同济大学 高等数学B 第八章习题课下.ppt

合集下载

最新同济大学第六版高等数学上下册课后习题答案8-6

最新同济大学第六版高等数学上下册课后习题答案8-6

同济大学第六版高等数学上下册课后习题答案8-6仅供学习与交流,如有侵权请联系网站删除 谢谢2习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12(-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2 π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为 0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为仅供学习与交流,如有侵权请联系网站删除 谢谢3 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为 0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 对x 求导得,仅供学习与交流,如有侵权请联系网站删除 谢谢4⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z -z +xy -3, 则仅供学习与交流,如有侵权请联系网站删除 谢谢5n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为 000000cz z z by y y ax x x -=-=-.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程. 解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z , 解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6).仅供学习与交流,如有侵权请联系网站删除 谢谢7 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为 a z y x a az ay ax =++=++)(000000.。

《同济版高数下》PPT课件

《同济版高数下》PPT课件

L
a
f ( x, y, z)dS f [x, y, z( x, y)] 1 zx2 zy2dxdy

Dxy
(dS面元素(曲))
R( x, y, z)dxdy f [x, y, z( x, y)]dxdy

Dxy
(dxdy面元素(投影))
其中 L Pdx Qdy L(P cos Q cos )ds

第一类: 第二类:
始终非负 有向投影
基本技巧 (1) 利用对称性及重心公式简化计算
注意公式使用条件 (2) 利用高斯公式
添加辅助面的技巧
(辅助面一般取平行坐标面的平面)
(3) 两类曲面积分的转化
2
2
例 求柱面 x3 y3 1在球面 x2 y2 z2 1内
的侧面积.
2019/5/6
习题课
第十一章
线面积分的计算
一、 曲线积分的计算法 二、曲面积分的计算法
一、主要内容
(一)曲线积分与曲面积分 (二)各种积分之间的联系 (三)场论初步
(一)曲线积分与曲面积分
对弧长的 曲线积分
对面积的 曲面积分


线
联计
联计 面

系算
系算 积


对坐标的 曲线积分
对坐标的 曲面积分
曲线积分
对弧长的曲线积分
其中 L为由点(a,0)到点(0,0)的上半圆周 x2 y2 ax, y 0.
2019/5/6
24
例 计算
L
xdy 4x2
yyd2x,其中L是以
1,
0


为中心,R为半径 R 1的圆,逆时针方向

最新同济大学《高等数学(下册)》修订版PPT课件

最新同济大学《高等数学(下册)》修订版PPT课件

来度量, 对于两个轴之间的夹角则看作是两向量的夹角.
14
第五 章 向量与空间解析几何
1、向量的投影及投影定理
通过空间一点 A 作 u 轴的垂直平面(见图 5-9),该平面与u 轴的交点 A 称
为点 A 在 u 轴上投影.
A
A'
u
图5-9
15
第五 章 向量与空间解析几何
1、向量的投影及投影定理
C(x,0,z)
z
B(0,y,z)
r
M
O
x
y
Q(0,y,0)
P(x,0,0)
A(x,y,0)
图5-6
9
一、空间直角坐标系
第五 章 向量与空间解析几何
设 M1 x1, y1, z1 、 M2 x2 , y2 , z2 为空间两个点(见图 5-7),通过M1 、 M 2 各作
三个分别垂直于三条坐标轴的平面,这六个平面组成一个以M1 、 M 2 为对角线的长
在 zOx 平面上: y 0 ,故对应点的坐标为C(x, 0, z) .
在 x 轴上: y z 0 ,点的坐标为 P(x, 0, 0) ;
R(0,0,z)
在 y 轴上: z x 0 ,点的坐标为Q(0, y, 0) ;
在 z 轴上: x y 0 ,点的坐标为 R(0, 0, z) .
如果向量 AB 的始点 A 与终点 B 在 u 轴上的投影分别为 A 、B( 见图 5-10),
则 u 轴 上 的 有 向 线 段 AB 的 值 A B 称 为 向 量 AB 在 u 轴 上 的 投 影 , 记
作 Pr ju AB AB , u 轴称为投影轴.
注 值 AB 是指其绝对值等于 AB 的

同济大学第五版高等数学(下)课件D81基本概念

同济大学第五版高等数学(下)课件D81基本概念
一元函数微分学 多元函数微分学 注意:善于类比,区别异同
第一节
第八章
多元函数的基本概念
一、区域 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性
机动 目录 上页 下页 返回 结束
一、 区域
1. 邻域 点集
例如,在平面上,
PP0 δ 称为点 P0 的邻域.
U ( P 0 , δ ) ( x ,y )
机动 目录 上页 下页 返回 结束
例4. 求
此函数定义域 不包括 x , y 轴
解: 因
x2y21 4(x2y2)2,令 r2x2y2,则

