一模)下列四组数中,能构成直角三角形的是()A.8,10,7 B.2,3,4 C.2,1,5 D.,1,10.(2021•广州模拟)如图,在△ABC中,D是AB的中点,DE∥BC,若BC=6,则DE=()A.3 B.4 C.5 D.211.(2021•越秀区模拟)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.1812.(2021•白云区二模)如果三角形的两边长分别为3和5,那么这个三角形的周长可能是()A.9 B.10 C.15 D.1613.(2021•广州模拟)一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或12二.填空题14.(2021•越秀区模拟)如图,正方形纸片ABCD,P为正方形AD边上的一点(不与点A,D重合).将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接BP,BH,BH交EF于点M,连接PM.下列结论:①BP=EF;②PB平分∠APG;③PH=AP+HC;④MH=MF,其中正确的结论是.(填写所有正确结论的序号)15.(2021•广州模拟)如图,已知点B在线段CF上,AB∥CD,AD∥BC,DF交AB于点E,联结AF、CE,S△BCE :S△AEF的比值为.16.(2021•广州一模)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=3,点D是BC边上动点,连接AD 交以CD为直径的圆于点E,则线段BE长度的最小值为.17.(2021•海珠区一模)点C在∠AOB的平分线上,CM⊥OB,OC=13,OM=5,则点C到射线OA的距离为.18.(2021•广州模拟)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E,F,连接EM.则下列结论中:①BF=CE;②∠AEM=∠DEM;③AE﹣CE=ME;④DE2+DF2=2DM2;⑤若AE平分∠BAC,则EF:BF=:1;正确的有.(只填序号)19.(2021•花都区一模)在△ABC中,∠A=45°,∠B=60°,则∠C的度数是.20.(2021•广州模拟)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.21.(2021•广州模拟)如图,过射线OA上一点M作MN⊥OB于点N,交∠AOB的平分线于点P.若MP=5,NP=3.则OP的长为.参考答案一.选择题1.解:∵∠ACB=90°,D为AB的中点,∴CD=BD=AD,∵∠ACB=90°,∠A=30°,∴∠B=60°,∴△CBD为等边三角形,∴CD=BC=2,∵E,F分别为AC,AD的中点,∴EF=CD=1,故选:B.2.解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.3.解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故选:A.4.解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:B.5.解:设∠CAD=2x°,∠BAD=5x°,∵AB的垂直平分线是DE,∴BD=AD,∴∠BAD=∠B,即∠B=5x°,∵∠C=90°,∴∠CAB+∠B=90°,∴2x+5x+5x=90,解得:x=,即∠B=∠CAD=()°,∴∠ADC=∠B+∠CAD=()°+()°=75°,故选:B.6.解:∵直角三角形斜边长为10,∴斜边上的中线长为5.故选:D.7.解:∵AB=AC=8,AD是角平分线,∴AD⊥BC,∴∠ADC=90°,∵BE是中线,∴AE=CE,∴DE=AC=×8=4,故选:B.8.解:在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=3,∴AE=2,∵AD2=DE2+AE2,∴DE2+22=(4﹣DE)2,∴DE=,∴BD===.故选:D.9.解:A、72+82≠102,故不能构成直角三角形,故A不符合题意;B、22+32≠4,故不能构成直角三角形,故B不符合题意;C、1+2<5,不能构成三角形,故C不符合题意;D、()2+12=()2,故能构成直角三角形,故D符合题意;故选:D.10.解:∵D是AB的中点,DE∥BC,∴点E是AC的中点,∴DE是△ABC的中位线,∴DE=BC=×6=3.故选:A.11.解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.12.解:∵三角形的两边长为3和5,∴第三边x的长度范围是5﹣3<x<5+3,即2<x<8,∴这个三角形的周长a范围是2+5+3<a<5+3+8,即10<a<16,故选:C.13.解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选:C.二.填空题(共8小题)14.解:如图1,根据翻折不变性可知:PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故②正确;如图2,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故①正确,如图3,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,∴BA=BQ,∵BP=BP.∴Rt△ABP≌Rt△QBP(HL),∴AP=QP,又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴Rt△BCH≌Rt△BQH(HL)∴CH=QH,∴QP+QH=AP+CH,即PH=AP+CH,故③正确;设EF与BP的交点为点N,如图4,∵Rt △ABP ≌Rt △QBP ,△BCH ≌△BQH ,∴∠ABP =∠QBP ,∠CBH =∠QBH ,∴∠QBP +∠QBH =∠ABP +∠CBH =∠ABC =45°,即∠PBM =45°,由折叠知,∠BPM =∠PBM =45°,∠EBM =∠EPM ,∠PNF =∠BNF =90°, ∵AB ∥CD ,∴∠MHF =∠EBM =∠EPM =45°+∠EPN ,∵在四边形DPNF 中,∠D =∠PNF =90°,∴∠MFH +∠DPN =180°,∵∠DPN +∠APN =180°,∴∠APN =∠MFH ,当AP ≠AE 时,∠APE ≠45°,则∠APN ≠∠EPM ,此时,∠MFH ≠∠MHF ,则此时MH ≠MF ,故④错误;故答案为:①②③.15.