斜拉桥索力测试方法及其发展趋势

合集下载

斜拉桥索力测试方法

斜拉桥索力测试方法

斜拉桥索力测试方法作者:项沛来源:《科技探索》2013年第04期1.引言索力测试无论是在斜拉桥的建设过程中还是在其日常维护检测中都具有举足轻重的地位。

索力是否处在合理的范围内将直接影响结构的整体受力状态和线形的平顺程度,所以对拉索的索力进行定时的测试是斜拉桥、下承式拱桥和悬索桥等带索桥梁日常维护的重要内容。

经实践验证,进行索力测试时,不同的测试方法和不同的工程也存在较大的差异,这是由于不同的索力测试方法所需的计算参数不能准确测定,不同工程也因其具有自身特点和各异的环境因素所致。

索力测试前必须选定合适的测试方法,考虑到影响测试精度的各种因素,例如影响振动法测试精度的因素有:仪器、计算模式、边界条件、索长、外界环境、斜度以及垂度等。

当这些因素在索力测试时如果处理不当则会对测试结果造成不小的误差。

所以,对不同的索力测试方法及其影响因素进行分析显得格外重要。

2.索力测试方法2.1千斤顶压力表测定法现阶段斜拉桥的施工现场,斜拉索均使用千斤顶张拉,其原理为:千斤顶张拉油缸中的液压和斜拉索的拉力有直接的关系,所以我们可以根据精密压力表或液压传感器测定油缸的液压,然后就可根据液压反推出索力。

但此法现阶段还存在以下缺陷:(1)当拉索安装完成后,若还想用此法来测试索力将会变的十分困难和不便,工程量也很大。

(2)千斤顶在张拉过程中对拉索的锚杆螺纹会产生很大的损害。

(3)此法所得到的索力值只能代表张拉端的局部索力,不能代表整跟拉索的索力大小。

(4)在测试之前需要事先标定,如果标定粗糙,误差将会很难控制。

2.2 压力传感器测定法该方法一般与振动法联合使用,可作为对振动法测定索力结果的一种校核,已安装的传感器还可以在成桥后的运营阶段连续测定索力值,还适用于成桥后运营状态下的索力长期监控。

压力传感器测定法的原理是永久安装压力传感器在斜拉索的锚固端或张拉端,传感器的感应锚头的压力与斜拉索的索力成一定的比例关系,所以可通过传感器感应锚头的压力来反算斜拉索的索力,此法测量结果精度高,而且索力在索中的位置明确。

斜拉索索力检测方法 原理 数据处理

斜拉索索力检测方法 原理 数据处理

斜拉索索力检测方法原理数据处理斜拉索是现代桥梁结构中常见的承重构件,其安全稳定的运行对桥梁的使用寿命和安全性至关重要。

因此,斜拉索的力学性能检测是桥梁维护保养的重要工作之一。

目前,常用的斜拉索的检测方法有振动法、光纤光栅传感器法、静荷载法等。

本文将介绍常用的静荷载法检测斜拉索的原理、数据处理方法和应用。

一、静荷载法原理静荷载法是通过施加外力测量斜拉索的变形,进而计算出斜拉索下挂载的主梁的受力状态。

斜拉索检测通常使用的是龙门式起重机,通过千斤顶或液压缸施加大约10%-15%的荷载变形程度测定斜拉索各处的竖向和水平变形,得到斜拉索变形量后采用反演法或其他数值分析方法,计算出斜拉索的受力状态。

二、数据处理方法(一)反演法反演法首先要建立适当的模型,在进行斜拉索检测时,常用的模型有螺旋夹杂法、结构参数法、常数对数变化法等。

其中,螺旋夹杂法是最常用的方法,其原理是将斜拉索当做弹性体,通过静负荷实验测定斜拉索下端各处的竖向和水平位移值,得到斜拉索下端的位移函数,根据弹性理论和能量原理,推导出斜拉索的受力状态。

