信息光学课件 信息光学理论1B-德尔塔函数与傅里叶变换
合集下载
信息光学中的傅里叶变换

为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪
信息光学中的傅里叶变换

谱被改变的观点评价非相干成像系统的像质。信息光学促进
了图像科学、应用光学和光电子学的发展。可以认为它是光 学、光电子学、信息论和通讯理论的交叉学科。
信号频域分布特性的分析与处理 系统传输不同空间频率信号能力的分析与处理
空域←→频域
傅里叶分析
➢离散周期信号 ➢连续周期信号 ➢离散非周期信号 ➢连续非周期信号
F ( f x , f y )用模和幅角表示如下
F ( f x , f y ) F ( f x , f y ) exp j( f x , f y )
F( fx, fy)
( fx, fy)
2
F( fx, fy)
振幅谱 相位谱 功率谱
类似地,函数f (x,y)也可以用其频谱函数表示,即:
f (x, y) F( fx , f y ) exp j2 ( fx x f y y) dfxdf y = F -1{F ( f x , f y )}
但需说明的,为了物理学上描述方便起见,我们往往又用 理想化的数学函数来表示实际的物理图形,对这些有用的函 数而言,上面的三个条件中的一个或多个可能均不成立。例 如阶跃函数, 函数等就不满足存在条件。
因此,为了在傅里叶分析中能有更多的函数来描述物理图 形,有必要对傅里叶变换的定义作一些推广。
三、广义傅里叶变换
4、平移特性
F f ( x x0 , y y0 ) exp j2 ( fx x0 f y y0 ) F ( fx , f y )
F exp j2 ( fx0 x f y0y) f (x, y) F ( fx fx0 , f y f y0 )
f (x, y)
f
f (x x0, y y0)
(1)互相关定理
F f ( x , y ) ★g( x , y ) F( fx, fy ) G( fx , f y )
了图像科学、应用光学和光电子学的发展。可以认为它是光 学、光电子学、信息论和通讯理论的交叉学科。
信号频域分布特性的分析与处理 系统传输不同空间频率信号能力的分析与处理
空域←→频域
傅里叶分析
➢离散周期信号 ➢连续周期信号 ➢离散非周期信号 ➢连续非周期信号
F ( f x , f y )用模和幅角表示如下
F ( f x , f y ) F ( f x , f y ) exp j( f x , f y )
F( fx, fy)
( fx, fy)
2
F( fx, fy)
振幅谱 相位谱 功率谱
类似地,函数f (x,y)也可以用其频谱函数表示,即:
f (x, y) F( fx , f y ) exp j2 ( fx x f y y) dfxdf y = F -1{F ( f x , f y )}
但需说明的,为了物理学上描述方便起见,我们往往又用 理想化的数学函数来表示实际的物理图形,对这些有用的函 数而言,上面的三个条件中的一个或多个可能均不成立。例 如阶跃函数, 函数等就不满足存在条件。
因此,为了在傅里叶分析中能有更多的函数来描述物理图 形,有必要对傅里叶变换的定义作一些推广。
三、广义傅里叶变换
4、平移特性
F f ( x x0 , y y0 ) exp j2 ( fx x0 f y y0 ) F ( fx , f y )
F exp j2 ( fx0 x f y0y) f (x, y) F ( fx fx0 , f y f y0 )
f (x, y)
f
f (x x0, y y0)
(1)互相关定理
F f ( x , y ) ★g( x , y ) F( fx, fy ) G( fx , f y )
《信息光学》第一章 傅里叶分析

