2008年第7届中国女子数学奥林匹克(CGMO)真题及答案_wrapper
2004-2012历届女子数学奥林匹克试题PDF(无答案)

目录2002年女子数学奥林匹克 (1)2003年女子数学奥林匹克 (3)2004年女子数学奥林匹克 (5)2005年女子数学奥林匹克 (7)2006年女子数学奥林匹克 (9)2007年女子数学奥林匹克 (11)2008年女子数学奥林匹克 (13)2009年女子数学奥林匹克 (16)2010年女子数学奥林匹克 (19)2011年女子数学奥林匹克 (21)2012年女子数学奥林匹克 (24)2002年女子数学奥林匹克1.求出所有的正整数n,使得20n+2能整除2003n+2002.2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次.(1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数.3.试求出所有的正整数k,使得对任意满足不等式k(aa+ab+ba)>5(a2+a2+b2)4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC.5.设P1,P2,⋯,P n(n≥2)是1,2,⋯,n的任意一个排列.求证:1P1+P2+1P2+P3+⋯+1P n−2+P n−1+1P n−1+P n>n−1n+2.6.求所有的正整数对(x,y),满足x y=y x−y.7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半.8.设A1,A2,⋯,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,⋯,A8在该直线上的摄影分别是P1,P2,⋯,P8.如果这8个射影两两不重合,以直线l的方向依次排列为P i1,P i2,⋯,P i8,这样,就得到了1,2,…,8的一个排列i1,i2,⋯,i8(在图1中,此排列为2,1,8,3,7,4,6,5).设这8个点对平面上所有有向直线作射影后,得到的不同排列的个数为N8=N(A1,A2,⋯88的最大值.图12003年女子数学奥林匹克1. 已知D 是△ABC 的边AB 上的任意一点,E 是边AC 上的任意一点,连结DE ,F 是线段DE 上的任意一点.设AC AA =x ,AA AA =y ,CH CA =z .证明: (1) S △ACH =(1−x )yzS △AAA ,S △AAH =x (1−y )(1−z )S △AAA ;(2) �S △ACH 3+�S △AAH 3≤�S △AAA 3.2. 某班有47个学生,所用教室有6排,每排有8个座位,用(i ,j )表示位于第i 排第j 列的座位.新学期准备调整座位,设某学生原来的座位为(i ,j ),如果调整后的座位为(m ,n ),则称该生作了移动[a ,a ]=[i −m ,j −n ],并称a +b 为该生的位置数.所有学生的位置数之和记为S .求S 的最大可能值与最小可能值之差.3. 如图1,ABCD 是圆内接四边形,AC 是圆的直径,BB ⊥AA ,AC 与BD 的交点为E ,F 在DA 的延长线上.连结BF ,G 在BA 的延长线上,使得BD ∥BB ,H 在GF 的延长线上,AC ⊥DB .证明:B 、E 、F 、H 四点共圆.图14.(1)证明:存在和为1的5个非负实数a、b、c、d、e,使得将它们任意放置在一个圆周上,总有两个相邻数的乘积不小于19;(2)证明:对于和为1的任意玩个非负实数a、b、c、d、e,总可以将它们适当放置在一个圆周上,且任意相邻两数的乘积均不大于19.5.数列{a n}定义如下:a1=2,a n+1=a n2−a n+1,n=1,2,⋯.证明:1−120032003<1a1+1a2+⋯+1a2003<1.6.给定正整数n(n≥2).求最大的实数λ,使得不等式a n2≥λ(a1+a2+⋯+a n−1)+2a n对任意满足a1<a2⋯<a n的正整数a1,a2,⋯,a n均成立.7.设△ABC的三边长分别为AB=b、BA=a、AA=a,a、b、c互不相等,AD、BE、CF分别为△ABC的三条内角平分线,且DE=DF.证明:(1)a b+c=b c+a+c a+b;(2)∠BAA>90°.8.对于任意正整数n,记n的所有正约数组成的集合为S n.证明:S n中至多有一半元素的个位数为3.2004年女子数学奥林匹克1.如果存在1,2,⋯,n的一个排列a1,a2,⋯,a n,使得k+a k(k=1,2,⋯,n)都是完全平方数,则称n为“好数”.问:在集合{11,13,15,17,19}中,哪些是“好数”,哪些不是“好数”?说明理由.(苏淳供题)2.设a、b、c为正实数.求a+3c a+2b+c+4b a+b+2c−8c a+b+3c的最小值.(李胜宏供题)3.已知钝角△ABC的外接圆半径为1.证明:存在一个斜边长为√2+1的等腰直角三角形覆盖△ABC.(冷岗松供题)4.一副三色纸牌,共有32张,其中红黄蓝每种颜色的牌各10张,编号分别是1,2,⋯,10;另有大小王牌各一张,编号均为0.从这副牌中任取若干张牌,然后按如下规则计算分值:每张编号为k的牌记为2k分.若它们的分值之和为2004,则称这些牌为一个“好牌组”.试求“好牌组”的个数.(陶平生供题)5.设u、v、w为正实数,满足条件u√vv+v√vu+v√uv≥1.试求u+v+v的最小值. (陈永高供题)6.给定锐角△ABC,点O为其外心,直线AO交边BC于点D.动点E、F分别位于边AB、AC上,使得A、E、D、F四点共圆.求证:线段EF在边BC上的投影的长度为定值.(熊斌供题)7.已知p、q为互质的正整数,n为非负整数.问:有多少个不同的整数可以表示为ii+jj的形式,其中i,j为非负整数,且i+j≤n.(李伟固供题)8.将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置多少个互不重叠的“十字形”(每个“十字形”恰好盖住棋盘上的5个小方格)?(冯祖明供题)2005年女子数学奥林匹克1.如图1,点P在△ABC的外接圆上,直线CP、AB相交于点E,直线BP、AC相交于点F,边AC的垂直平分线与边AB相交于点J,边AB的垂直平分线与边AC相交于点K.求证:AA2AH=AA⋅AA AA⋅AH.图1(叶中豪供题)2.求方程组�5�x+1x�=12�y+1y�=13(z+1z)xy+yz+zx=1,的所有实数解.(朱华伟供题)3.是否存在这样的凸多面体,它共有8个顶点、12条棱和6个面,并且其中有4个面,每两个面都有公共棱?(苏淳供题)4.求出所有的正实数a,使得存在正整数n及n个互不相交的无限整数集合A1,A2,⋯,A n满足A1∪A2∪⋯∪A n=Z,而且对于每个A i中的任意两数b>c,都有a−b≥a i.(袁汉辉供题)5.设正实数x、y满足x3+y3=x−y.求证:x2+4y2<1. (熊斌供题)6.设正整数n(n≥3).如果在平面上有n个格点P1,P2,⋯,P n满足:当�P i P j�为有理数时,存在P k,使得|P i P k|和�P j P k�均为无理数;当�P i P j�为无理数时,存在P k,使得|P i P k|和�P j P k�均为有理数,那么,称n是“好数”.