2015新人教版数学七年级上册各章节知识点总结(带答案).doc
人教版七年级数学上册各章知识点总结

第一章:有理数总复习一、有理数的基本观点1. 正数:大于0 的数叫做正数;负数:小于0 的数叫做负数。
备注:在正数前方加“- ”的数是负数;“ 0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.数轴:规定了原点、正方向和单位长度的直线。
性质:( 1)在数轴上表示的两个数,右侧的数总比左侧的数大;(2)正数都大于0, 负数都小于0;正数大于全部负数;( 3)全部有理数都能够用数轴上的点表示。
4.相反数:只有符号不一样的两个数,此中一个是另一个的相反数。
性质:( 1)数 a 的相反数是 -a ( a 是随意一个有理数);( 2)0 的相反数是0;( 3)若 a、b 互为相反数,则a+b=0;若 a、 b 互为相反数且a、 b 都不等于零,则a1 ;b5. 倒数:乘积是 1 的两个数互为倒数。
性质:( 1)a 的倒数是( a≠ 0);(2)0 没有倒数;( 3)若 a 与 b 互为倒数,则 ab=1;若 a 与 b 互为负倒数,则ab=-1 。
倒数与相反数的差别和联系:(1)a与 - a互为相反数; a 与1( a ≠0)互为倒数;(2)符号上:互为相反数(除0 a外)的两数的符号相反;互为倒数的两数符号同样;( 3) a、 b 互为相反数→→ a+b=0 ;a、 b 互为倒数→→ ab=1 ;( 4)相反数是自己的数是0,倒数是自己的数是± 1 。
6. 绝对值:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。
性质:(1)数 a 的绝对值记作︱ a︱;( 2)若 a> 0,则︱ a︱ = a;若 a< 0,则︱ a︱= -a ;若 a =0 ,则︱ a︱ =0;( 3)对任何有理数 a, 总有︱ a︱≥ 0.7.有理数大小的比较 :( 1)可经过数轴比较:在数轴上的两个数,右侧的数总比左侧的数大;正数都大于0,负数都小于0;正数大于全部负数;( 2)两个负数,绝对值大的反而小。
(完整版)人教版初一数学上册知识点归纳总结

第一章有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
新人教版数学七年级上册各章节知识点总结

第一章有理数及其运算1. 有理数包括 和 ;整数包含: 、 、 ;分数包含: 、 。
正整数和正分数通称为正有理数,负整数和负分数通称为负有理数。
2. 正数都比0大,负数都比0小, 既不是正数也不是负数。
3. 正数和负数经常用来表示 的量。
4. 数轴有三要素: 、 、 。
数轴上的两个点表示的数, 边的总比边的大。
5. 相反数:只有 不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“ ”号,就表示原来的数的相反数。
6. 绝对值:数轴上表示一个数的点与原点的 叫做该数的绝对值,用“|a|”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =7. 两个负数比较大小, 大的反而小。
8. 有理数加法法则:·同号两个数相加,取 的符号,并把绝对值相加。
·异号的两个数相加,绝对值不等时,取绝 的符号,并用 减去 。
互为相反数的两数相加得 .·一个数同0相加仍得这个数加法交换律:a b b a +=+加法结合律:()()a b c a b c ++=++9. 有理数减法法则:减去一个数等于 这个数的 。
10. 有理数乘法法则:两数相乘,同号得 ,异号得 ,并把绝对值相乘。
任何数与0相乘积仍得 。
11. 倒数:乘积是1的两个数互为 。
一般地,数a 的倒数是 (a )0≠. 12. 乘法交换律:ab ba =乘法结合律:()()ab c a bc =乘法分配律:()a b c ac bc +⨯=+13. 有理数除法法则:·除以一个不等于0的数,等于乘这个数的 。
·两个有理数相除,同号得 ,异号得 ,并把 相除。
0除以任何数都得0,且0不能作除数。
14. 有理数的乘方:求n 个 因数a 的积的运算叫做乘方,乘方的结果叫做幂。
即a n a a = ,在n a 中a 叫做底数,n 叫做指数,n a 读作a 的n 次幂(或a 的n 次方)。
人教版七年级数学上册知识点整理(完整版)

人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。
(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。
2、“0”不仅表示没有,还可以表示某种量的基准。
(三)负数:在正数前面加上符号“﹣”(负)的数。
(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。
若规定前进10米记作+10米,则后退5米记作-5米。
注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。
二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。
(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。
(三)相反数1、概念:只有符号不同的两个数叫做相反数。
2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。
人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
人教版七年级数学上册知识点总结1-4章

第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级上册数学知识要点汇总(全册)

七年级上册数学知识要点(全册)第一章 有理数1、有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数(小数)负整数零正整数整数有理数 (分类标准不同,分类不同)2.数轴三要素:原点、正方向、单位长度。
3.数轴上0左边的数是负数,0右边的数是正数;左边的数<0<右边的数(负数 < 0 < 正数)。
4.相反数:(1)只有符号不同的两个数互为相反数;(2)相反数是相互依存的,单独一个数不能说是相反数数;(例如2与-2互为相反数,就是指:2的相反数是-2,-2的相反数是2)。
(3)a 的相反数是-a, 0的相反数是0.(4)相反数的和为0 ;如果 a+b=0 ,则a 与b 互为相反数.5、倒数:(1)乘积为1的两个数互为倒数。
(例如83×38=1,则83与38互为倒数,就是指83的倒数是38,38的倒数是83。
)(2)1的倒数是1,0没有倒数。
注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数。
6、绝对值:(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .(2)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
注意:绝对值的几何意义是数轴上表示某数的点与原点的距离。
(3) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或 ⎩⎨⎧<-≥=)0a (a )0a (a a注:涉及到绝对值的问题经常需要分类讨论。
7、绝对值具有非负性的性质:a≥0,若+a b =0,则a=0,b=0 8、比较两个数的大小: (1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小。
人教版七年级数学上册一至四章知识点归纳

人教版七年级数学上册一至四章知识点归纳第一章有理数(一)正数和负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数有理数:由整数和分数组成的数。
包括:正整数、0、负整数、正分数和负分数。
它可以写成两个整数之比的形式。
(无理数不能以两个整数之比的形式写入。
它是以十进制形式写入的。
小数点后的数字是无限的且非循环的。
例如,π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数字轴:数字由直线上的点表示,称为数字轴。
(画一条直线。
在直线上的任意点上取一点代表数字0。
该零点称为原点。
指定直线从原点向右或向上为正方向;选择适当的长度作为单位长度,在数字轴上取一点。
)2.数字轴的三个元素:原点、正方向和单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的对立面;0的绝对值是0。
有两个负数。
如果绝对值大,它就小。
(4)有理数的加减1。
首先确定符号,然后计算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换定律:a+B=B+a加两个数,交换加数的位置,保持不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.A-B=A+(-B)减去一个数字与加这个数字相反。
(5)有理数乘法(首先确定乘积的符号,然后确定乘积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换定律:ab=ba4。
乘法组合定律:(AB)C=a(BC)5。
乘法分布律:a(B+C)=AB+AC(VI)有理数除1.先将除法化成乘法,然后定符号,最后求结果。