具体流程如下:1. 采集斜拉索下端各处的位移值,并绘制荷载- 位移曲线;2. 将实验数据输入计算机,得到斜拉索的弹性模量、截面积等参数;3. 建立斜拉索的数值模型,包括斜拉索的材料、断面形状、支座约束情况等;4. 将实验数据和数值模型进行对应计算,对模型进行优化,调整所用的弹性系数、部件尺寸等;5. 依据斜拉索的边界条件和受力平衡原理,得到斜拉索所受的拉力和受力分布规律。

反演法能够根据斜拉索的实际变形数据来计算其受力状态,但需要建立复杂的数值模型,数据处理较为繁琐。

(二)数值分析法数值分析法常用的工具是有限元分析软件,它可以基于静荷载实验数据,构建出有限元模型,通过有限元计算,得到斜拉索的受力状态。

与反演法相比,数值分析法上手快,操作简便,计算结果也具有较高的精度。

具体流程如下:1. 根据斜拉索的实际结构特点,建立有限元模型,划分为若干个小单元;2. 输入静荷载实验数据,并确定模型的约束和荷载;3. 运用有限元软件,采用线性静力学分析,进行模拟运算;4. 根据计算结果,得到斜拉索所受的拉力和受力分布规律。

斜拉桥斜拉索索力测试方法综述

斜拉桥斜拉索索力测试方法综述
铁 道 建 Ri 盯 E g a w l n i
A r,(7 pl X i2 )
文章编号 : 319((70一 1一 1 一 52 ) 0 8 3 ) X ( 9 X 4 0 0 )
斜拉桥斜拉索索力测试方法综述
刘志勇
( 石家庄铁道学院 土木工程分院, 石家庄 0加4 ) 5 3
摘要 : 文章介绍了 抖拉桥科拉索张拉和索力测试过程中, 常用的几种测试方法( 压力表法、 压力传感器测
计算方法 } 能量法 } 力法 } 有限元法 } 积分法 简支梁
连续梁
3 4 }3 7 1 2 8 0. 8 0.5 9.7 8. 1 ! 7. 5 34 9 31 8.2 16
多, 或者越接近于其真实挠曲线方程的位形模式时, 能 量法的计算精度就越高。按能量法求解无粘结预应力 筋的应力增量不但适用于直线配筋荷载对称的结构 , 还适用于曲线配筋、 分段配筋 、 变刚度和任意荷载情况 下的结构, 对于解决超静定结构问题则会带来很大的 方便。很显然, 当求解超静定结构无粘结预应力筋的 应力增量时, 积分法和粘结降低系数法就显得无能为 力; 力法虽可以解决超静定结构问题, 但当超静定次数 较多或配筋和荷载情况较为复杂时, 用力法计算就非 常繁琐。与此相比, 能量法不但计算简单 , 而且推导过 程清晰 , 逻辑严密, 其计算结果也是很可靠的。
足设计要求, 需对斜拉桥的索力进行调整。而索力量 测效果将直接对结构 的施工质量和施工状态产生影 响, 要在施工过程中比较准确地了解索力的实际状态 , 选择适 当的量测方法和仪器, 并设法消除现场量测 中 各种因素的影响非常关键。 迄今为止, 可供现场测定索力的方法主要有 4 种: ) 1压力表测定法; 压力传感器测定法; 频率法; ) 2 ) 3 ) 4