解:连接BD ,如图,∵BC ∥AD ,∴S △AFD =S △ABD ,∴S △AFD ﹣S △AED =S △ABD ﹣S △AED ,即S △AEF =S △BED ,∵AB∥CD,∴S△BED =S△BEC,∴S△AEF =S△BEC,∴S△BCE :S△AEF=1,故答案为:1.16.解:如图,作以AC为直径的圆,圆心为O,连接CE,∵E点在以CD为直径的圆上,∴∠CED=90°,∴∠AEC=180°﹣∠CED=90°,∴点E也在以AC为直径的圆上,若BE最短,则OB最短,∵AC=8,∴OC=4,∵BC=3,∠ACB=90°,∴OB===5,∵OE=OC=4,∴BE=OB﹣OE=5﹣4=1,故答案为1.17.解:过C作CF⊥AO于F,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=13,OM=5,∴CM==12,∴CF=12,故答案为:12.18.解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,又∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,连接FM,CM,∵点M是AB中点,∴CM=AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,又BM=CM,BF=CE,∴△BFM≌OCEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直角三角形,∴EF=EM=AE﹣CE,故③正确,∠MEF=∠MFE=45°,∵∠AEC=90°,∴∠MEF=∠AEM=45°,故②正确,设AE与CM交于点N,连接DN,∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,∴△DFM≌△NEM(ASA),∴DF=EN,DM=MN,∴△DMN为等腰直角三角形,∴DN=DM,而∠DEA=90°,∴DE2+DF2=DN=2DM2,故④正确;∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵AE平分∠BAC,∴∠DAE=∠CAE=22.5°,∠ADE=67.5°,∵∠DEM=45°,∴∠EMD=67.5°,即DE=EM,∵AE=AE,∠AED=∠AEC,∠DAE=∠CAE,∴△ADE≌△ACE(ASA),∴DE=CE,∴△MEF为等腰直角三角形,∴EF=EM,∴====,故⑤正确.故答案为:①②③④⑤.19.解:∠C=180°﹣∠A﹣∠B=75°.20.解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.21.解:过P作PN′⊥OA于N′,∵OP是∠AOB的平分线,PN′⊥OA,PN′⊥OB,∴PN′=PN=3,∴MN′===4,在Rt△PON和Rt△PON′中,,∴Rt△PON≌Rt△PON′(HL),∴ON=ON′,在Rt△OMN中,MN=MP+PN=5+3=8,OM=ON′+MN′=ON+4,∵OM2=MN2+ON2,∴(ON+4)2=82+ON2,解得:ON=6,∴OP===3,故答案为:3.。

广州中考数学模拟试卷(05)

广州中考数学模拟试卷(05)

广州中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数:3.1415926,,2.121221…(两个1之间依次多一个2),﹣2π,,2021中,有理数的个数为()A.2个B.3个C.4个D.5个2.(3分)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:①x3=3;②x5=1;③x108<x104;④x2018>x2019.其中,正确的结论的序号是()A.①③B.②③C.①②③D.①②④3.(3分)方程的解是()A.x=B.x=C.x=D.x=4.(3分)定义一种运算:,其中k是正整数,且k≥2,[x]表示非负实数x的整数部分,例如[2.6]=2,[0.8]=0.若以[a1]=1,则a2018的值为()A.2017B.2C.2018D.35.(3分)下列命题是真命题的有()(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)在同一平面内,过两点有且只有一条直线与已知直线垂直;(4)经过直线外一点,有且只有一条直线与已知直线平行;(5)一个角的余角一定大于这个角.A.0个B.1个C.2个D.3个6.(3分)(2021•东营)经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为()A.B.C.D.7.(3分)(2022•天河区校级一模)如图,AB是⊙O的直径,BC是⊙O的切线,点B为切点,若BC=4cm,tan∠BAC=,则劣弧BD的长为()A.cm B.cm C.cm D.πcm8.(3分)(2021秋•泰山区期末)如图,已知抛物线y=ax²+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0).其中正确结论有()A.1个B.2个C.3个D.4个9.(3分)(2021•包头一模)如图,在正方形ABCD中,E是对角线BD上一点(BE<DE),将线段CE绕点C按顺时针方向旋转90°得到线段CE′,连接AE′,DE′,EE′.下列结论:①若∠BAE=20°,则∠DE′E=70°;②BE2+DE2=2AE2;③若∠BAE=30°,则DE=BE;④若BC=9,EC=10,则sin∠DEC=.其中正确的结论有()A.4个B.3个C.2个D.1个10.(3分)(2022•锡山区一模)如图,在平面直角坐标系中,矩形ABCD的对角线AC、BD 的交点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF.△ABE的面积为15,则k的值为()A.10B.20C.7.5D.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2022春•源汇区校级月考)若,则的算术平方根是.12.(3分)(2020•上虞区模拟)当x=时,两个代数式1+x2,x2﹣2x+3的值相等.13.(3分)(2019秋•高淳区期末)如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=1,则BC的长为.14.