(1)求最小的好数;(2)问:2005是否为好数(冯祖明供题)7.设m、n是整数,m>n≥2,S=�1,2,⋯,m�,T=�a1,a2,⋯,a n�是S的一个子集.已知T中的任两个数都不能同时整除S中的任何一个数.求证:1a1+1a2+⋯+1a n<m+n m. (张同君供题)8.给定实数a、b(a>a>0),将长为a、宽为b的矩形放入一个正方形内(包含边界).问正方形的边至少为多长?(陈永高供题)2006年女子数学奥林匹克1.设a>0,函数f:(0,+∞)→R满足f(a)=1.如果对任意正实数x、y,有f(x)f(y)+f�a x�f�a y�=2f(xy),求证:f(x)为常数.(朱华伟供题)2.设凸四边形ABCD的对角线交于点O.△OAD、△OBC的外接圆交于点O、M,直线OM分别交△OAB、△OCD的外接圆于点T、S.求证:M是线段TS的中点.(叶中豪供题)3.求证:对i=1,2,3,均有无穷多个正整数n,使得n,n+2,n+28中恰有i个可表示为三个正整数的立方和.(袁汉辉供题)4.8个人参加一次聚会.(1)如果其中任何5个人中都有3个人两两认识,求证:可以从中找出4个人两两认识;(2)试问:如果其中任何6个人中都有3个人两两认识,那么是否一定可以找出4个人两两认识?(苏淳供题)5.平面上整点集S=�(a,a)�1≤a,a≤5(a、a∈Z)�,T为平面上一整点集,对S中任一点P,总存在T中不同于P的一点Q,使得线段PQ上除点P、Q外无其它的整点.问T的元素个数最少为多少?(陈永高供题)6.设集合M={1,2,⋯,19},A={a1,a2,⋯,a k}⊆M.求最小的k,使得对任意的a∈M,存在a i、a j∈A,满足a=a i或a=a i±a j(a i、a j 可以相同).(李胜宏供题)7.设x i>0(i=1,2,⋯,n),k≥1.求证:∑11+x i n i=1⋅∑x i n i=1≤∑x i k+11+x i n i=1⋅∑1x i k n i=1. (陈伟固供题)8.设p为大于3的质数,求证:存在若干个整数a1,a2,⋯,a t满足条件−p2<a1<a2<⋯<a t<p2,使得乘积p−a1|a1|⋅p−a2|a2|⋅⋯⋅p−a t|a t|是3的某个正整数次幂.(纪春岗供题)2007年女子数学奥林匹克1.设m为正整数,如果存在某个正整数n,使得m可以表示为n和n的正约数个数(包括1和自身)的商,则称m是“好数”.求证:(1)1,2,⋯,17都是好数;(2)18不是好数.(李胜宏供题)2.设△ABC是锐角三角形,点D、E、F分别在边BC、CA、AB上,线段AD、BE、CF经过△ABC的外心O.已知以下六个比值AC CA、AA AA、AH HA、AH HA、AA AA、AC CA中至少有两个是整数.求证:△ABC是等腰三角形.(冯祖明供题)3.设整数n(n>3),非负实数a1,a2,⋯,a n满足a1+a2+⋯+a n=2.求a1a22+1+a2a32+1+⋯+a n a12+1的最小值.(朱华伟供题)4.平面内n(n≥3)个点组成集合S,P是此平面内m条直线组成的集合,满足S关于P中每一条直线对称.求证:m≤n,并问等号何时成立?(边红平供题)5.设D是△ABC内的一点,满足∠BAA=∠BAA=30°,∠BBA=60°,E是边BC的中点,F是边AC的三等分点,满足AF=2FC.求证:BD⊥DB.(叶中豪供题)6.已知a、a、b≥0,a+a+b=1.求证:�a+14(a−b)2+√a+√b≤√3(李伟固供题)7.给定绝对值都不大于10的整数a、b、c,三次多项式f(x)=x3+ ax2+ax+b满足条件�f(2+√3)�<0.0001.问:2+√3是否一定是这个多项式的根?(张景中供题)8.n个棋手参加象棋比赛,每两个棋手比赛一局.规定:胜者得1分,负者得0分,平局得0.5分.如果赛后发现任何m个棋手中都有一个棋手胜了其余m-1个棋手,也有一个棋手输给了其余m-1个棋手,就称此赛况具有性质P(m).对给定的m(m≥4),求n的最小值f(m),使得对具有性质P(m)的任何赛况,都有所有n名棋手的得分各不相同.(王建伟供题)2008年女子数学奥林匹克1.(1)问能否将集合�1,2,⋯,96�表示为它的32个三元子集的并集,且每个三元子集的元素之和都相等;(2)问能否将集合�1,2,⋯,99�表示为它的33个三元子集的并集,且每个三元子集的元素之和都相等.(刘诗雄供题)2.已知式系数多项式ϕ(x)=ax3+ax2+bx+d有三个正根,且ϕ(0)<0.求证:2a3+9a2d−7aab≤0. (朱华伟供题)3.求最小常数a(a>1),使得对正方形ABCD内部任一点P,都存在△P AB、△PBC、△PCD、△PDA中的某两个三角形,其面积之比属于区间�a−1,a�.(李伟固供题)4.在凸四边形ABCD的外部分别作正△ABQ、△BCR、△CDS、△DAP,记四边形ABCD的对角线的和为x,四边形PQRS的对角线中点连线的和为y.求y x的最大值.(熊斌供题)5.如图1,已知凸四边形ABCD满足AB=BC,AD=DA,E、F分别是线段AB、AD上一点,满足B、E、F、D四点共圆,作△DPE顺向相似于△ADC,作△BQF顺向相似于△ABC.求证:A、P、Q三点共线.图1 注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.(叶中豪 供题)6. 设正数列x 1,x 2,⋯,x n ,⋯满足(8x 2−7x 1)x 17=8及x k+1x k−1−x k 2=x k−18−x k 8(x k x k−1)7(k ≥2).求正实数a ,使得当x 1>a 时,有单调性x 1>x 2>⋯>x n >⋯,当0<x 1<a 时,不具有单调性. (李胜宏 供题)7. 给定一个2008×2008的棋盘,棋盘上每个小方格的颜色均不相同.在棋盘的每一个小方格中填入C 、G 、M 、O 这4个字母中的一个,若棋盘中每一个2×2的小棋盘中都有C 、G 、M 、O 这4个字母,则称这个棋盘为“和谐棋盘”,问有多少种不同的和谐棋盘?(冯祖明 供题)8. 对于正整数n ,令f n =�2n √2008�+[2n √2009].求证:数列f 1,f 2,⋯中有无穷多个奇数和无穷多个偶数([x ]表示不超过实数x 的最大整数).(冯祖明 供题)B2009年女子数学奥林匹克1. 求证:方程aab =2009(a +a +b )只有有限组正整数解(a,b,c).(梁应德 供题)2. 如图1,在△ABC 中,∠BAA =90°,点E 在△ABC 的外接圆圆Γ的弧BC (不含点A )内,AE >EC .连结EC 并延长至点F ,使得∠DAA =∠AAB ,连结BF 交圆Γ于点D ,连结ED ,记△DEF 的外心为O .求证:A 、C 、O 三点共线.图1 (边红平 供题)3. 在平面直角坐标系中,设点集�P 1,P 2,⋯,P 4n+1�=�(x ,y )�x 、y 为整数,|x |≤n ,|y |≤n ,xy =0�,其中,n ∈N +.求(P 1P 2)2+(P 2P 3)2+⋯+(P 4n P 4n+1)2+(P 4n+1P 1)2的最小值.