材料的组成、结构、性能
材料概论材料的组成、结构与性能各...

材料概论材料的组成、结构与性能各种材料金属、高分子和无机非金属不论其形状大小如何,其宏观性能都是由其化学组成和组织结构决定的。
材料的性能与化学组成、工艺、结构的关系如下:第二章材料的组成、结构与性能2.1 材料的组成2.2 材料的结构2.3 材料的性能只有从不同的微观层次上正确地了解材料的组成和组织结构特征与性能间的关系,才能有目的、有选择地制备和使用选用材料。
化学组成工艺过程本征性能显微结构材料性能2.1 材料的组成材料通常都是由原子or分子结合而成的,也可以说是由各种物质组成的,而物质是由≥1种元素组成的。
按原子or分子的结合与结构分布状态的不同,可分成3类:第二章材料的组成、结构与性能组元、相和组织固溶体聚集体复合体2.1.2 材料的化学组成2.1.1 材料组元的结合形式固溶体、聚集体和复合体第二章材料的组成、结构与性能材料的组元:金属材料多为纯元素,如普通碳钢? Fe&C;陶瓷材料多为化合物,如Y2O3?ZrO2 ?Y2O3&ZrO2组成材料最基本、独立的物质,或称组分。
可以是纯元素or稳定化合物。
相: 具有同一化学成分并且结构相同的均匀部分。
1?m图2-150%ZrO2/Al2O3复合材料的SEM照片* 相与相之间有明显的分界面,可用机械的方法将其分离开。
第二章材料的组成、结构与性能ZrO2Al2O3*各晶粒间有界面隔开,但它们是由成分、结构均相同的同种晶粒构成的材料,仍属于同一相。
*在相界面上,性质的改变是突变的。
*1个相必须在物理和化学性质上都是完全均匀的,但不一定只含有1种物质。
例如:纯金属是单相材料,钢非纯金属在室温下由铁素体含碳的??Fe和渗碳体Fe3C为化合物组成;普通陶瓷:由晶相1种/几种与非晶相玻璃相组成。
*由成分、结构都不同的几种晶粒构成的材料,则它们属于几种不同的相。
材料的组织第二章材料的组成、结构与性能材料内部的微观形貌。
实际上是指由各个晶粒or各种相所形成的图案。
材料学基础

材料学基础材料学基础是指关于材料科学与工程领域中一些基本概念和原理的学习,包括材料的组成、结构、性能和应用等方面的知识。
以下是材料学基础的一些重要内容。
首先,材料的组成是指材料的构成成分。
材料可以分为金属、非金属和复合材料等多种类型。
金属材料主要由金属元素构成,具有良好的导电性、导热性和可塑性等特点。
非金属材料主要由非金属元素构成,包括陶瓷、塑料和高分子材料等,具有绝缘性和耐高温性等特点。
复合材料是由两种或多种不同材料组合而成的材料,具有多种材料的优点,如轻质、高强度和耐腐蚀性等。
其次,材料的结构是指材料的内部组织。
晶体结构是最基本的材料结构,材料中的原子、离子或分子按照一定规律排列而成的结晶体。
晶体结构的类型有很多,如立方晶系、六方晶系和四方晶系等。
除了晶体结构,还有非晶体结构,即无定型结构,原子、离子或分子的排列没有规则性。
再次,材料的性能是指材料在不同条件下表现出来的特点。
材料的力学性能包括强度、硬度和韧性等,用来描述材料的抗压、抗剪和抗拉等方面的性能。
材料的物理性能包括密度、导热性和热膨胀系数等,用来描述材料在物理方面的特性。
材料的化学性能包括腐蚀性和耐磨性等,用来描述材料在化学性质和耐久性方面的特点。
最后,材料的应用是指材料在实际工程中的使用。
不同类型的材料具有不同的特点和应用领域。
金属材料广泛应用于汽车制造、飞机制造和建筑工程等领域。
非金属材料广泛应用于电子器件、塑料制品和建筑装饰等领域。
复合材料广泛应用于航空航天、体育器材和高速运输工具等领域。
综上所述,材料学基础是学习材料科学与工程领域中一些基本概念和原理的过程,包括材料的组成、结构、性能和应用等方面的知识。
掌握材料学基础对于深入理解材料科学和工程领域具有重要意义,并为进一步研究和应用材料提供了基础。
材料科学四要素