(3分)(2021秋•松滋市期末)如图,在平面直角坐标系xOy中,已知菱形ABCD的顶点A(0,2)和C(2,0),顶点B在x轴上,顶点D在反比例函数y=的图象上,向右平移菱形ABCD,对应得到菱形A′B′C′D′,当这个反比例函数图象经过C′D′的中点E时,点E的坐标是.15.(3分)(2020•河南模拟)如图,在等腰三角形ABC中,AB=AC=2,∠BAC=120°,将△ABC绕AB边的中点O逆时针旋转60°得到△DEF,是点C的运动路径,则图中阴影部分的面积为.16.(3分)(2017•余姚市模拟)如图,在四边形ABCD中,∠A=90°,AD=2,AB﹣BC =1,圆心在线段BD上的⊙O交AB于点E、F,交BC于点G,H,其EF=GH,则CD 的长为.三.解答题(共9小题,满分72分)17.(4分)(2021春•道县期中)解方程组:(1).(2).18.(4分)(2021秋•桐柏县期末)如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.19.(6分)(2021秋•北安市校级期末)先化简(﹣),再从﹣1,0,1,2四个数中选一个你认为适合的数代入求值.20.(6分)(2021春•中山市期末)某校心理老师从该校八年级学生中抽取20名学生,对他们在校期间亲子电话沟通次数(记为x次)进行调查,现将数据收集、整理、分析如下:收集数据:5,2,0,7,1,10,3,4,7,7,6,8,4,5,6,8,9,8,8,11;整理数据:0≤x≤34≤x≤67≤x≤9x≥10电话沟通次数/次频数4a b2分析数据:平均数众数中位数5.95c d根据以上信息,解答下列问题:(1)上述表中的a=,b=,c=,d=;(2)该校八年级有1000名学生,估计该校八年级在校亲子电话沟通7次及以上的学生人数是多少?21.(8分)(2021春•兴城市期末)在防控新型冠状病毒期间,甲、乙两个服装厂都接到了制做同一种型号的医用防护服任务,已知甲、乙两个服装厂每天共制做这种防护服100套,甲服装厂3天制做的防护服与乙服装厂2天制做的防护服套数相同.(1)求甲、乙两个服装厂每天各制做多少套这种防护服;(2)现有1200套这种防护服的制做任务,要求不超过10天完成,若乙服装厂每天多做8套,那么甲服装厂每天至少多做多少套?22.(10分)(2021秋•南岸区校级期中)如图,在平行四边形ABCD中,AC为对角线.(1)用尺规完成以下基本作图:过点A作BC边的垂线交BC于点E.(保留作图痕迹,不写作法,只下结论)(2)在(1)所作的图形中,若tan B=,AE=24,AC=30,求边AD的长.23.(10分)如图,AB是⊙O的直径,C、D是⊙O上两点.AE与过点C的切线垂直,垂足为E,直线EC与直径AB的延长线相交于点P,弦CD交AB于点F,连接AC、AD、BC、BD.(1)若∠ABC=∠ABD=60°,判断△ACD的形状,并证明你的结论;(2)若CD平分∠ACB,求证:PC=PF;(3)在(2)的条件下,若AD=5,PF=5,求由线段PC、和线段BP所围成的图形(阴影部分)的面积.24.(12分)如图,抛物线y=﹣x2﹣bx+c与x轴交于A(﹣1,0),B(2,0)两点,与y 轴交于点C.(1)求抛物线的解析式;(2)如图(1),D是抛物线上一点,连接AD交线段BC于点E,若AE=3DE,求点D 的坐标;(3)如图(2),平行于BC的直线MN交抛物线于M,N两点,作直线MC,NB的交点P,求点P的横坐标.25.(12分)如图1,正方形ABCD的边长为1,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.(1)①求证:AE=MN;②连接AN、NE、EM,直接写出四边形ANEM的面积S的取值范围.(2)如图2,若垂足P为AE的中点,连接BD,交MN于点F,连接EF,求∠AEF的度数.(3)如图3,当垂足P在正方形ABCD的对角线BD上时,作NH⊥BD,垂足为H,点E在边BC上运动过程中,PH的长度是否变化?若不变,求出PH的长;若变化,说明变化规律.。

2020-2021学年广东省湛江市中考数学模拟试题及答案解析

2020-2021学年广东省湛江市中考数学模拟试题及答案解析

最新广东省湛江市中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.32.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同3.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.84.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.5.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30° B.45° C.60°D.65°6.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a27.在半径为6的⊙O中,60°圆心角所对的弧长是()A.πB.2πC.4πD.6π8.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥19.分式方程=的解为()A.x=4 B.x=3 C.x=2 D.x=110.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:x2﹣16= .12.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.13.已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为.14.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为.15.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.16.如图,在边长为4的正方形ABCD中,以BC为直径的半圆交对角线BD于E,则图中阴影部分的面积为.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:|﹣1|+﹣()﹣1+20160.18.先化简,再求值:,其中a=﹣3.19.如图,在△ABC中,AB=3cm,AC=5cm.(1)作图,作BC的垂直平分线分别交AC,BC于点D、E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.四、解答题(二)(本大题3小题,每小题7分,共21分).20.雾霾天气严重影响市民的生活质量.