浅谈斜拉桥发展现状及趋势

浅谈斜拉桥发展现状及趋势

浅谈斜拉桥发展现状及趋势浅谈斜拉桥发展现状及趋势前言现代桥梁正朝着大跨径、更轻巧的方向发展。

斜拉桥是其中一种最为常用的结构。

斜拉桥由主梁、索以及支承缆索的索塔等部分组成,属于组合体系的桥梁。

通过桥塔上多条斜向拉索的支承,斜拉桥结构可以跨越较大的山谷、河流等障碍物。

文中通过对斜拉桥的历史和发展趋势进行分析,提出斜拉桥在设计和建设中存在的问题,以期对斜拉桥的修建有一定的指导作用。

德国发展了斜拉桥的早期工艺技术:正交异性板,钢箱梁,斜拉索预应力工艺,施工方法等,斜拉桥得到了大量应用和发展。

发展历史斜拉桥早在l7世纪就有,但当时由于受科技水平的限制,缺乏可靠的理论分析方法和技术,这种结构体系没有得到很大的发展。

同时18世纪初修建的两座斜拉桥的倒塌事件,使得这种结构体系一直没有得到重视和发展。

直到1938年德国工程师Dishinger 重新认识到了斜拉桥的优越性,并对其进行了研究,1956年由他设计的瑞典Str?msund 桥拉开了现代斜拉桥的序幕。

1956年瑞典建成第一座现代化斜拉桥Str?msund 桥,跨径是74.7m+182m+ 74.7m ,塔是门型框架,拉索辐射形布置,加劲梁由两片板梁组成。

1957年德国Düsseldorf 建成Theodor Heuss 桥,跨径是108m+260m+108m ,钢塔高41m ,横向独立不设横梁,拉索竖琴式布置,索距36m ,钢梁高3.12m 。

1959年德国Cologne 建成Severvin桥,桥跨径是302m ,正交异性钢桥面板的钢箱梁,塔采用A 形,钢索呈放射形,结构为漂浮式,它为桥的抗震提出有效措施,是世界上第一座非对称式钢斜拉桥。

1962年在委内瑞拉建成Maracaibo 桥为第一座混凝土斜拉桥,主跨235m , A形塔,预应力刚性索,混凝土加劲梁,主要为带挂孔的悬臂体系。

20世纪60年代初期,结构分析有了新突破,采用电子计算机分析超静定结构,采用密索体系斜拉桥,从而避免了疏索体系斜拉桥主梁重而配筋多的缺点。

桥梁拉索检测研究现状意义及方法

桥梁拉索检测研究现状意义及方法

桥梁检测研究现状意义及方法1 研究现状及意义 (1)2 损伤原因 (2)2.1 长期积累损伤 (2)2.2 自然灾害损伤 (3)3 现有方法 (3)1.3.1 人工检测 (3)3.2 局部漏磁检测 (4)3.3 索力检测 (4)3.4 模态检测 (6)3.5 光纤监测 (6)3.6 电阻应变片动应力监测 (7)1 研究现状及意义20世纪中叶以来,科学技术的快速发展推动了桥梁工程技术的飞跃。

随着桥梁建设和规模越来越大,造价越来越高,大型桥梁在国民经济和社会生活中的作用越来越重要,人们对大型桥梁的安全性、耐久性与正常使用功能日渐关注。

目前在全国主跨超过200米的大跨径斜拉桥已经达到30多座。

针对开发桥梁健康监测系统的研究工作得到了国内外学者的广泛关注,许多大学及研究机构都积极投入大量的人力、财力于此项工作的研究。

通过已经建立的各种规模的桥梁健康监测系统和已经取得的理论研究成果,为这一领域的研究开创了广阔的前景。

斜拉桥和悬索桥的拉索是主要的受力构件,而由于拉索钢丝和成品索防护不良,这是造成拉索生锈腐蚀、断丝失效的主要原因,因此在斜拉桥和悬索桥的工程当中,都会把拉索的防护作为重要的技术工艺控制项目。