材料科学四要素材料科学是一门研究材料的组成、结构、性能和加工制备的学科,它涉及到多个学科领域,如物理学、化学、工程学等。
在材料科学中,有四个重要的要素,它们是材料的组成、结构、性能和加工制备。
这四个要素相互作用,共同决定了材料的特性和用途。
下面将分别对这四个要素进行详细介绍。
首先是材料的组成。
材料的组成是指材料的化学成分和相对含量。
不同种类的材料由不同的元素或化合物组成,这些成分的种类和比例决定了材料的基本性质。
例如,金属材料的主要成分是金属元素,而陶瓷材料的主要成分是氧化物、硼化物等。
材料的组成直接影响着材料的化学性质和稳定性,因此在材料设计和选择时,要根据具体的使用要求来确定材料的组成。
其次是材料的结构。
材料的结构是指材料内部原子、分子或离子的排列方式和相互作用。
不同的结构形式决定了材料的晶体结构、晶粒大小、晶界、缺陷等特征,从而影响了材料的力学性能、热学性能和电磁性能。
材料的结构可以通过各种分析手段来确定,如X射线衍射、电子显微镜等,这些结构信息对于材料的性能预测和改进具有重要意义。
第三是材料的性能。
材料的性能是指材料在特定条件下所表现出的物理、化学和力学特性。
材料的性能包括力学性能(如强度、硬度、韧性)、热学性能(如导热性、热膨胀系数)、电磁性能(如导电性、磁性)等。
不同的材料具有不同的性能特点,这些性能特点直接关系到材料的使用范围和条件。
因此,对材料的性能进行全面、准确的评价是材料科学研究的重要内容之一。
最后是材料的加工制备。
材料的加工制备是指通过物理或化学方法将原始材料转化为具有一定形状和性能的成品材料的过程。
材料的加工制备包括原料的提取、精炼、合金化、成型、热处理等多个环节,每个环节都会对材料的组织结构和性能产生影响。
因此,合理的加工工艺和工艺参数选择对于获得优质材料至关重要。
综上所述,材料科学的四要素——组成、结构、性能和加工制备,相互联系、相互影响,共同决定了材料的特性和用途。
生物材料的结构与性能分析

生物材料的结构与性能分析生物材料是指由生命体制造的材料,如骨骼、牙齿、皮肤、毛发、角质等,以及由生命体或其组成部分分离出来的材料,如蛋白质、DNA、细胞膜等。
由于生物材料具有优异的结构和性能,近年来在工程材料领域的应用越来越广泛。
本文将对生物材料的结构及其对性能的影响进行分析。
一、生物材料的结构生物材料可以分为有机材料和无机材料两类。
有机材料主要由蛋白质、多糖、脂类等生物大分子构成,而无机材料主要由矿物质构成。
1.有机材料的结构蛋白质是生物材料中广泛存在的一种有机大分子。
蛋白质的结构包括四级结构,即原始结构、二级结构、三级结构和四级结构。
原始结构是蛋白质链上不断重复的氨基酸序列,二级结构是由α-螺旋、β-折叠等构成的一些规则结构,三级结构是由二级结构间的相互作用所形成的二面角、氢键、离子键等,四级结构是由多个蛋白质链相互叠合所形成的大分子。
多糖也是生物材料中常见的有机分子,其结构更为简单。
多糖由大分子葡萄糖组成,通过不同的连接方式构成不同的多糖。
常见的多糖有纤维素、壳聚糖等。
脂类是生物材料中的一种特殊有机分子。
其结构为长链脂肪酸和甘油分别通过酯键连接而成,形成三酰基甘油(甘油三酯),其余的脂类如胆固醇则存在于生物膜内。
2.无机材料的结构无机材料主要指钙质、磷酸盐等矿物质。
钙质和磷酸盐通过化学反应形成了多种复杂的化合物,如磷酸钙(含有磷酸钙二水合物和磷酸钙无水物)、羟磷灰石(由磷酸钙和矿物质组成)、骨基质等。
这些结构复杂的无机化合物中,矿物质的形态和分布对材料的性能有着非常重要的影响。
二、生物材料的性能聚合物材料晶体的结构、形态、分子量等均对聚合物材料的性能有重要影响。
类似地,生物材料的结构也会对其性能产生影响。
从力学性能、生物相容性、生物化学性能等方面来看,生物材料的性能主要表现在以下几个方面:1.力学性能骨骼、骨骼肌、牙齿和韧带等具有优异的力学性能。