(王新茂 供题)4. 设平面上有n (n ≥4)个点V 1,V 2,⋯,V n ,任意三点不共线,某些点之间连有线段.把标号分别为1,2,⋯,n 的n 枚棋子放置在这n 个点处,每个点处恰有一枚棋子.现对这n 枚棋子进行如下操作:每B次选取若干枚棋子,将它们分别移动到与自己所在点有线段相连的另一个点处;操作后每点处仍恰有一枚棋子,并且没有两枚棋子在操作前后交换位置.若一种连线段的方式使得无论开始时如何放置这n 枚棋子,总能经过有限次操作后,使每个标号为k (k =1,2,⋯,n )的棋子在点V k 处,则称这种连线段的方式为“和谐的”.求在所有和谐的连线段的方式中,线段数目的最小值. (付云皓 供题)5. 设实数xyz 大于或等于1.求证:(x 2−2x +2)(y 2−2y +2)(z 2−2z +2)≤(xyz )2−2xyz +2 (熊 斌 供题)6. 如图2,圆Γ1、Γ2内切于点S ,圆Γ2的弦AB 与圆Γ1切于点C ,M 是弧AB (不含点S )的中点,过点M 作MN ⊥AB ,垂足为N .记圆Γ1的半径为r .求证:AA ⋅AB =2rMN .图2 (叶中豪 供题)7. 在一个10×10的方格表中有一个有4n 个1×1的小方格组成的图形,它既可被n 个“”型的图形覆盖,也可被n 个“”或“”型(可以旋转)的图形覆盖.求正整数n的最小值.(朱华伟供题)8.设a n=n√5−�n√5�.求数列a1,a2,⋯,a2009中的最大项和最小项,其中,[x]表示不超过实数x的最大整数.(王志雄供题)2010年女子数学奥林匹克1. 给定整数n (n ≥3),设A 1,A 2,⋯,A 2n 是集合�1,2,⋯,n�的两两不同的非空子集,记A 2n+1=A 1.求∑|A i ∩A i+1||A i |⋅|A i+1|2n i=1的最大值.(梁应德 供题)2. 如图1,在△ABC 中,AB =AA ,D 是边BC 的中点,E 是在△ABC 外一点,满足AD ⊥AB ,BD =BB .过线段BE 的中点M 作直线MB ⊥BD ,交△ABD 的外接圆的劣弧AD 于点F .求证:DB ⊥BB .图1 (郑焕 供题)3. 求证:对于每个正整数n ,都存在满足下面三个条件的质数p 和整数m :(1)i ≡5(mmd 6);(2)i ∤n ;(3)n ≡m 3(mmd i ).(付云皓 供题) 4. 设实数x 1,x 2,⋯,x n 满足∑x i 2=1(n ≥2)n i=1.求证:∑(1−k ∑ix i 2n i=1)2x k 2k n k=1≤(n−1n+1)2∑x k 2k n k=1,并确定等号成立的条件.(李胜宏供题)5.已知f(x)、g(x)都是定义在R上递增的一次函数,f(x)为整数当且仅当g(x)为整数.证明:对一切x∈R,f(x)−g(x)为整数.(刘诗雄供题)6.如图2,在锐角△ABC中,AB>AA,M为边BC的中点,∠BAA的外角平分线交直线BC于点P.点K、F在直线P A上,使得MB⊥BA,MM⊥PA.求证:BC2图2(边红平供题)7.给定正整数n(n≥3).对于1,2,⋯,n的任意一个排列P=(x1,x2,⋯,x n),若i<j<k,则称x j介于x i和x k之间(如在排列(1,3,2,4)中,3介于1和4之间,4不介于1和2之间).设集合S={P1,P2,⋯,P m}的每个元素P i(1≤i≤m)中都不介于另外两个数之间.求m的最大值.(冯祖鸣供题)8.试求满足下列条件的大于5的最小奇数a:存在正整数m1、n1、m2、n2,使得a=m12+n12,a2=m22+n22,且m1−n1=m2−n2.(朱华伟供题)2011年女子数学奥林匹克1.求出所有的正整数n,使得关于x,y的方程1x+1y=1n恰有2011组满足x≤y的正整数解(x,y) .(熊斌供题)2.如图1,在四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MB⋅AB=NB⋅AB, BQ⋅BP=AQ⋅AP,求证:PQ垂直于BC.图1(郑焕供题)3.设正数a,a,b,d满足aabd=1,求证:1+1+1+1+9≥25(朱华伟供题)4.有n(n≥3)名乒乓球选手参加循环赛,每两名选手之间恰好比赛一次(比赛无平局).赛后发现,可以将这些选手排成一圈,使得对于任意三名选手A,B,C,若A,B在圈上相邻,则A,B中至少有一人战胜了C,求n的所有可能值.(付云皓供题)5.给定非负实数a,求最小实数f=f(a),使得对任意复数,Z1,Z2和实数x(0≤x≤1),若|Z1|≤a|Z1−Z2|,则|Z1−xZ2|≤f|Z1−Z2|.(李胜宏供题)6.是否存在正整数m,n,使得m20+11n是完全平方数?请予以证明.(袁汉辉供题)7.从左到右编号为B1,B2,⋯,B n的n个盒子共装有n个小球,每次可以选择一个盒子B k,进行如下操作:若k=1且B1中至少有1个小球,则可从B1中移1个小球至B2中;若k=n,且B n中至少有1个小球,则可从B n中移1个小球至B n-1中,若2≤k≤n-1且B k中至少有2个小球,则可从B k中分别移1个小球至B k-1和B k+1中,求证:无论初始时这些小球如何放置,总能经过有限次操作使得每个盒子中恰有1个小球.(王新茂供题)8. 如图2,已知⊙O 为△ABC 中BC 边上的旁切圆,点D 、E 分别在线段AB 、AC 上,使得BD ∥BA .⊙O 1为△ADE 的内切圆,O 1B 交DO 于点F ,O 1C 交EO 于点G .⊙O 切BC 于点M .⊙O 1切DE 于点N .求证:MN 平分线段FG .图2 (边红平 供题)A2012年女子数学奥林匹克1.设a1,a2,⋯,a n为非负实数,求证:11+a1+a1(1+a1)(1+a2)+⋯+ a1a2⋯a n−1(1+a1)(1+a2)⋯(1+a n)≤1.2.如图1所示,圆O1和O2外切于点T,点A、E在圆O1上,AB切圆O2于点B,ED切圆O2于点D,直线BD、AE交于点P.(1)求证:AB⋅DT=AT⋅DB;(2)求证:∠ATP+∠DTP=180°Array图13.求所有整数对(a,b),使得存在整数d>1,对任意的正整数n,都有d|a n+a n+1.4.在正十三边形的13个顶点上各摆放一枚黑子或者白子,一次操作是指将两枚棋子的位置交换.求证:无论开始时棋子是如何摆放的,总可以至多操作一次,使得各个棋子的颜色关于正十三边形的某一条对称轴是对称的.5.如图2所示,在△ABC中,I为内切圆圆心,D、E分别为AB、AC边上的切点,O为△BIC的外心,求证:∠OBB=∠ODA.图26. 某个国家有n (n ≥3)个城市,每两个城市间都有一条双向航线.这个国家有两个航空公司,每条航线由一家公司经营.一个女数学家从某个城市出发,经过至少两个其它城市,回到出发地.如果无论怎样选择出发城市和路径,都无法只乘坐一家公司的航班,求n 的最大值.7. 有一个无穷项的正整数数列a 1≤a 2≤a 3≤⋯.已知存在正整数k和r ,使得r a r =k +1,求证:存在正整数s ,使得s a s =k .8. 集合{0,1,2,⋯,2012}中有多少个元素k ,使得A 2012k 是2012的倍数.B。
2008年全国数学奥赛