然而,一般拉索损伤主要是疲劳和腐蚀。

因此,在对于拉索表面保护材料状况进行更好更快的检测就成了斜拉桥、悬索桥拉索受腐蚀和损伤状况检测的重要问题,也是现在社会急需解决的一个重要问题。

如果没有及时的进行检测维修的话,产生的后果将会不堪设想。

当然,也有很多的例子印证了这一点。

比如2001年11月7日,四川省宜宾市小南门大桥,如图1所示。

由于钢缆索的断裂,导致了桥面局部垮塌,造成严重的损失,钢缆腐蚀就是这起事故的主要原因之一。

2005年2月长沙浏阳河大桥发生强烈晃动也是由于斜拉索晃动引起的。

美国1940年在俄亥俄州朴斯格兰特将军大桥发生的缆绳锚爪鞘开裂事故,也是因为雨水中含有微量的硝酸盐附着在拉索上面导致应力开裂。

因此对于拉索的及时检测和防治是不能马虎的工作,一定得保证桥的安全,保证人民的生命财产安全。

斜拉桥索力检测磁通量法

斜拉桥索力检测磁通量法

斜拉桥索力检测磁通量法斜拉桥是一种通过索力将桥面悬吊在桥塔上的特殊桥梁结构,能够有效地减小桥梁自重,并且能够承受较大跨度的桥梁。

而为了确保斜拉桥的结构安全和稳定,需要对斜拉索力进行定期检测。

目前,斜拉桥索力检测常用的方法之一就是磁通量法。

磁通量法是一种应用电磁原理进行斜拉索力测量的技术。

它是基于法拉第电磁感应定律,通过测量磁感应强度的变化来求解斜拉索力。

具体的测量原理和步骤如下:1.原理:斜拉索力会导致桥墩中的变形,进而改变桥墩中磁线的通量密度。

根据法拉第电磁感应定律,当磁通量发生变化时,感应线圈中会产生电动势。

因此,通过测量感应线圈中的电动势变化,可以间接反映斜拉索力的变化。

2.测量步骤:-将感应线圈安装在桥墩上,并与测量仪器相连;-当索力产生变化时,桥墩中的变形会导致磁场的变化,产生感应电动势;-使用测量仪器测量感应电动势的变化,并记录数据;-根据测量数据计算出斜拉索力的变化。

磁通量法在斜拉桥索力检测中具有以下的优势和特点:1.无损检测:磁通量法不需要对桥梁结构进行改变或者破坏性的施工,可以实现无损检测。

这对于保护斜拉桥的结构完整性和安全性非常重要。

2.准确度高:通过精确测量感应线圈中的电动势变化,可以获得较为准确的斜拉索力变化。

这对于斜拉桥的运行和维护具有重要意义。

3.实时性好:磁通量法能够实时监测斜拉索力的变化,及时发现异常情况,提高了桥梁的安全性能。

4.适用性强:磁通量法适用于不同类型和不同材质的斜拉桥,具有较好的适用性。

然而,磁通量法也存在一些局限性和挑战:1.测量精度受限:由于磁通量法是间接测量方法,测量精度受到很多因素的影响,如磁场的均匀性、感应线圈的位置等。

因此,在实际应用中需要根据实际情况进行调整和修正。

2.设备要求高:磁通量法需要使用专业的测量设备,并且对设备的性能要求较高,包括感应线圈的选取、设备的灵敏度等。

3.用户技术要求高:磁通量法需要有一定的电磁原理和测量知识的用户来操作和解读测量结果。

斜拉桥发展历史及未来方向

斜拉桥发展历史及未来方向

斜拉桥发展历史及未来方向斜拉桥的发展历程及未来发展趋势通过本学期的学习,我们学习了梁桥、拱桥、斜拉桥、悬索桥的计算方法。

通过老师的讲解使我们了解到了不同桥梁的受力特点的不同以及不同桥梁计算时使用的不同的理论。

梁桥以受弯为主的主梁作为承重构件的桥梁。

主梁可以是实腹梁或桁架梁。

实腹梁构造简单,制造、架设和维修均较方便,广泛用于中、小跨度桥梁,但在材料利用上不够经济。

桁架梁的杆件承受轴向力,材料能充分利用,自重较轻,跨越能力大,多用于建造大跨度桥梁。

拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。

拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。

悬索桥既吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。

其缆索几何形状由力的平衡条件决定,一般接近抛物线。

从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。

下面我们重点来说说斜拉桥,斜拉桥是由主梁、索塔和斜拉索三大部分组成,主梁一般采用混凝土结构、钢和混凝土结构、组合结构或钢结构,索塔主要采用混凝土结构,斜拉索采用高强材料的钢丝或钢绞线制成。