这些材料大都是复合材料,由有机和无机材料组成。
陶瓷材料的结构与性能分析

陶瓷材料的结构与性能分析陶瓷材料是一类广泛应用于建筑、电子、航空等领域的材料,具有优异的物理和化学性质。
而想要深入了解陶瓷材料的性能表现,首先必须对其结构进行分析。
一、结晶结构陶瓷材料主要由氧化物组成,常见的有硅酸盐、氮化硅、氧化铝等。
在陶瓷材料中,原子或离子按照一定的几何排列方式组成结晶结构。
例如,硅酸盐陶瓷中的硅离子和氧离子以正方形或三角形的排列方式拼接成网络结构。
而氮化硅陶瓷则由氮离子和硅离子按照边长相等的正六边形排列形成具有大空隙的结构。
结晶结构的不同会导致陶瓷材料的性能差异,如硬度、热传导性等。
二、晶粒大小晶粒大小是陶瓷材料表面性能的重要指标之一。
晶粒的尺寸越小,材料的强度和硬度往往越高,因为小晶粒内部的晶界相对较多,在晶界上形成了许多阻碍位错运动的障碍点,从而提高了材料的抗变形能力。
因此,控制陶瓷材料的晶粒尺寸,对提高其力学性能具有重要意义。
三、杂质含量陶瓷材料中的杂质含量对其性能影响举足轻重。
杂质的存在会破坏材料的完整晶体结构,从而导致性能的下降。
例如,陶瓷材料中的铁、镉等金属离子会影响其电学性能,氮化硅材料中杂质的存在会导致其电阻率的变化。
因此,在制备陶瓷材料时,对原材料进行严格筛选和纯化,以及控制烧结工艺的条件,能够有效减少杂质含量,提高材料的性能。
四、孔洞结构孔洞是陶瓷材料中普遍存在的结构特征之一。
孔洞会影响材料的力学性能、热导率等。
例如,在陶瓷材料中,孔洞的存在可以减小材料的密度,从而提高其机械强度。
此外,孔洞还能影响热的传导、吸附等性质。
因此,对陶瓷材料的孔洞结构进行合理设计和控制,能够改善其性能,拓宽其应用范围。
五、晶界结构陶瓷材料中的晶界是由相邻晶粒之间的原子之间形成的。
晶界的存在会影响材料的力学性能、导电性能、疲劳寿命等。
在力学性能方面,晶界是位错移动的阻碍剂,增加了材料的塑性变形程度;在导电性能方面,晶界处存在能带偏移和电阻率增加现象,使材料的导电性能下降。
因此,控制晶界的结构,合理改善晶界的质量和数量,对提高陶瓷材料的性能至关重要。
材料学四要素

材料学四要素
材料学四要素是指材料学中考虑的四个基本因素,也被称为材料的四个基本特征。
这些要素对于材料的性能、结构和应用具有重要影响。
以下是材料学四要素的简要解释:
1.构成要素(Composition):指材料的化学组成。
不同元素
和化合物的组合形成了不同的材料,其组成可以通过化学
元素、化学化合物或合金等来描述。
2.结构要素(Structure):指材料的内部结构。
材料的结构涉
及晶体、晶粒、晶面取向、晶格缺陷等微观组织特征,以
及颗粒、纤维、孔隙大小、分布等宏观组织特征。
3.性能要素(Properties):指材料的物理、化学和力学特性。
材料的性能包括强度、硬度、耐腐蚀性、导电性、热传导
性、弹性模量等多个方面,这些性能与材料的构成和结构
密切相关。
4.加工要素(Processing):指材料的加工方法和工艺。
加工
涉及到将原材料转化为实际应用材料的过程,如锻造、铸
造、挤压、焊接、热处理等。
不同的加工方法和工艺会对
材料的性能和结构产生影响。
这四个要素相互作用,一起决定了材料的特性和行为。
材料学的研究通过研究和理解这些要素以及它们之间的关系,可以帮助人们开发新的材料、优化现有材料的性能,并应用于各种工程和科学领域。
材料的组成、结构、构造及其对性能的影响

化学组成不同的两种石材性能对比
大理石
花岗岩
• 同一栋楼外墙所用的两种不同材质的装饰石材, 使用时间相同。大理石石材颜色已变暗且出现裂 缝,而花岗岩石材完好如新
化学组成相同但矿物组成不同的两 种钢材的金相照片
A
B
• A具有较好的冷、热变形等工艺性能,但强度较 低,而B则强度较高
1.1.3 材料的结构和构造
Chapter 1 土木工程材料的基本性质