2008年全国初中数学竞赛试题及参考答案一、选择题(共5小题,每小题6分,满分30分,以下每道小题均给出了代号为A 、B 、C 、D 的四个选项,期中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、已知实数x ,y 满足42423x x-=,423y y +=,则444y x +的值为( )。
A 、7 B 、1132+ C 、7132+ D 、5 [答]A解:因为2x >0,2y ≥0,由已知条件得212444311344x ++⨯⨯+==,2114311322y -++⨯-+==, 所以 444y x +=2222223367y y x x++-=-+=2、把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( )。
A 、512B 、49C 、1736D 、12 [答]C解:基本事件总数有6×6=36,即可以得到36个二次函数,由题意知 △=24m n ->0,即24m n通过枚举知,满足条件的m ,n 有17对,故1736p =3、有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( )。
A 、6条B 、8条C 、10条D 、12条[答]B解:如图,大圆周上有4个不同的点 A 、B 、C 、D ,两两连线可以确定6条不同的直线;小圆周上的两个点E 、F 中,至少有一个不是四边形ABCD 的对角线AC 与 BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线,从而这6个点可以确定的直线不少于8条。
当这6个点如图所示放置时,恰好可以确定8条直线,所以,满足条件的6个点可以确定的直线最少有8条。
4、已知AB 是半径为1的圆O 的一条弦,且AB =a <1,以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB =AB =a ,DC 的延长线交圆O 于点E ,则AE 的长为( )。
历届女子数学奥林匹克试题

目录2002年女子数学奥林匹克 (1)2003年女子数学奥林匹克 (3)2004年女子数学奥林匹克 (5)2005年女子数学奥林匹克 (7)2006年女子数学奥林匹克 (9)2007年女子数学奥林匹克 (11)2008年女子数学奥林匹克 (13)2009年女子数学奥林匹克 (16)2010年女子数学奥林匹克 (19)2011年女子数学奥林匹克 (21)2012年女子数学奥林匹克 (24)2002年女子数学奥林匹克1.求出所有的正整数n,使得20n+2能整除2003n+2002.2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次.(1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数.3.试求出所有的正整数k,使得对任意满足不等式k(aa+ab+ba)>5(a2+a2+b2)4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC.5.设P1,P2,⋯,P n(n≥2)是1,2,⋯,n的任意一个排列.求证:1P1+P2+1P2+P3+⋯+1P n−2+P n−1+1P n−1+P n>n−1n+2.6.求所有的正整数对(x,y),满足x y=y x−y.7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半.8.设A1,A2,⋯,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,⋯,A8在该直线上的摄影分别是P1,P2,⋯,P8.如果这8个射影两两不重合,以直线l的方向依次排列为P i1,P i2,⋯,P i8,这样,就得到了1,2,…,8的一个排列i1,i2,⋯,i8(在图1中,此排列为2,1,8,3,7,4,6,5).设这8个点对平面上所有有向直线作射影后,得到的不同排列的个数为N8=N(A1,A2,⋯88的最大值.图12003年女子数学奥林匹克1. 已知D 是△ABC 的边AB 上的任意一点,E 是边AC 上的任意一点,连结DE ,F 是线段DE 上的任意一点.设AC AA =x ,AA AA =y ,CH CA =z .证明: (1) S △ACH =(1−x )yzS △AAA ,S △AAH =x (1−y )(1−z )S △AAA ;(2) �S △ACH 3+�S △AAH 3≤�S △AAA 3.2. 某班有47个学生,所用教室有6排,每排有8个座位,用(i ,j )表示位于第i 排第j 列的座位.新学期准备调整座位,设某学生原来的座位为(i ,j ),如果调整后的座位为(m ,n ),则称该生作了移动[a ,a ]=[i −m ,j −n ],并称a +b 为该生的位置数.所有学生的位置数之和记为S .求S 的最大可能值与最小可能值之差.3. 如图1,ABCD 是圆内接四边形,AC 是圆的直径,BB ⊥AA ,AC 与BD 的交点为E ,F 在DA 的延长线上.连结BF ,G 在BA 的延长线上,使得BD ∥BB ,H 在GF 的延长线上,AC ⊥DB .证明:B 、E 、F 、H 四点共圆.图14.(1)证明:存在和为1的5个非负实数a、b、c、d、e,使得将它们任意放置在一个圆周上,总有两个相邻数的乘积不小于19;(2)证明:对于和为1的任意玩个非负实数a、b、c、d、e,总可以将它们适当放置在一个圆周上,且任意相邻两数的乘积均不大于19.5.数列{a n}定义如下:a1=2,a n+1=a n2−a n+1,n=1,2,⋯.证明:1−120032003<1a1+1a2+⋯+1a2003<1.6.给定正整数n(n≥2).求最大的实数λ,使得不等式a n2≥λ(a1+a2+⋯+a n−1)+2a n对任意满足a1<a2⋯<a n的正整数a1,a2,⋯,a n均成立.7.设△ABC的三边长分别为AB=b、BA=a、AA=a,a、b、c互不相等,AD、BE、CF分别为△ABC的三条内角平分线,且DE=DF.证明:(1)a b+c=b c+a+c a+b;(2)∠BAA>90°.8.对于任意正整数n,记n的所有正约数组成的集合为S n.证明:S n中至多有一半元素的个位数为3.2004年女子数学奥林匹克1.如果存在1,2,⋯,n的一个排列a1,a2,⋯,a n,使得k+a k(k=1,2,⋯,n)都是完全平方数,则称n为“好数”.问:在集合{11,13,15,17,19}中,哪些是“好数”,哪些不是“好数”?说明理由.(苏淳供题)2.设a、b、c为正实数.求a+3c a+2b+c+4b a+b+2c−8c a+b+3c的最小值.(李胜宏供题)3.已知钝角△ABC的外接圆半径为1.证明:存在一个斜边长为√2+1的等腰直角三角形覆盖△ABC.(冷岗松供题)4.一副三色纸牌,共有32张,其中红黄蓝每种颜色的牌各10张,编号分别是1,2,⋯,10;另有大小王牌各一张,编号均为0.从这副牌中任取若干张牌,然后按如下规则计算分值:每张编号为k的牌记为2k分.若它们的分值之和为2004,则称这些牌为一个“好牌组”.