1、一些常用函数
函数的常用性质 a) 筛选性质
x x , y y x, y dxdy x , y
0 0 0 0
b) 对称性
( x) ( x)
1 | | x0
c) 比例变化性质
(x x0 )
(x
矩形函数
三角形函数 sinc函数 高斯函数 圆域函数 描述不同类型的“图像”信号
***图像信息的体现:强度分布、颜色
脉冲函数(函数)
梳状函数
1、一些常用函数 1)阶跃函数 (Step function) 定义
1 x 0 1 step x x0 2 x0 0
相位板的振幅透过率
1、一些常用函数 3)矩形函数 (Rectangle function) 定义 应用
1 x rect a 0
2 others
x a
常用矩形函数表示狭缝、矩孔的透 过率;它与某函数相乘时,可限制 该函数自变量的范围,起到截取的 作用,故又常称为“门函数”。
圆孔光瞳的非相干脉冲响应 以及圆孔的夫琅和费衍射图样
1、一些常用函数
需要特别说明的是,上面提到的常用函数有的本身就是二维函
数,而那些只给出一维形式的函数也具有二维形式,这里不再赘 述,只给出这些常用二维函数的图形化表示。 二维矩形函数
x x0 y y 0 x x0 y y0 rect ( , ) rect ( )rect ( ) b d b d
ramp ( x x0 ) b
slope=1/b
slope=1/2
ramp (
x 1 ) 2
1
0 x0 x0+b -4 -3 -2
信息光学课件

电磁场与麦克斯韦方程
电磁场的基本概念
电磁场是由电场和磁场组成的, 它们之间存在相互作用。
麦克斯韦方程
描述了电磁场变化的四个基本方程 ,包括电场的散射方程、磁场的散 射方程、电场的波动方程和磁场的 波动方程。
电磁场的能量守恒
电磁场在空间中传播时,其能量不 会消失也不会凭空产生,即电磁场 的能量守恒。
将光学传感技术应用于物联网领域,实现智能化 、远程化和自动化的监测和控制。
3
光学传感器的集成与小型化
通过集成和优化光学器件,实现光学传感器的微 型化和便携化,满足不同应用场景的需求。
05 信息光学实验与实践教学 环节设计
实验内容与目标设定
实验内容
信息光学实验包括干涉、衍射、光学 信息处理等基本实验,以及一些综合 性和创新性实验。
信息光学课件
目录
CONTENTS
• 信息光学概述 • 信息光学基础理论 • 信息光学器件与系统 • 信息光学前沿技术与发展趋势 • 信息光学实验与实践教学环节设计 • 信息光学课程评价与总结反思环节设计
01 信息光学概述
信息光学定义与特点
信息光学定义
信息光学是一门研究光学信息的 获取、传输、处理、存储和显示 的科学。
傅里叶变换与信息光学
傅里叶变换
是一种将时域信号转换为频域信号的数学工具,常用于信号处理 和图像处理等领域。
信息光学的基本概念
信息光学是一门研究光波在空间和时间上传递、处理和存储信息的 科学。
信息光学的应用
信息光学在通信、生物医学成像、军事等领域有着广泛的应用,如 光纤通信、光学显微镜、光学雷达等。
03 信息光学器件与系统
光学器件分类与特点
主动光学器件
信息光学chap1傅里叶分析

a
0
x2 + y2 circ a
1.1.7 高斯函数
Gaussian Function
Gaus(x) = exp(-px2) Gaus(0) = 1 S=1 是非常平滑的函数,即 各阶导数均连续.
Gaus(x)
x
0
二维情形:
Gaus(x)Gaus(y)=exp[- p(x2+y2)] 可代表单模激光束的光强分布
1.1.8复指数函数 Complex exponential function
Aexp(j)=Acos + jAsin
w = 2p
A 0 对于简谐振动, = 2p t
:振子的位相角
推广到二维:
Aexp[j 2p (fxx+fyy)]
注意
以上定义的函数,其宗量均无量纲。在处理实际 问题时,要根据所取的单位采用适当的缩放因子。 例: 以 rect(x) 代表单缝。若x单位为cm,则 rect(x) 代表宽度为1cm 的单缝。若x单位为mm, 则 rect(x/10) 代表宽度为1cm 的单缝。
当n=k,二者定义域和值域都一样。左边=右边。 证毕。 例题2:写出下图函数g (x)的表达式。
g(x)
1
………
b 0 x0
……….
x
写出第一个δ函数的表达形式: 写出第n个δ函数的表达形式:
d ( x - x0 )
d ( x - x0 - nb)
0
写出g(x)的表达形式:
n -
d (x - x
一维矩形函数定义
x - x0 1 x - x0 1, rect ( ) a 2 a 0, 其它
傅里叶变换专题教育课件