• 了解土木工程材料的基本组成、结构和构造, 并了解材料结构和构造与材料基本性质的关 系;
• 熟练掌握土木工程材料的基本力学性质; • 掌握土木工程材料的基本物理性质; • 掌握土木工程材料耐久性的基本概念。
1.1 材料科学的基本理论
• 1.1.1 材料科学与工程 • 1.1.2 材料的组成 • 1.1.3 材料的结构和构造
1、宏观结构(构造) • 按孔隙特征分为:密实结构、多孔结构和
微孔结构 • 按组织构造特征分为:堆聚结构、纤维结
构、层状结构、散粒结构、纹理结构
1.1.3 材料的结构和构造
2、微观结构 • 材料的微观结构与材料的强度、硬度、弹
塑性、熔点、导电性、导热性等重要性质 有着密切的关系。 • 材料的微观结构基本上可分为晶体、玻璃 体、胶体三类 • 材料的化学组成相同,微观结构的差别将 导致材料性能的差异。
1.1.1 材料科学与工程
• 材料科学与工程是研究材料的组成、结构、 生产制造工艺与其性能及使用关系的科学 和实践
• 土木工程材料学是材料科学与工程的一个 组成部分
1.1.2 材料的组成
• 化学组成 化学组成不同的两种石材性能对比
• 矿物组成 化学组成相同但矿物组成不同的两种钢材 性能对比• 相组成大理岩的源自密结构加气混凝土砌块的多孔结构
材料的组成、结构与构造及对材料性质的影响

胶合板的层状构造
散粒状构造指呈松散颗粒状的材料,有密实颗粒
与轻质多孔颗粒之分。前者如砂子、石子等,因其 致密,强度高,适合做承重的混凝土骨料。后者如 陶粒、膨胀珍珠岩等,因具多孔结构,适合做绝热 材料。粒状构造的材料颗
粒间存在大量的空隙, 其空隙率主要取决于颗 粒大小的搭配。用作混 凝土骨料时,要求紧密 堆积,轻质多孔粒状材
布朗运动自由移动时,称为凝胶,凝胶具有触变性,
即将凝胶搅拌或振动,又能变成溶胶。水泥浆、新
拌混凝土、胶 粘剂等均表现有触变性。 当凝胶完全脱水则成干 凝胶体,它具有固体的 性质,即产生强度。硅 酸盐水泥主要水化产物 的最后形式就是凝胶体。
水泥凝胶体
小结:材料基本性质间关系
孔隙率增加,密度不变,表观密度降低,强度降低, 吸水率增加,抗渗性降低,抗冻性降低,导热系数减 小。 孔隙率降低,密度不变,表观密度增加,强度增加, 吸水率降低,抗渗性提高,抗冻性提高,导热系数增 加。
规则在空间呈有规律的排列,因此晶体具有一定的
几何外形,显示各向异性,但实际应用的晶体材料,
通常是由许多细小的晶粒杂乱排列组成,故晶体材 料在宏观上显示为各向同性。
晶体内质点的相对密集程度和质点间的结合力,对 晶体材料的性质有着重要的影响。例如在硅酸盐矿
物材料(如陶瓷)的复杂晶体结构(基本单元为硅
氧四面体)中,质点的相对密集程度不高,且质点
间大多是以共价键联结,变形能力小,呈现脆性。
材料的化学成分相同,但形成的晶体结构可以不同,
其性能也就大有差异。如石英和硅藻土,化学成分
同为SiO2,但各自性能颇不相同。另外,晶体结构 的缺陷,对材料性质的影响很大。
将熔融的物质进行迅速冷却(急冷),使其内部
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TiO2,可使烧结温度下降到1600℃,这是因为
Al2O3 与TiO2形成固溶体,Ti4+置换Al3+后, Ti Al
带正电,为平衡电价,产生了正离子空位,加快 扩散,有利于烧结进行。
32
固溶强化
溶质原子的溶入,
固溶强化
使固溶体的强度、
硬度升高 。
33
形成固溶体后对材料物理性质的影响
NiO-MgO都具有面心立方结构,且Δr<15%, 可形成连续固溶体; MgO-CaO两两结构不同,只能形成有限型固溶 体或不形成固溶体。
晶体结构类型的影响
15
离子类型和键性
化学键性质相近,
离子类型和键性
即取代前后离子周围离子间键性相近,
容易形成固溶体。
16
电价因素