试求“好牌组”的个数.(陶平生供题)5.设u、v、w为正实数,满足条件u√vv+v√vu+v√uv≥1.试求u+v+v的最小值. (陈永高供题)6.给定锐角△ABC,点O为其外心,直线AO交边BC于点D.动点E、F分别位于边AB、AC上,使得A、E、D、F四点共圆.求证:线段EF在边BC上的投影的长度为定值.(熊斌供题)7.已知p、q为互质的正整数,n为非负整数.问:有多少个不同的整数可以表示为ii+jj的形式,其中i,j为非负整数,且i+j≤n.(李伟固供题)8.将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置多少个互不重叠的“十字形”(每个“十字形”恰好盖住棋盘上的5个小方格)?(冯祖明供题)2005年女子数学奥林匹克1.如图1,点P在△ABC的外接圆上,直线CP、AB相交于点E,直线BP、AC相交于点F,边AC的垂直平分线与边AB相交于点J,边AB的垂直平分线与边AC相交于点K.求证:AA2AH=AA⋅AA AA⋅AH.图1(叶中豪供题)2.求方程组�5�x+1x�=12�y+1y�=13(z+1z)xy+yz+zx=1,的所有实数解.(朱华伟供题)3.是否存在这样的凸多面体,它共有8个顶点、12条棱和6个面,并且其中有4个面,每两个面都有公共棱?(苏淳供题)4.求出所有的正实数a,使得存在正整数n及n个互不相交的无限整数集合A1,A2,⋯,A n满足A1∪A2∪⋯∪A n=Z,而且对于每个A i中的任意两数b>c,都有a−b≥a i.(袁汉辉供题)5.设正实数x、y满足x3+y3=x−y.求证:x2+4y2<1. (熊斌供题)6.设正整数n(n≥3).如果在平面上有n个格点P1,P2,⋯,P n满足:当�P i P j�为有理数时,存在P k,使得|P i P k|和�P j P k�均为无理数;当�P i P j�为无理数时,存在P k,使得|P i P k|和�P j P k�均为有理数,那么,称n是“好数”.(1)求最小的好数;(2)问:2005是否为好数(冯祖明供题)7.设m、n是整数,m>n≥2,S=�1,2,⋯,m�,T=�a1,a2,⋯,a n�是S的一个子集.已知T中的任两个数都不能同时整除S中的任何一个数.求证:1a1+1a2+⋯+1a n<m+n m. (张同君供题)8.给定实数a、b(a>a>0),将长为a、宽为b的矩形放入一个正方形内(包含边界).问正方形的边至少为多长?(陈永高供题)2006年女子数学奥林匹克1.设a>0,函数f:(0,+∞)→R满足f(a)=1.如果对任意正实数x、y,有f(x)f(y)+f�a x�f�a y�=2f(xy),求证:f(x)为常数.(朱华伟供题)2.设凸四边形ABCD的对角线交于点O.△OAD、△OBC的外接圆交于点O、M,直线OM分别交△OAB、△OCD的外接圆于点T、S.求证:M是线段TS的中点.(叶中豪供题)3.求证:对i=1,2,3,均有无穷多个正整数n,使得n,n+2,n+28中恰有i个可表示为三个正整数的立方和.(袁汉辉供题)4.8个人参加一次聚会.(1)如果其中任何5个人中都有3个人两两认识,求证:可以从中找出4个人两两认识;(2)试问:如果其中任何6个人中都有3个人两两认识,那么是否一定可以找出4个人两两认识?(苏淳供题)5.平面上整点集S=�(a,a)�1≤a,a≤5(a、a∈Z)�,T为平面上一整点集,对S中任一点P,总存在T中不同于P的一点Q,使得线段PQ上除点P、Q外无其它的整点.问T的元素个数最少为多少?(陈永高供题)6.设集合M={1,2,⋯,19},A={a1,a2,⋯,a k}⊆M.求最小的k,使得对任意的a∈M,存在a i、a j∈A,满足a=a i或a=a i±a j(a i、a j 可以相同).(李胜宏供题)7.设x i>0(i=1,2,⋯,n),k≥1.求证:∑11+x i n i=1⋅∑x i n i=1≤∑x i k+11+x i n i=1⋅∑1x i k n i=1. (陈伟固供题)8.设p为大于3的质数,求证:存在若干个整数a1,a2,⋯,a t满足条件−p2<a1<a2<⋯<a t<p2,使得乘积p−a1|a1|⋅p−a2|a2|⋅⋯⋅p−a t|a t|是3的某个正整数次幂.(纪春岗供题)2007年女子数学奥林匹克1.设m为正整数,如果存在某个正整数n,使得m可以表示为n和n的正约数个数(包括1和自身)的商,则称m是“好数”.求证:(1)1,2,⋯,17都是好数;(2)18不是好数.(李胜宏供题)2.设△ABC是锐角三角形,点D、E、F分别在边BC、CA、AB上,线段AD、BE、CF经过△ABC的外心O.已知以下六个比值AC CA、AA AA、AH HA、AH HA、AA AA、AC CA中至少有两个是整数.求证:△ABC是等腰三角形.(冯祖明供题)3.设整数n(n>3),非负实数a1,a2,⋯,a n满足a1+a2+⋯+a n=2.求a1a22+1+a2a32+1+⋯+a n a12+1的最小值.(朱华伟供题)4.平面内n(n≥3)个点组成集合S,P是此平面内m条直线组成的集合,满足S关于P中每一条直线对称.求证:m≤n,并问等号何时成立?(边红平供题)5.设D是△ABC内的一点,满足∠BAA=∠BAA=30°,∠BBA=60°,E是边BC的中点,F是边AC的三等分点,满足AF=2FC.求证:BD⊥DB.(叶中豪供题)6.已知a、a、b≥0,a+a+b=1.求证:�a+14(a−b)2+√a+√b≤√3(李伟固供题)7.给定绝对值都不大于10的整数a、b、c,三次多项式f(x)=x3+ ax2+ax+b满足条件�f(2+√3)�<0.0001.问:2+√3是否一定是这个多项式的根?(张景中供题)8.n个棋手参加象棋比赛,每两个棋手比赛一局.规定:胜者得1分,负者得0分,平局得0.5分.如果赛后发现任何m个棋手中都有一个棋手胜了其余m-1个棋手,也有一个棋手输给了其余m-1个棋手,就称此赛况具有性质P(m).对给定的m(m≥4),求n的最小值f(m),使得对具有性质P(m)的任何赛况,都有所有n名棋手的得分各不相同.(王建伟供题)2008年女子数学奥林匹克1.(1)问能否将集合�1,2,⋯,96�表示为它的32个三元子集的并集,且每个三元子集的元素之和都相等;(2)问能否将集合�1,2,⋯,99�表示为它的33个三元子集的并集,且每个三元子集的元素之和都相等.(刘诗雄供题)2.已知式系数多项式ϕ(x)=ax3+ax2+bx+d有三个正根,且ϕ(0)<0.求证:2a3+9a2d−7aab≤0. (朱华伟供题)3.求最小常数a(a>1),使得对正方形ABCD内部任一点P,都存在△P AB、△PBC、△PCD、△PDA中的某两个三角形,其面积之比属于区间�a−1,a�.(李伟固供题)4.在凸四边形ABCD的外部分别作正△ABQ、△BCR、△CDS、△DAP,记四边形ABCD的对角线的和为x,四边形PQRS的对角线中点连线的和为y.求y x的最大值.(熊斌供题)5.如图1,已知凸四边形ABCD满足AB=BC,AD=DA,E、F分别是线段AB、AD上一点,满足B、E、F、D四点共圆,作△DPE顺向相似于△ADC,作△BQF顺向相似于△ABC.