在2015年寒假期间,某校九年级(1)班的综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了所在城市部分市民看法,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察并回答下列问题:类别雾霾天气的主要成因百分比A 工业污染45%B 汽车尾气排放C 生活炉烟气排放15%D 其他(滥砍滥伐等)(1)本次被调查的市民共有人,B类占(百分比),D类占(百分比);并补全条形统计图;(2)若该市有100万人口,请估计持有A、B两类看法的市民共有多少人?21.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)五、解答题(三)(本大题3小题,每小题9分,共27分).23.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2),直线l⊥x 轴于点N(3,0),与一次函数和反比例函数的图象分别相交于B,C,连接AC.(1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.24.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.25.如图,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,求t的值.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则比较即可.【解答】解:根据0大于负数,小于正数,可得0在﹣1和2之间,故选:C.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的宽不同,故A错误;B、俯视图是两个相等的圆,故B正确;C、主视图的宽不同,故C错误;D、俯视图是两个相等的圆,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.3.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】压轴题.【分析】利用多边形的内角和公式即可求解.【解答】解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选:B.【点评】本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学,理解比记忆更重要.4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30° B.45° C.60°D.65°【考点】平行线的性质.【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a2【考点】合并同类项.【分析】运用合并同类项的方法计算.【解答】解:﹣a2+3a2=2a2.故选:A.【点评】本题考查了合并同类项法则,解题的关键是掌握相关运算的法则.7.在半径为6的⊙O中,60°圆心角所对的弧长是()A.πB.2πC.4πD.6π【考点】弧长的计算.【分析】根据弧长的计算公式l=计算即可.【解答】解:l===2π.故选:B.【点评】本题考查的是弧长的计算,掌握弧长的计算公式:l=是解题的关键.8.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.分式方程=的解为()A.x=4 B.x=3 C.x=2 D.x=1【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+4=3x,解得:x=4,经检验x=4是分式方程的解.故选A【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.10.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:x2﹣16= (x﹣4)(x+4).【考点】因式分解-运用公式法.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣16=(x+4)(x﹣4).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.【点评】本题主要考查了科学记数法:熟记规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0是解题的关键.13.已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为2:3 .【考点】相似三角形的性质.【分析】由于相似三角形的对应中线和周长的比都等于相似比,由此可求出两三角形的周长比.【解答】解:∵△ABC与△DEF相似且对应中线的比为2:3,∴它们的相似比为2:3;故△ABC与△DEF的周长比为2:3.【点评】此题主要考查了相似三角形的性质:相似三角形的一切对应线段(包括对应边、对应中线、对应高、对应角平分线等)的比等于相似比;相似三角形的周长比等于相似比.14.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为 3 .【考点】角平分线的性质;菱形的性质.【专题】计算题.【分析】作PF⊥AD于D,如图,根据菱形的性质得AC平分∠BAD,然后根据角平分线的性质得PF=PE=3.【解答】解:作PF⊥AD于D,如图,∵四边形ABCD为菱形,∴AC平分∠BAD,∵PE⊥AB,PF⊥AD,∴PF=PE=3,即点P到AD的距离为3.故答案为:3.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了菱形的性质.15.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z .【考点】规律型:数字的变化类.【分析】首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.【解答】解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.【点评】此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.16.如图,在边长为4的正方形ABCD中,以BC为直径的半圆交对角线BD于E,则图中阴影部分的面积为8 .【考点】扇形面积的计算.【分析】根据△ABD的面积就是阴影部分的面积解答即可.