形成固溶体时,离子间可以等价置换也可以不 等价置换。 在硅酸盐晶体中,常发生复合离子的等价置换, 如Na+ + Si4+ = Ca2+ + Al3+,使钙长石 Ca[Al2Si2O6]和钠长石Na[AlSi3O8]能形成连续 固溶体。又如,Ca2+ = 2Na+,Ba2+ = 2K+常出 现在沸石矿物中。
50
Coulomb gravitation & distance between ions
库仑引力与离子间距离的关系
51
Coulomb gravitation & distance between ions
52
共价键晶体的特性
很高的熔点和硬度 良好的光学特性 不良的导电性
共价键的特点
方向性和饱和性
电价因素
17
注意事项
以上几个影响因素,并不是同时起作用, 在某些条件下,有的因素会起主要因素, 有的会不起主要作用。
r(Si4+)=0.26埃,r(Al3+)=0.39埃,相差达45% 以上,电价又不同,但Si—O、Al—O键性 接近,键长亦接近,仍能形成固溶体,在铝 硅酸盐中,常见Al3+置换Si4+形成置换固溶体 的现象。
S、P、Cl、F、Si等
具体见表2-4
42
2.2 材料的结构
J J J
2.2.1 材料中的化学键合
2.2.2 晶体结构基础 2.2.3 材料的结构
Cata log 2.1
43
2.1.2.2 材料中的化学键合
Metallic bond
Ionic bond
Covalent bond
2.1.2.2 Bonds
YF3 Y 2FF Fi
CaF2
Ca
'
22
当F-进入间隙时,产生负电荷,
由Y3+进入Ca2+位置来保持位置关系和电价的平衡。
填隙型固溶体的生成,
一般都使晶格常数增大,增加到一定的程度, 使固溶体变成不稳定而离解, 所以填隙型固溶体不可能是连续的固溶体。 晶体中间隙是有限的, 容纳杂质质点的能力≤10%。
伴随很大的体积收缩,这对高温结构材料是致命
的。
单斜 四方
ZrO2
1200C
若加入CaO,则和ZrO2形成固溶体,无晶型转变,
体积效应减少,使ZrO2成为一种很好的高温结构
材料。
31
活化晶格
形成固溶体后,晶格结构有一定畸变,处于高能 量的活化状态,有利于进行化学反应。
Al2O3熔点高(2050º C),不利于烧结,若加入
Chapter 2 Composition Structure and Property of Materials
Chapter 2 Structure and property of materials
材料的组成、结构与 性能
1
化学组成
组织结构
Relation ship
合成 与 加工
材料性能
材料应用
组织
4
chemical element chemical substance
atom
component phase
molecule
Relation of component, phase and texture
simplex texture
multiple texture
texture
Figure 2-1 Relation of component,phase and texture
2.1.2 The Chemical Structure of Materials 金属材料的化学组成
无机非金属材料的化学组成
2.1.2 The structure of materials
高分子材料的化学组成
39
2.1.2.1 金属材料的化学组成
单质金属
2.1.2.1 Importance
金属合金
杂质质点大小
即添加的原子愈小,
易形成固溶体,反之亦然。
20
晶体(基质)结构
离子尺寸是与晶体结构的关系密切相关的,
在一定程度上来说, 结构中间隙的大小起了决定性的作用。 一般晶体中空隙愈大,结构愈疏松, 易形成固溶体。
21
电价因素
外来杂质原子进人间隙时,