求证:A、P、Q三点共线.图1 注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.(叶中豪 供题)6. 设正数列x 1,x 2,⋯,x n ,⋯满足(8x 2−7x 1)x 17=8及x k+1x k−1−x k 2=x k−18−x k 8(x k x k−1)7(k ≥2).求正实数a ,使得当x 1>a 时,有单调性x 1>x 2>⋯>x n >⋯,当0<x 1<a 时,不具有单调性. (李胜宏 供题)7. 给定一个2008×2008的棋盘,棋盘上每个小方格的颜色均不相同.在棋盘的每一个小方格中填入C 、G 、M 、O 这4个字母中的一个,若棋盘中每一个2×2的小棋盘中都有C 、G 、M 、O 这4个字母,则称这个棋盘为“和谐棋盘”,问有多少种不同的和谐棋盘?(冯祖明 供题)8. 对于正整数n ,令f n =�2n √2008�+[2n √2009].求证:数列f 1,f 2,⋯中有无穷多个奇数和无穷多个偶数([x ]表示不超过实数x 的最大整数).(冯祖明 供题)B2009年女子数学奥林匹克1. 求证:方程aab =2009(a +a +b )只有有限组正整数解(a,b,c).(梁应德 供题)2. 如图1,在△ABC 中,∠BAA =90°,点E 在△ABC 的外接圆圆Γ的弧BC (不含点A )内,AE >EC .连结EC 并延长至点F ,使得∠DAA =∠AAB ,连结BF 交圆Γ于点D ,连结ED ,记△DEF 的外心为O .求证:A 、C 、O 三点共线.图1 (边红平 供题)3. 在平面直角坐标系中,设点集�P 1,P 2,⋯,P 4n+1�=�(x ,y )�x 、y 为整数,|x |≤n ,|y |≤n ,xy =0�,其中,n ∈N +.求(P 1P 2)2+(P 2P 3)2+⋯+(P 4n P 4n+1)2+(P 4n+1P 1)2的最小值.(王新茂 供题)4. 设平面上有n (n ≥4)个点V 1,V 2,⋯,V n ,任意三点不共线,某些点之间连有线段.把标号分别为1,2,⋯,n 的n 枚棋子放置在这n 个点处,每个点处恰有一枚棋子.现对这n 枚棋子进行如下操作:每B次选取若干枚棋子,将它们分别移动到与自己所在点有线段相连的另一个点处;操作后每点处仍恰有一枚棋子,并且没有两枚棋子在操作前后交换位置.若一种连线段的方式使得无论开始时如何放置这n 枚棋子,总能经过有限次操作后,使每个标号为k (k =1,2,⋯,n )的棋子在点V k 处,则称这种连线段的方式为“和谐的”.求在所有和谐的连线段的方式中,线段数目的最小值. (付云皓 供题)5. 设实数xyz 大于或等于1.求证:(x 2−2x +2)(y 2−2y +2)(z 2−2z +2)≤(xyz )2−2xyz +2 (熊 斌 供题)6. 如图2,圆Γ1、Γ2内切于点S ,圆Γ2的弦AB 与圆Γ1切于点C ,M 是弧AB (不含点S )的中点,过点M 作MN ⊥AB ,垂足为N .记圆Γ1的半径为r .求证:AA ⋅AB =2rMN .图2 (叶中豪 供题)7. 在一个10×10的方格表中有一个有4n 个1×1的小方格组成的图形,它既可被n 个“”型的图形覆盖,也可被n 个“”或“”型(可以旋转)的图形覆盖.求正整数n的最小值.(朱华伟供题)8.设a n=n√5−�n√5�.求数列a1,a2,⋯,a2009中的最大项和最小项,其中,[x]表示不超过实数x的最大整数.(王志雄供题)2010年女子数学奥林匹克1. 给定整数n (n ≥3),设A 1,A 2,⋯,A 2n 是集合�1,2,⋯,n�的两两不同的非空子集,记A 2n+1=A 1.求∑|A i ∩A i+1||A i |⋅|A i+1|2n i=1的最大值.(梁应德 供题)2. 如图1,在△ABC 中,AB =AA ,D 是边BC 的中点,E 是在△ABC 外一点,满足AD ⊥AB ,BD =BB .过线段BE 的中点M 作直线MB ⊥BD ,交△ABD 的外接圆的劣弧AD 于点F .求证:DB ⊥BB .图1 (郑焕 供题)3. 求证:对于每个正整数n ,都存在满足下面三个条件的质数p 和整数m :(1)i ≡5(mmd 6);(2)i ∤n ;(3)n ≡m 3(mmd i ).(付云皓 供题) 4. 设实数x 1,x 2,⋯,x n 满足∑x i 2=1(n ≥2)n i=1.求证:∑(1−k ∑ix i 2n i=1)2x k 2k n k=1≤(n−1n+1)2∑x k 2k n k=1,并确定等号成立的条件.(李胜宏供题)5.已知f(x)、g(x)都是定义在R上递增的一次函数,f(x)为整数当且仅当g(x)为整数.证明:对一切x∈R,f(x)−g(x)为整数.(刘诗雄供题)6.如图2,在锐角△ABC中,AB>AA,M为边BC的中点,∠BAA的外角平分线交直线BC于点P.点K、F在直线P A上,使得MB⊥BA,MM⊥PA.求证:BC2图2(边红平供题)7.给定正整数n(n≥3).对于1,2,⋯,n的任意一个排列P=(x1,x2,⋯,x n),若i<j<k,则称x j介于x i和x k之间(如在排列(1,3,2,4)中,3介于1和4之间,4不介于1和2之间).设集合S={P1,P2,⋯,P m}的每个元素P i(1≤i≤m)中都不介于另外两个数之间.求m的最大值.(冯祖鸣供题)8.试求满足下列条件的大于5的最小奇数a:存在正整数m1、n1、m2、n2,使得a=m12+n12,a2=m22+n22,且m1−n1=m2−n2.(朱华伟供题)2011年女子数学奥林匹克1.求出所有的正整数n,使得关于x,y的方程1x+1y=1n恰有2011组满足x≤y的正整数解(x,y) .(熊斌供题)2.如图1,在四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MB⋅AB=NB⋅AB, BQ⋅BP=AQ⋅AP,求证:PQ垂直于BC.图1(郑焕供题)3.设正数a,a,b,d满足aabd=1,求证:1+1+1+1+9≥25(朱华伟供题)4.有n(n≥3)名乒乓球选手参加循环赛,每两名选手之间恰好比赛一次(比赛无平局).赛后发现,可以将这些选手排成一圈,使得对于任意三名选手A,B,C,若A,B在圈上相邻,则A,B中至少有一人战胜了C,求n的所有可能值.(付云皓供题)5.给定非负实数a,求最小实数f=f(a),使得对任意复数,Z1,Z2和实数x(0≤x≤1),若|Z1|≤a|Z1−Z2|,则|Z1−xZ2|≤f|Z1−Z2|.(李胜宏供题)6.是否存在正整数m,n,使得m20+11n是完全平方数?请予以证明.(袁汉辉供题)7.从左到右编号为B1,B2,⋯,B n的n个盒子共装有n个小球,每次可以选择一个盒子B k,进行如下操作:若k=1且B1中至少有1个小球,则可从B1中移1个小球至B2中;若k=n,且B n中至少有1个小球,则可从B n中移1个小球至B n-1中,若2≤k≤n-1且B k中至少有2个小球,则可从B k中分别移1个小球至B k-1和B k+1中,求证:无论初始时这些小球如何放置,总能经过有限次操作使得每个盒子中恰有1个小球.(王新茂供题)8. 