【解答】解:连接OE,∵S△ABD=AD•AB=×4×4=8,S扇形OBE=π×22=π,S扇形OCE=π×22=π,∴阴影部分的面积为S△ABD=8.故答案为:8【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:|﹣1|+﹣()﹣1+20160.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及绝对值、二次根式、负整数指数幂、零指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|﹣1|+﹣()﹣1+20160=1+2﹣2+1=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、二次根式、负整数指数幂、零指数幂等考点的运算.18.先化简,再求值:,其中a=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把a的值代入求值.【解答】解:原式==.当a=﹣3时,原式=.【点评】此题考查了分式的混合运算,能够熟练代值计算.19.如图,在△ABC中,AB=3cm,AC=5cm.(1)作图,作BC的垂直平分线分别交AC,BC于点D、E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的作法作图即可;(2)根据线段垂直平分线的性质可得“DB=DC,进而得到AD+DC=AD+BD=5cm,然后可得周长.【解答】解:(1)如图所示:(2)∵DE是BC的垂直平分线,∴BD=CD,∵AC=5cm,∴AD+DC=AD+BD=5cm,∵AB=3cm,∴△ABD的周长是:5+3=8(cm).【点评】此题主要考查了基本作图,关键是掌握线段垂直平分线的作法和性质.垂直平分线上任意一点,到线段两端点的距离相等.四、解答题(二)(本大题3小题,每小题7分,共21分).20.雾霾天气严重影响市民的生活质量.在2015年寒假期间,某校九年级(1)班的综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了所在城市部分市民看法,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察并回答下列问题:类别雾霾天气的主要成因百分比A 工业污染45%B 汽车尾气排放C 生活炉烟气排放15%D 其他(滥砍滥伐等)(1)本次被调查的市民共有200 人,B类占30% (百分比),D类占10% (百分比);并补全条形统计图;(2)若该市有100万人口,请估计持有A、B两类看法的市民共有多少人?【考点】条形统计图;用样本估计总体.【分析】(1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B 类所占的百分比,再用总人数乘以C类所占的百分比求出C类的人数,从而补全统计图;(2)用该市的总人数乘以持有A、B两类的所占的百分比即可.【解答】解:(1)本次被调查的市民共有=200(人),B类所占的百分比是:×100%=30%;D类所占的百分比是:×100%=10%;C类的人数是:200×15%=30(人),补图如下:故答案为:200;30%;10%;(2)根据题意得:100×(45%+30%)=75(万人).答:持有A、B两类看法的市民共有人数为75万人.【点评】此题考查了条形统计图和用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.【专题】综合题.【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.(1分)在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(4分)(2)解:四边形BMDF是菱形.(5分)理由:由折叠可知:BF=BM,DF=DM.(6分)由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.(7分)【点评】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及菱形的判定、全等三角形的判定和性质的有关知识.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B 两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.【解答】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.【点评】此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分).23.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2),直线l⊥x 轴于点N(3,0),与一次函数和反比例函数的图象分别相交于B,C,连接AC.(1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A的坐标分别代入一次函数与反比例函数的解析式即可求得k和m的值;(2)B的横坐标是3,把x=3代入一次函数的解析式即可求得B的坐标;(3)把x=3代入反比例函数解析式求得C的坐标,则BC的长即可求得,过点A作AD⊥直线l,垂足为D,利用三角形的面积公式即可求得.【解答】解:(1)∵A(1,2)是一次函数y=kx+1与反比例函数y=的公共点∴k+1=2,=2∴k=1,m=2,(2)∵直线l⊥x轴于点N(3,0),且与一次函数的图象交于点B∴点B的横坐标为3.又一次函数的表达式为:y=x+1,∴y=3+1=4,∴点B的坐标为(3,4);(3)过点A作AD⊥直线l,垂足为D,依题意,得点C的横坐标为3,∵点C在反比例函数图象上∴y==,∴BC=BN﹣CN=4﹣=,又∵AD=3﹣1=2,∴S△ABC=BC•AD=××2=.答:△ABC的面积是.【点评】本题考查了待定系数法求函数的解析式,以及三角形的面积的计算,正确求得B和C的坐标是关键.24.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.【考点】圆周角定理;切线的判定与性质;弧长的计算;特殊角的三角函数值.【专题】计算题;证明题;压轴题.【分析】(1)根据三角函数的知识即可得出∠A的度数.(2)要证BC是⊙O的切线,只要证明AB⊥BC即可.(3)根据切线的性质,运用三角函数的知识求出MD的长度.【解答】(1)解:∵∠BOE=60°,∴∠A=∠BOE=30°.