它的主要优点有在各个支点支承的作用下跨中弯矩大大减小,而且由于结构自重较轻,既节省了结构材料,又能大幅地增大桥梁的跨越能力。

此外,斜拉索轴力产生的水平分力对主梁施加了预应力,从而可以增强主梁的抗裂能力,节约主梁中预应力钢材的用钢量。

斜拉桥和梁桥和拱桥相比有着跨越能力大的优势。

而与悬索桥相比在300-1000米跨度又有经济性的优势。

同时外形对称美观更兼线条纤秀,构造简洁,造型优美。

符合桥梁美学的要求。

适合在跨度为300-1000米的桥梁使用。

斜拉桥的发展其实进行了一个漫长的历史,在国外1784年德国人勒舍尔建造了一座跨径为32米的木桥,这是世界上第一座斜拉桥。

1821年法国建筑师叶帕特在世界上第一次系统地提出了斜拉桥的结构体系。

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述摘要 斜拉索的索力大小直接决定着斜拉桥的工作状态,采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。

本文针对目前斜拉桥索力测试中常用的方法及其原理进行了阐述和比较,并指出了各种方法的特点和适用场合。

关键词 斜拉桥 索力 测试 综述Summary of Methods and Theories to Cable ForceMeasurement of Cable —Stayed BridgesAbstract Cable force decides the working state of the cable-stayed bridge directly. Measuring the cable force of the cable-stayed bridge through some exact method is the guarantee to construction and operation. This paper summarises the methods and their theories usually uesed in cable force of cable-stayed bridge measuring. Furthermore, Features and their applying places are pointed out.Keywords cable —stayed bridges cable force measurement summary斜拉索是斜拉桥的一个重要组成部分,斜拉索的工作状态是斜拉桥是否处于正常状态的主要决定因素,所以,能否对斜拉索索力进行精确的测量,在很大程度上决定着斜拉桥施工的成败和正常的运营。

斜拉桥索力测试的方法很多,经过近年来的实践,许多方法已经被淘汰(如“扭力扳手测试法”,误差较大),目前常用的有以下几种:1. 压力表测定法目前,斜拉索均使用液压千斤顶张拉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜拉桥索力测试方法及其发展趋势黄尚廉唐德东重庆大学光电工程学院光电技术及系统教育部重点实验室,重庆 400044摘要:索是斜拉桥的主要受力构件之一,它的受力状态是桥梁安全与正常使用的重要指标。

监测桥索的索力对于及时反映桥索的工作状态和调整桥索的结构内力是极为重要的,从而有效防止桥索的偏载和维护桥梁的运行安全。

本文综述了常用索力测试方法,并分析了每种方法的基本原理和优缺点,指出它的发展趋势和需要研究和解决的问题。

关键字:桥索;索力;频率;磁弹效应Method of measure cable stress and trend of developmentHuang Shang-lian Tang De-dongThe Key Lab for Optoelectronic Technique and System, Ministry of Education, Dept. of OptoelectronicEngineer, Chongqing University, Chongqing 400044 Abstract: Steel cable is one of components which supports stress of cable stay bridge, which tense state is important index of bridge safety and nature use. In order to effectively avoid deflection load of cable and maintain bridge safe of using, monitoring cable tense stress state parameters is very important to feedback cable working states in time and adjust cables tense stress. This article present method of measure cable stress in common use, analyze its ultimate principle and its merits and defects, and point its development trend and problem of solving.Key words: bridge cable; cable tense; frequency; magnetoelastic phenomenon1引言随着人类生产生活水平的提高,对大跨度桥梁的建设需求越来越迫切,加上建桥技术和高强度材料的日益发展,斜拉桥逐步有能力胜任对大跨度发展的要求。

如国内外已建的斜拉桥中,它们的跨度分别为:法国诺曼底桥856m,日本多多罗大桥890m,上海杨浦大桥602m,南京长江第二大桥628m,这些已向人们展示了斜拉桥强大的跨越能力。

斜拉桥为高次超静定结构,它依靠斜拉索为主梁提供弹性约束,桥跨结构的重量和桥上活载绝大部分或全部通过斜拉索传递到塔柱上,因此,索是斜拉桥的主要受力构件之一,它的受力状态直接影响斜拉桥本身的健康状态。

由于在斜拉桥施工或成桥后的日常使用过程中,存在各种误差和偶然因素的联合作用,将使索的结构内力和线形偏离正常状态,因此及时监测斜拉桥索的受力状态是非常重要的,已成为斜拉桥健康监测的重要内容之一。