4(1cosr2) r6

rl im04(1rc6osr2)

lim
r 0
2r4 r6


1cosr2~ r 2
2
机动 目录 上页 下页 返回 结束

U(P0,δ),U(P0,δ )
连通的开集
• Rn空间
2. 多元函数概念
n 元函数
uf(P)f(x 1 ,x 2 , ,x n ) PD Rn
常用
二元函数 三元函数
(图形一般为空间曲面)
机动 目录 上页 下页 返回 结束
3. 多元函数的极限
limf(P)A
PP0
ε 0,δ 0,当 0P0Pδ时, 有 f(P)Aε
图形为
空间中的超曲面.
机动 目录 上页 下页 返回 结束
三、多元函数的极限
定义2. 设 n 元函数
f(P)P , DRn,P0 是 D 的聚
点 , 若存在常数 A ,
对任意正数 , 总存在正数 ,
对一

切 PDU(P0,δ),都有

同济版高数下册第八章课件ppt

同济版高数下册第八章课件ppt

四、利用坐标作向量的线性运算
第一节
一、向量的概念
二、向量的线性运算
三、空间直角坐标系
五、向量的模、方向角、投影
向量及其线性运算
第八章
表示法:
向量的模 :
向量的大小,
一、向量的概念
向量:
(又称矢量).
既有大小, 又有方向的量称为向量
自由向量:
与起点无关的向量.
单位向量:
模为 1 的向量,
设又有 b= a ,
“ ”

例1. 设 M 为
解:
ABCD 对角线的交点,
已知 b= a ,
b=0
a , b 同向
a , b 反向
a∥b




ห้องสมุดไป่ตู้



三、空间直角坐标系
由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
坐标原点
坐标轴
x轴(横轴)
y轴(纵轴)
z 轴(竖轴)
等距
解: 设该点为
解得
故所求点为

思考:
(1) 如何求在 xOy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
离的点 .
(1) 如何求在 xOy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
例如,
在坐标轴上的投影分别为
设 a 与 u 轴正向的夹角为 ,
, 即
投影的性质
2)
1)
(为实数)
例9.
设立方体的一条对角线为OM, 一条棱为 OA, 且

(免费下载)第六版同济大学高等数学课后答案详解

(免费下载)第六版同济大学高等数学课后答案详解

同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数. (3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

同济版高等数学第八章习题PPT

同济版高等数学第八章习题PPT

z
在三个坐标面上的投影.
解:
z x2 y2

x2 y2 4
x0
y
z 4
故旋转曲面在xoy面上的投影为:
x2
y2
4
z x2 y2
z 0
x 0
得 z y2
故旋转曲面在yoz面上的投影为:由 z y2和z 4围成
z x2 y2
y 0
得 z x2
故旋转曲面在xoz面上的投影为:由 z x2和z 4围成
cos z r
z x2 y2 z2
方向余弦的性质:
四、 两向量的数量积 (内积)

a
( ax ,ay ,az ),
b (bx ,by ,bz ),
a b axbx a yby azbz
五、两向量的向量积 (叉积、外积)
1.向量 c 方向: c a , c b 且符合右手规则
的方向向量
ijk
S 0 1 1 (0,1,1)
过点
10 (1,1,1)
0 作以
S
(0,1,1)为法向量的平面
yz0
求解直线与平面的垂足
y
x
z 0
1
0
y z 0
得垂足为:
0,
1 2
,
1 2
所求平面垂直于平面 z 0,
从而设方程为: Ax By D 0
平面过点
(1,1,1)
M 0 , M1 , M 2 三点共线 M 0M1 // M 0M 2
t1 0, t2 2
M1 (0,0, 1), M 2 (2, 2,3) L: x 1 y 1 z 1
112
L1
L2
M0 M2
M1 L

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n (1,4,8).
cos
4

n n
nn11
(1 ) 1 5 (4) (1 ) (8)

12 (4)2 (8)2 (1 )2 52 (1 )2
即 2 3 , 由此解得 2 22 27
曲线在
xoy面上的投影曲线为

H( z
x, 0
y)

0
yoz 面上的投影曲线 xoz面上的投影曲线
R( y, z) 0

x

0
T( x, z) 0

y

0
3、平面
[1] 平面的点法式方程
A( x x0 ) B( y y0 ) C(z z0 ) 0

4 过已知直线的平面束方程为
x 5 y z ( x z 4) 0,
即 (1 )x 5 y (1 )z 4 0, 其法向量 n (1 ,5,1 ).
又已知平面的法向量n (1,4,8).
由题设知
n (1 ,5,1 ).
(3)双曲抛物面
( 马鞍面 )
x2 y2 z pq
( p 与q 异号)
o
y
x
(4)单叶双曲面
x2 y2 z2 a2 b2 c2 1
(5)双叶双曲面 x2 y2 z2
a2 b2 c2 1
(6)椭圆锥面
x2 a2

y2 b2

z2 c2
2、空间曲线
[1] 空间曲线的一般方程
[2] 平面的一般方程
Ax By Cz D 0
[3] 平面的截距式方程 x yz 1 a bc
z
n
M0 M
o
y
x
Mn 0((xA0,,
y0
B,
, z0
C)
)
z c
o xa
by
[4] 平面的夹角

n1
n2
2
1 : A1 x B1 y C1z D1 0
椭圆柱面
x2 a2

y2 b2
1
[3] 二次曲面
a11x2 a22 y2 a33z2 a12 xy a23 yz a31zx a1x a2 y a3z a0 0
(1)椭球面
x2 a2

y2 b2

z2 c2
1
(2)椭圆抛物面 x2 y2 z p q ( p 与 q 同号 )
: x1 1
y 3 z 相交, 12
与平面 3x 4 y z 10 0 平行的直线方程 .
5.
求直线
L1
:
x
0
1

y 1

z 1
与直线
L2
:
x 2

y 1

z
0
2
的距离与公垂线方程.
6.
求空间圆

x 2 y2 z 2 12x 4 y 6z 24 0 的半经与圆心坐标 .
3。
求直线
L
:
2x y

x

y

z
z 1 0 10
在平面
: x 2 y z 0 上的投影直线的方程.