Ω
-
2
3双边奇指数信号
et
f
(t )
e t
旳傅里叶变换为 :
t 0 t 0
f (t) 1
0
t
F () f (t)e jt dt
-1
0 et e jt dt et e jt dt
0
1
j
2 2 2
| F() |
其幅度频谱和相位频谱为
|
F
()
|
2
2
||
2
() 2
2
0 0
2.在任何有限区间内,只有有限个最大值和最小值。
3.在任何有限区间内,只有有限个不连续点,而且在 每个不连续点上信号都必须取有限值,这时傅里叶 变换收敛于间断点两边函数值旳平均值。
常见非周期信号旳傅里叶变换
1矩形脉冲信号
f(t)
E
E f (t )
0
| t |
2
| t |
2
-
0
t
2
2
E:脉冲幅度,τ:脉冲宽度。其傅里叶变换为
信号可进行傅里叶变换旳条件: 一般来讲,若信号函数满足绝对可积条件,即:
f (t) dt
则信号可进行傅里叶变换。注:此式只是信号函数进行傅里叶变换 旳充分条件。在引入广义函数后,有些不满足此式旳信号函数也能够 进行傅里叶变换。
周期信号旳傅里叶变换:
设有周期性矩形脉冲信号f(t),
E
f (t )
“非周期信号都能够用正弦信号旳 加权积分来表达”——傅里叶旳第 二个主要论点
§3 傅里叶变换
3.2信号旳傅里叶变换 傅里叶变换有下列积分定义:
: 傅里叶正变换公式
F () F [ f (t )] f (t )e jt dt
傅立叶光学(信息光学)_课件

1 x>0 Step(x)= ½ x=0
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
信息光学第一章ppt

例: f(x)={
x, 0
0<x<1 其它
求 f (-2x+4)
解1: f(-2x+4)= f[-2(x-2)],包含折叠、压缩、平移
先折叠
再压缩
f(x)
f(-x)
f(-2x)
0 1 x -1 0 x
-1/2 0 x
最后平移
f[-2(x-2)]
0 3/2 x
11
解2: 根据已知条件有
f
(2x
4)
x a/2
其它
应用:单缝透过率、门函数、时间脉冲波形.
标准型:
1 x 1/ 2
rect(x)
0
else
15
y
0
x0
a
x
rect ( x x0 ) a
16
17
18
2 sinc函数 应用:单缝或矩形孔的夫琅和费衍射的振幅分布
强度分布为sinc函数平方
注意归一化和非归一 化的两种表达方法。
xa / 2
原函数f(x)在某点x的值卷积后用某一段(x-a/2, x+a/2) 的积分值来表示, 等价于这段区间的平均值。
50
卷积的运算性质
交换律:f (x) h(x) h(x) f (x) 分配律:[aw(x) bv(x)] h(x) aw(x) h(x) bv(x) h(x) 分配律体现了卷积的线性特性。 结合律:[v(x) w(x)] h(x) v(x) [w(x) h(x)] 可分离变量特性: 如果参与卷积的两个函数是可分离的, 其 二维卷积也是可分离的。(极坐标和直角坐标)
1 a
1 a
当a 0时, (ax)dx lim m (ax)dx lim am (ax)d ax
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题
• 傅里叶光学的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 空间频率与空间频谱
13
思考题
• 傅里叶光学的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 空间频率与空间频谱
20
• 傅里叶光学的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 空间频率与空间频谱
13
思考题
• 傅里叶光学的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 空间频率与空间频谱
20