必然引起晶体结构中电价的不平衡, 这时可以通过生成空位, 产生部分取代或离子的价态变化来保持电价平衡。 例如YF3加入到CaF2中:
Hume-Rothery经验规则
以r1和r2分别代表半径大和半径小的溶剂(主晶相)或 溶质(杂质)原子(或离子)的半径, 当 固溶体;
r r1 r2 0.15 r1
时,溶质与溶剂之间可以形成连续 时,溶质与溶剂之间只能形成
Hume-Rothery经验规则
当 有限型固溶体;
r r1 r2 30% r1
Ca2+能取代Mg2+吗? Li+ 能取代Mg2+吗? MgO的结构中Mg2+离子被Fe2+离子所取代。
12
形成置换固溶体的影响因素
1. 原子或离子尺寸的影响
Hume-Rothery经验规则
形成置换固溶体的影响因素
2. 晶体结构类型的影响
3. 离子类型和键性
4. 电价因素
13
原子或离子尺寸的影响
r1 r2 r 15% ~ 30% r1
当 时,溶质与溶剂之间很难形成固溶 体或不能形成固溶体,而容易形成中间相或化合物。 因此Δr愈大,则溶解度愈小。 这是形成连续固溶体的必要条件, 而不是充分必要条件。
14
晶体结构类型的影响
若溶质与溶剂晶体结构类型相同,能形成连续 固溶体,这也是形成连续固溶体的必要条件, 而不是充分必要条件。
5
2.1.1.2 Solid solution
(1)定义
2.1.1.2 Solid solution
溶液
6
固溶体
一个(或几个) 组元的原子(化合物)溶入
另一个组元的晶格中,而仍
(1) Definition
Solute 溶质
保持另一组元的晶格类型的
固态晶体。
Solvent 溶剂
7
( 2) 基本 特征
Characteristic & properties
金属的特性
46
(2)Ionic bond
本质上可以归结于静电引力
离子键的特点
饱和性和无定向性
(2) Ionic bond
离子化合物的特性
配位数高、堆积致密
47
Example
离子键CsCl结构示意图
48
Formation
离子键的形成
49
Formation
2
2.1 材料的组成
J J
2.1.1 材料组元的结合形式
2.1.2 材料的化学ቤተ መጻሕፍቲ ባይዱ成
Cata log 2.1
3
2.1 概述
2.1.1 材料组元的结合形式 2.1.1.1 基本概念
相
组 组成材料最基本、 元 独立的物质
2.1.1.1 Concepts
材料中具有同一化学 成分并且结构相同的 均匀部分
材料内部的 微观形貌
PZT陶瓷
两者结构相同,Zr4+、Ti4+离子尺寸相差不多,能 在常温生成连续固溶体Pb(ZrxTi1-x)O3,x=0.1~0.3。 在斜方铁电体和四方铁电体的边界组成 Pb(Zr0.54Ti0.46)O3处,压电性能、介电常数都达到 最大值,烧结性能也很好。
30
ZrO2
一种高温耐火材料,熔点2680º C,但发生相变时
18
B、填隙型固溶体——在溶剂的晶格间隙内 有溶质的原子填入(溶入)形成的固溶体。
B、填隙型
原子半径:
H: 0.046nm B: 0.097nm C: 0.077nm N: 0.071nm
19
形成填隙型固溶体的条件
填隙型固溶体的固溶度仍然取决于 离子尺寸、离子价、电负性,结构 等因素。
形成填隙型固溶体的条件
Hydrogen bond Van der Waals bond
44
每个原子都提供少数价电 子,作为自由电子,共用 于整个晶体。其特点是具 有键作用的电子并不固定 在一定的原子上,而是可 以在金属格子之间自由活 动。
45
高导电率和高导热率 不透明性 金属表面的高反射性 延展性
金属键的特点
电子的离域性 键的球对称性质
28
形成固溶体后对晶体性质的影响
1. 稳定晶格,阻止某些晶型转变的发生
2. 活化晶格 3. 固溶强化 4. 形成固溶体后对材料物理性质的影响
形成固溶体后对晶体性质的影响
29