索力测定目前国内外一般采用4种方法[1]:(1)压力表测定;(2)压力传感器测定;(3)频率测定法;(4) 磁弹效应法。

因此,如何选用合高等学校博士学科点专向科研基金资助:20030611023 理有效的测试方法对斜拉桥施工监控和成桥后的健康监测具有重要意义。

2常用测试方法的原理及其优缺点2.1 压力表法用千斤顶张拉桥索时(如图1),通过精密压力表或液压传感器测定油缸的液压,就可求得索力[1][2]。

这种方法简单易行,是施工中控制索力最实用的方法,其精度可达1%~2%。

它可以用在斜拉桥施工过程中对索力的调整,但由于压力表本身的一些特性,有指针易偏位,高压时指针抖动激烈,读数人为误差大,负荷示值需转换等缺点,不可用于成桥后的动态索力监测。

图1 千斤顶张拉斜拉索示意图2.2 压力传感器法它的测量原理是在桥索固定锚头与桥体混泥土之间加上垫板和承压环(如图2所示),那么桥索所受的拉力将全部作用在承压环上,承压环将产生应变,只要测出承压环的应变量,就可推算出索力。

目前国内外用于测量承压环应变的传感器主要有电阻应变式传感器、振弦式应变传感器、光纤应变传感器等等。

该方法即可用于施工过程中对索力的测量和调整,也可用于成桥后对索力的远程测量和在线监测。

(1) 电阻应变式传感器电阻应变式传感器是应用最广泛的压力传感器,其原理是:将电阻应变片粘贴在图2中的承压环外表面上(图3所示),在索力作用下,承压环产生弹性变形,电阻应变片的阻值将随之改变,将其接到惠斯登电桥电路中,在激励电压的作用下,输出端便有与索力成正比的电信号输出[3]。

该传感器可以测量作用在锚索的总荷载,同时通过测读各传感器,可以测出不均匀或偏心荷载分布情况。

但电阻应变式压力传感器的最大问题是粘合剂问题,它的作用是将弹性体的变形准确无误的传递到应变计的电阻敏感栅,其性能的优劣直接影响应变计的工作特性,如蠕变、机械滞后、绝缘电阻、灵敏度,非线性等。

而对于某一粘合剂而言,如果其抗剪切的强度高,收缩率就会大,抗冲击性就差;如果韧性好,固化时间就长。

因而选择各项性能均好的粘结剂尤为困难[4],此外在高温下粘合剂固化困难,粘贴操作又较复杂,这就制约了电阻应变式压力传感器的精度、线性度及使用范围。

(2) 振弦式应变传感器针对电阻应变片式的缺点,人们开发出振弦式传感器来代替应变片,在性能上提高了不少。

其原理是:在承压环上内置 3、4 或 6 个高精度振弦,每个振弦处在一个磁场中(如图4),振弦在激励信号下振动的同时将切割磁力线产生感应电动势,感应电动势的频率就是振弦的振动频率。

当承压环受压时,它的变形将改变振弦的张紧状态,从而改变振弦的振动频率和感应电动势频率,所以测量振弦的感应电动势频率就可算出索力[5][6]。

振弦振弦承压环图2 压力传感器法测量原理图4振弦传感器测量原理该传感器与应变式一样,既可以测量锚索的总荷载,也可以测量偏心荷载。

但由于振弦式本身原理的缘故而导致尺寸比较大、安装不方便,使用寿命不长,并且容易受到电磁场的干扰,如手机、通信基站、发电厂等电磁场源会明显干扰测试结果,致使测量结果可靠性降低;另外振弦式传感器不能串联使用,不能进行动态响应和动态测量,不易于构成检测网络,如果组网的话,传输信号的电缆非常多,这将直接导致工作量的剧增,并影响测量结果的准确性。