(2)证明:在△ABC中,∵cosC=,∴∠C=60°.又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC.∴BC是⊙O的切线.(3)解:∵点M是的中点,∴OM⊥AE.在Rt△ABC中,∵BC=2,∴AB=BC•tan60°=2×=6.∴OA==3,∴OD=OA=,∴MD=.【点评】本题综合考查了三角函数的知识、切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.如图,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,求t的值.【考点】相似形综合题.【分析】(1)通过计算发现EQ=FQ=6,由此即可证明.(2)构建二次函数,利用二次函数的性质解决最值问题.(3)分两种情形讨论,Ⅰ、如图1中,点E在Q的左侧.①当△EPQ∽△ACD时,②当△EPQ∽△CAD 时,列出方程分别求解即可.Ⅱ、如图2中,点E在Q的右侧,只存在△EPQ∽△CAD列出方程即可解决.【解答】(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)(2)解:∵∠FQC=90°,∠B=90°,∴∠FQC=∠B,∴PQ∥AB,∴△CPQ∽△CAB,∴=,即=,∴PQ=t,∵S△EPC=•EC•PQ,∴y=(8﹣2t)•t=﹣t2+3t=﹣(t﹣2)2+3,∵﹣<0,∴y有最大值,当t=2时,y的最大值为3.(3)解:分两种情况讨论:Ⅰ.如图1中,点E在Q的左侧.①当△EPQ∽△ACD时,可得=,即=,解得t=2.②当△EPQ∽△CAD时,可得=,即=,解得t=.Ⅱ.如图2中,点E在Q的右侧.∵0<t<4,∴点E不能与点C重合,∴只存在△EPQ∽△CAD可得=,即=,解得t=,故若△EPQ与△ADC相似,则t的值为2或或.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质、二次函数的性质、矩形的性质等知识,解题的关键是利用相似三角形的性质,把问题转化为方程解决,学会分类讨论的思想,属于中考常考题型.。

2021年广东省中考数学2021年模拟答案及解析

2021年广东省中考数学2021年模拟答案及解析

2021年广东省中考数学2021年模拟答案及解析2021年广东省中考数学答案及解析 2021年广东中考模拟卷答案及解析2021年广东省中考数学试卷 ................................................................. 2 参考答案与试题解析............................................................................ .. 8 2021年广东省深圳市中考数学试卷 ................................................... 19 参考答案与试题解析............................................................................25 2021年广东省广州市中考数学试卷 ................................................... 37 参考答案与试题解析............................................................................43 2021年广东省汕头市潮南区峡山街道中考数学模拟试卷(D卷) . 57 参考答案与试题解析............................................................................64 2021年广东省汕头市潮阳区铜盂镇中考数学模拟试卷(A卷)(4月份) ......................................................................... .............................. 75 参考答案与试题解析............................................................................81 2021年广东省佛山市顺德区中考数学一模试卷 ................................91 参考答案与试题解析 (97)第1页(共108页)2021年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)5的相反数是() A. B.5C.�� D.��52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2021年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为() A.0.4×109B.0.4×1010C.4×109 D.4×10103.(3分)已知∠A=70°,则∠A的补角为() A.110° B.70° C.30° D.20°4.(3分)如果2是方程x2��3x+k=0的一个根,则常数k的值为() A.1B.2C.��1 D.��25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是() A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是() A.等边三角形 B.平行四边形 C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(��1,��2)B.(��2,��1) C.(��1,��1) D.(��2,��2)第2页(共108页)8.(3分)下列运算正确的是() A.a+2a=3a2B.a3?a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130° B.100° C.65° D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③ C.①④ D.②④二、填空题(本大题共6小题,每小题4分,共24分) 11.(4分)分解因式:a2+a= .12.(4分)一个n边形的内角和是720°,则n= .13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是. 15.