过直线 L 的平面束方程为
L

(2x y z 1) ( x y z 1) 0, 即(2 )x ( 1) y (1 )z ( 1) 0.

2x 2y z 1 0
5.
求直线
L1
:
x
0
1

y 1

z 1
与直线
L2
:
x 2

y 1

z
0
2
的距离与公垂线方程.
6.
求空间圆

x 2 y2 z 2 12x 4 y 6z 24 0 的半经与圆心坐标 .

2x 2y z 1 0
第八章习题课 - 2
空间直角坐标系
一般方程 参数方程 一般方程
曲线
直线
曲面
平面
旋转曲面 柱面 二次曲面
参数方程 对称式方程 点法式方程 一般方程
1、曲面
曲面的方程:
曲面 S
方程F ( x, y, z) 0
[1] 旋转曲面
设有平面曲线L
:

f
(
x, y) z0
0
(1) 曲线L 绕 x 轴旋转所成的旋转曲面方程为

P0Q (20,25,40) 5(4,5,8) 是直线的方向向量.
因此, 所求的直线方程为 x 1 y z 4 . 458
注: 可以先求过P0 平行于给定平面的平面 ,
求出平面 与L的交点Q,
得到过P0与点Q的直线.
5.
求直线
L1
:
x
0
1

y 1

z 1
2.求过点
M0
(1,1,1)
且与两直线
L1
:

y z

2 x
x
, 1
L2
:

y z

3x 2x
4 1
都相交的直线
L.
3.求直线
L
:
2x y z 1 0

x

y

z
1

0
在平面

:
x

2
y

z
0ຫໍສະໝຸດ 上的投影直线的方程.4.
求过点 P0(1,0,4),与直线 L

d Pr jn P1P2 1,0,2
1,2,2
1
12 22 (2)2
为两直线的距离.
2 公垂线L
L的方向向量
L1
:
x
0
1

y 1

z 1

n 0,1,1 2,1,0 1,2,2
作过L1与L的平面 1
P1

L1
P2
A1 x B1 y C1z D1 ( A2 x B2 y C2 z D2 ) 0

( A1 x B1 y C1z D1 ) A2 x B2 y C2 z D2 0
[6] 点到平面的距离
d

|
Ax0

By0

Cz0

D
| .
A2 B2 C 2
L
L2
x y z2
L2 : 2 1 0

1的法向量n1 与直线L1 的方向向量0,1,1

即n 1,2,2垂直, 且过P11,0,0点

则 n1 1,2,2 0,1,1 4,1,1
m
n
p
: Ax By Cz D 0
sin
| Am Bn Cp |
A2 B2 C 2 m2 n2 p2
(0 )
2
练习题
1.求过直线:

x x

5 z
y
4
z
0 0,
且与平面
x

4
y

8z

12

0
夹角为
4
的平面方程.
f ( x, y2 z2 ) 0
(2) 曲线L 绕 y 轴旋转所成的旋转曲面方程为
f ( x2 z2 , y) 0
[2] 柱面 柱面方程的特征:
方程F ( x, y) 0(缺z) 是母线平行于 z 轴的柱面
圆柱面 x2 y2 R2
抛物柱面 x2 2 py ( p 0)
p1
直线 L2 :
x x2 y y2 z z2
m2
n2
p2
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
两直线的夹角公式
[5] 直线与平面的夹角
L : x x0 y y0 z z0
t1 0, t2 2,
A(0,0,1), B(2,2,3)
点 M0 (1,1,1) 和 B(2,2,3)或A, B同在直线 L 上,
故 L 的方程为
x 1 y 1 z 1.
1
1
2
解二
作过L1与M0的平面 1,
过L2与M0的平面 2, 则平面 1与 2的交线就是所求的直线.
3.
4
代回平面束方程为 x 20 y 7z 12 0.
(1 )x 5 y (1 )z 4 0,
经验证,未含在平面束
x 5 y z ( x z 4) 0,
中的平面
x z 4 0.
与平面 x 4 y 8z 12 0 夹角也是 。
2 : A2 x B2 y C2z D2 0
1
cos
| A1 A2 B1B2 C1C2 |
A12 B12 C12
A22

B22

C
2 2
[5] 过两平面交线的平面束方程
1 : A1 x B1 y C1z D1 0
2 : A2 x B2 y C2z D2 0 则过1与2交线的平面束 :
相关文档
最新文档