(3) 光纤应变传感器最近发展起来的基于光纤Bragg光栅(FBG)的新型应变传感器是一个新的发展方向,具有较高的可靠性。

图3 电阻应变片粘贴于承压环外表面其工作原理是[7][8]:将光纤光栅刚性粘贴于承压环外表面上(沿圆周方向或母线方向均可)(如图5),组成穿心式传感头,该传感头安装在斜拉桥锚具和索孔垫板之间,传感头承受桥索的索力。

当光源发出的宽带光经光纤传输到被测量点,光栅有选择性地反射回一窄带光,经光分路器传送到波长鉴别器或波长解调仪,然后通过光探测器进行光电转换(如图6)。

传感头受压时,引起FBG中心波长发生相应移动,通过对波长移动量的监测,就可以计算出斜拉索的索力。

若忽略温度和应力的交叉敏感现象,且光纤的材料为石英,光纤光栅布拉格波长漂移与应变和温度的关系用下式表示:()T 780z bbΔξαελλΔ++=. (1) 式中,λb 是光栅Bragg 反射波长;Δλb 为外界应力和温度作用下光栅Bragg 波长的移动量;α和ξ分别为光纤的热膨胀系数和热光系数;ΔT 为温差;εz 为光纤的轴向应变。

因此,如果用参考光纤进行温度补偿,那么通过检测Bragg 波长的移位即可测得应力。

如果将光纤安装在如图2中的垫板上可以组成垫板式光纤应变传感器[9](图7所示)其原理为:用半导体激光器向测量光纤输入具有一定强度的激光信号 I 0,此信号经过光纤时,会因光纤的微弯变形而发生衰减,从激光测量器可测出衰减后的光纤信号 I 0-△I 0,因为衰减信号△I 0为△I 0 = a×I 0×ε (2)式中 a :传感器的固有常数ε:光纤的微弯应变量 又因为索力 F ::F = b×ε (3) 式中 b :换算常数所以,可利用式(2)和式(3),计算出索力。

光纤应变传感器具有适应恶劣环境能力强(防潮,防温漂,抗电磁干扰);质量轻,体积小,对结构影响小,易于布置;可串联分布,易实现分布式测量;灵敏度高,精度高;测量值空间分辨率高等优点,但和电阻应变式一样,存在粘合剂问题,且只适用于新安装的锚索,对于许多己安装好、正在投入使用的锚索,不可能为安装该传感器而把锚索拆掉重新安装。

图5光纤光栅粘贴于承压环外表面 2.3 振动法(频率法)2.3.1 原理利用索的力学参数,可建立索的结构模型,对模型进行模态分析,可得到斜拉索索力与频率的关系,图8表示斜拉索及其坐标系,现假定:(1)垂跨比δ=d/l 很小(δ<<1);(2)拉索只在xoy 平面内振动,其在x方向的运动很小,可忽略不计,另设在y方向的挠度为u (x ,t );(3)当垂跨比δ=d/l 小于1/6时,用抛物线代替悬链线具有足够的精度,于是拉索的形状可用抛物线来表示[10,11]。

图6 光纤Bragg 光栅分布式传感系统原理图图8 斜拉索及其特性缆索在张紧的状态下,其自由振动方程为[12,13]:0222244=∂∂+∂∂−∂∂t u x u T x u EI ρ (4)式中,x为沿缆索方向坐标,u(x ,t )为缆索上各点在时刻t的横向位移(即y 方向位移);EI 为缆索的抗弯刚度;T为索拉力;ρ为缆索的线密度。

上述方程,对于不同的边界条件模型,得到不同的解,其对应的索力计算公式的精度也图7垫板式光纤应变传感器不同[14]。

假定缆索的边界条件为两端铰接,则上述方程的解为[11]:2222224L EI n n f L T n πρ−= (5)式中,n为缆索自振频率的阶数,n=1、2、3……;f n为缆索的第n阶自振频率;L为缆索的计算索长。

如果忽略缆索弯曲刚度的影响,式(7)变为:2224nf L T n ρ= (6) 所以,利用精密拾振器,拾取拉索在环境振动激励下的振动信号,经过滤波、放大和频谱分析,再根据频谱图来确定拉索的第n 阶自振频率,利用(6)式确定索力。

相关文档
最新文档