如图2,已知⊙O 为△ABC 中BC 边上的旁切圆,点D 、E 分别在线段AB 、AC 上,使得BD ∥BA .⊙O 1为△ADE 的内切圆,O 1B 交DO 于点F ,O 1C 交EO 于点G .⊙O 切BC 于点M .⊙O 1切DE 于点N .求证:MN 平分线段FG .图2 (边红平 供题)A2012年女子数学奥林匹克1.设a1,a2,⋯,a n为非负实数,求证:11+a1+a1(1+a1)(1+a2)+⋯+ a1a2⋯a n−1(1+a1)(1+a2)⋯(1+a n)≤1.2.如图1所示,圆O1和O2外切于点T,点A、E在圆O1上,AB切圆O2于点B,ED切圆O2于点D,直线BD、AE交于点P.(1)求证:AB⋅DT=AT⋅DB;(2)求证:∠ATP+∠DTP=180°Array图13.求所有整数对(a,b),使得存在整数d>1,对任意的正整数n,都有d|a n+a n+1.4.在正十三边形的13个顶点上各摆放一枚黑子或者白子,一次操作是指将两枚棋子的位置交换.求证:无论开始时棋子是如何摆放的,总可以至多操作一次,使得各个棋子的颜色关于正十三边形的某一条对称轴是对称的.5.如图2所示,在△ABC中,I为内切圆圆心,D、E分别为AB、AC边上的切点,O为△BIC的外心,求证:∠OBB=∠ODA.图26. 某个国家有n (n ≥3)个城市,每两个城市间都有一条双向航线.这个国家有两个航空公司,每条航线由一家公司经营.一个女数学家从某个城市出发,经过至少两个其它城市,回到出发地.如果无论怎样选择出发城市和路径,都无法只乘坐一家公司的航班,求n 的最大值.7. 有一个无穷项的正整数数列a 1≤a 2≤a 3≤⋯.已知存在正整数k和r ,使得r a r =k +1,求证:存在正整数s ,使得s a s =k .8. 集合{0,1,2,⋯,2012}中有多少个元素k ,使得A 2012k 是2012的倍数.B。
2008CMO试题及解答

2008中国数学奥林匹克解答第一天1. 设锐角 △ 的三边长互不相等. 为其外心, 点ABC O A ′在线段的延长线上, 使得 . 过点AO BA A CA A ′∠=∠′A ′分别作1A A AC ′⊥, 2A A AB ′⊥, 垂足分别为1A , . 作, 垂足为. 记△的外接圆半径为2A A AH BC ⊥A H 12A H A A A R , 类似地可得B R , C R . 求证:1112A B C R R R R++=, 其中R 为△的外接圆半径.(熊斌提供)ABC 证明 首先, 易知,,,A B O C ′四点共圆.事实上,作△BOC 的外接圆,设它与AO 相交于点P 不同于A ′,则,于是,△BPA BCO CBO CPA ∠=∠=∠=∠PA C ′≅△PA B ′,可得,故,矛盾。
A B A C ′′=AB AC =所以01802BCA BOA C ′′∠=∠=−∠, 1A CA C ′∠=∠.22cos sin A H A AA A AA C AC AA ′==∠=∠′, 22A A AH A ACB π′∠=∠=−∠. 所以△∽△. 同理, △∽△2A A AH A AC ′1A A H A A BA ′. 所以, 则21,A A A H A ACA A H A ABA ′′∠=∠∠=∠12212A A A H A A H A A H A A π∠=−∠−∠2ACA ABA π′′=−∠−∠22A A A ππ⎛⎞=∠+−∠=−∠⎜⎟⎝⎠.所以,1212122sin 2sin AA RR R A A A A R A A H A ∠==∠2sin 2sin R A RAA A AA ∠==′′∠. 作AA ′′⊥,垂足为A C ′A ′′,因为1ACA A CA C ′′′∠=∠=∠,所以,于是A AA AH ′′=()02sin cos cos sin 90ABC A AS AH AH AA AA AA C A a AA ′′′====′∠∠∠−∠ ,故()1cos cos 11cot cot sin sin A ABC a A A B C R S R B C R∠∠===−∠∠∠ ∠, 同理,()111cot cot B C A R R =−∠∠, ()111cot cot C A B R R=−∠∠, 注意到 cot cot cot cot cot cot 2A B B C C A ∠∠+∠∠+∠∠=,所以1112A B C R R R R++=. 2. 给定整数. 证明: 集合3n ≥{}21,2,3,,X n n =−L 能写成两个不相交的非空子集的并, 使得每一个子集均不包含个元素n 1212,,,,n n a a a a a a <<<L L , 满足112k k k a a a −+≤+−, .(冷岗松提供) 2,,1k n =L 证明 定义{}{}2221,,,1,,k k S k k k T k k k 2=−+=++L L , 1,2,,1k n =−L . 令, . 下面证明即为满足题目要求的两个子集.11n k k S S −==U 11n k k T −==U T ,S T 首先, S T =∅I , 且S T X =U .其次, 如果中存在个元素S n 1212,,,,,n n a a a a a a <<<L L 满足112k k k a a a −++≤, 2,,1k n =−L . 则11,2,,1k k k k a a a a k n −+−≤−=−L . (*)不妨设. 由于1i a S ∈1n S −n <, 故1i n <−. 这个数中至少有12,,,n a a a L n i n S n i −=−个在中. 根据抽屉原理, 必有某个中含有其中至少两个数, 设最小的一个为, 则1i S +ULU 1n S −)(j S i j n <<k a 1,k k j a a S +∈, 而11k j a S S 1−−∈ULU . 于是111k k j a a S j +−≤−=−, 111k k j a a T −−−≥+=j .所以11k k k k a a a a +−−<−, 与(*)矛盾.故中不存在个元素满足题中假设.S n 同理, 中亦不存在这样的个元素. 这表明即为满足题中要求的两个子集.T n ,S T3. 给定正整数n , 及实数1212,,n n x x x y y y ≤≤≤≥≥≥L L 满足11n ni ii i ix iy===∑∑.证明: 对任意实数α, 有[][]11n niii i x i y i αα==≥∑∑.这里, []β表示不超过实数β的最大整数.(朱华伟提供)证明1 我们先证明一个引理, 对任意实数x 和正整数n , 有[][]111.2n i n i n αα−=−≤∑ 引理证明 只需要将[][][]()i n i n ααα+−≤对1,2,,1i n =−L 求和即得. 回到原题, 我们采用归纳法对n 进行归纳, 当1n =时显然正确.假设时原命题成立, 考虑n k =1n k =+. 令1122,i i k i i k a x x b y y k k ++=+=+, 其中 显然我们有 , 并且通过计算得知, 由归纳假设知1,2,,.i =L k i12,k a a a ≤≤≤L 12k b b b ≥≥≥L 11k kii i ia ib===∑∑[][]11k kiii i a i b i αα==≥∑∑.