(4分)已知4a+3b=1,则整式8a+6b��3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形第3页(共108页)纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分) 17.(6分)计算:|��7|��(1��π)0+()��1. 18.(6分)先化简,再求值:(+)?(x2��4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分) 20.(7分)如图,在△ABC 中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AE C的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.第4页(共108页)22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边 A B C D E 体重(千克)45≤x<50 50≤x<55 55≤x<60 60≤x<65 65≤x<70 人数 12 m 80 40 16 (1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=��x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.第5页(共108页)感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年广东省中考数学模拟试卷五
一、选择题(本大题共10小题,每小题3分,共30分)
1.5的相反数是()
A.B.5 C.﹣ D.﹣5
2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()
A.0.4×109B.0.4×1010C.4×109D.4×1010
3.已知∠A=70°,则∠A的补角为()
A.110°B.70°C.30°D.20°
4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()
A.1 B.2 C.﹣1 D.﹣2
5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()
A.95 B.90 C.85 D.80
6.下列所述图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形B.平行四边形C.正五边形D.圆
7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()
A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)
第7题第9题第10题
8.下列运算正确的是()
A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4
9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°
10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结
论:①S
△ABF =S
△ADF
;②S
△CDF
=4S
△CEF
;③S
△ADF
=2S
△CEF
;④S
△ADF
=2S
△CDF
,其中正确的是()
A.①③B.②③C.①④D.②④
二、填空题(本大题共6小题,每小题4分,共24分)
11.分解因式:a2+a=.
12.一个n边形的内角和是720°,则n=.
13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)
14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.
15.已知4a+3b=1,则整式8a+6b﹣3的值为.
16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.
三、解答题(本大题共3小题,每小题6分,共18分)
17.计算:|﹣7|﹣(1﹣π)0+()﹣1.
18.先化简,再求值:(+)•(x2﹣4),其中x=.
19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?
四、解答题(本大题共3小题,每小题7分,共21分)
20.如图,在△ABC中,∠A>∠B.
(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.
21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.
22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:
体重频数分布表
组边体重(千克)人数
A45≤x<5012
B50≤x<55m
C55≤x<6080
D60≤x<6540
E65≤x<7016
(1)填空:①m=52(直接写出结果);
②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?
五、解答题(本大题共3小题,每小题9分,共27分)
23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.
24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC 于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当=时,求劣弧的长度(结果保留π)
25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A (0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE ⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为(2,2);
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存
在,请说明理由;
(3)①求证:=;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y 的最小值.
11。

相关文档
最新文档