又1k k 1x y ++≥, 否则若11k k x y +<+1, 则12112k k x x x y y y ++≤≤<≤≤≤L L 1111k k iii i ix iy++===,∑∑, 矛盾.≤从而[][]111k ki i i i x i a i αα+==−∑∑()[]1121k k i x k i kαα+=⎧⎫=+−⎡⎤⎨⎬⎣⎦⎩⎭∑ ()[][][]1111121,k k i k ki i i i y k i ky i b i αααα+=+==⎧⎫≥+−⎡⎤⎨⎬⎣⎦⎩⎭=−∑∑∑ 由此可得[][]1111k k i i i i x i y i αα++==≥∑∑. 由归纳法知原命题对任意正整数均成立.n证明2 记i i z x y i =−, 则120n z z z ≤≤≤≤L 且10ni i iz ==∑, 只需要证明[]10ni i z i α=≥∑. (1)令11221,,,n n n z z z z z 1−Δ=Δ=−Δ=−L , 则(11ii j j z i =)n =Δ≤≤∑, 所以11110n n i n i j i i j j i iz i i ======Δ=Δ∑∑∑∑∑nj j=,从而 121nnnj j i ji i===Δ=Δ∑∑∑i j. (2)于是[][][]1111nninn iji i j j i jz i i i ααα======Δ=Δ∑∑∑∑∑[]22nnn nn j j j i j j i ji i iα=====⎛⎞=Δ−Δ⎜⎟⎝⎠∑∑∑∑∑1i [][]21nnnnnnj j i j i ji ji i i i i i αα======⎛⎞=Δ⋅−⎜⎟⎝⎠∑∑∑∑∑∑1i , 故(1)转化为证明对任意的,2j n ≤≤[][]11n n n i ji j i i i i i αα===≥ni =∑∑∑∑. (3)而[][][][]11111111(3)j j j nn nn i ji ji i i i i i i i i i i i i αααα−−−−=======⇔≥⇔≥∑∑∑∑∑∑∑∑11j i =. 故只需要证明对任意的, 有 1k ≥ [][]11111k k k i i i i i i αα++===≥∑∑∑∑1ki i =,而上述不等式等价于[][]()[]()()11(1)211kki i k ki k i k i ααααα==+⋅≥⇔+−−+−≥⎡⎤⎡⎤⎣⎦⎣⎦∑∑0.注意到[][][]x y x y +≥+对任意实数,x y 成立, 上述不等式显然成立. 从而(3)得证.第二天4. 设A 是正整数集的无限子集, 是给定的整数. 已知: 对任意一个不整除n 的素数, 集合1n >p A 中均有无穷多个元素不被整除. (余红兵提供)p 证明: 对任意整数, 1m >(),m n 1=, 集合A 中均存在有限个不同元素, 其和满足(mod ), 且 (mod ).S 1S ≡m 0S ≡n 证明1 设p m α, 则集合A 中有一个无穷子集, 其中的元素都不被整除. 由抽屉原理知, 集合有一个无穷子集, 其中的元素都1A p 1A 2A a ≡(mod ), 是一个不被整除的数.mn a p 因(, 故),m n =1,mn p p αα⎛⎞1=⎜⎟⎝⎠. 由中国剩余定理, 同余方程组1(mod )0(mod x a p mn x p αα−⎧≡⎪⎨≡⎪⎩(1)有无穷多个整数解. 任取其中一个正整数解x , 并记p B 是中前2A x 项的集合, 则p B 中的元素之和, 再由(1)可知(mod )p S ax mn ≡1(mod )p S ax p α≡≡, 0(mod)p mnS p α≡. 设11k k m p p αα=L , 并设对每个(11)i p i k ≤≤−已选出了A 的有限子集i B , 其中11\i i B A B B −⊂∪∪L i , 使得B 中的元素和满足i p S , 1(mod )i i p i S p α≡0(modi ip imnS p α≡. (2) 考虑集合1ki i B B ==U , 则B 的元素和1ki i S ==S ∑. 根据(2), 我们有1(mod )i i S p α≡,(1i k ≤≤), 且0(mod )S n ≡.所以B 即满足题目要求.证明2 考虑A 中的数除以的余数, 设出现无穷多次的余数依次为mn 12,,,k αααL .首先证明(12,,,,1k m ααα)=L . (1) 反证法. 反设有某个素数()12,,,,k p m αααL , 则由(),1m n =知不整除; 又根据p n 12,,,k ααL α的定义, A 中只有有限个数不是p 的倍数, 这与题设矛盾.于是(1)获证. 从而存在正整数12,,,,k x x x L y , 使得11221k k x x x ym ααα+++−=L . 再取合适的正整数使得r 1(mod )rn m ≡. 则()()()1122k k rnx rnx rnx rn rmny ααα+++=+L .于是从A 中依次取出个模的余数为i rnx mn i α的数()1,2,,i =L k 即满足题目要求.5. 求具有如下性质的最小正整数: 将正边形的每一个顶点任意染上红, 黄, 蓝三种颜色之一, 那么这个顶点中一定存在四个同色点, 它们是一个等腰梯形的顶点.(冷岗松提供)n n n 解 所求的最小值为17.n 首先证明时, 结论成立.17n = 反证法. 反设存在一种将正17边形的顶点三染色的方法, 使得不存在4个同色顶点是某个等腰梯形的顶点.由于171163−⎡⎤+=⎢⎥⎣⎦, 故必存在某6个顶点染同一种颜色, 不妨设为黄色. 将这6个点两两连线, 可以得到2615C =条线段. 由于这些线段的长度只有1782⎡⎤=⎢⎥⎣⎦种可能, 于是必出现如下的两种情况之一:(1) 有某3条线段长度相同.注意到3 17, 不可能出现这3条线段两两有公共顶点的情况. 所以存在两条线段, 顶点互不相同. 这两条线段的4个顶点即满足题目要求, 矛盾.(2) 有7对长度相等的线段.由假设, 每对长度相等的线段必有公共的黄色顶点, 否则能找到满足题目要求的4个黄色顶点. 再根据抽屉原理, 必有两对线段的公共顶点是同一个黄色点. 这4条线段的另4个顶点必然是某个等腰梯形的顶点, 矛盾.所以, 时, 结论成立.17n =再对构造出不满足题目要求的染色方法. 用表示正边形的顶点(按顺时针方向), 16n ≤12,,,n A A A L n 12,,3M M M 分别表示三种颜色的顶点集.当时, 令16n ={}15813141,,,,6M A A A A A =,{}23671115,,,,M A A A A A =,{}312491012,,,,,M A A A A A A =. 对于1M , 到另4个顶点的距离互不相同, 而另4个点刚好是一个矩形的顶点. 类似于14A 1M , 可验证2M 中不存在4个顶点是某个等腰梯形的顶点. 对于3M , 其中6个顶点刚好是3条直径的顶点, 所以任意4个顶点要么是某个矩形的4个顶点, 要么是某个不等边4边形的4个顶点.当时,令15n ={}112358,,,,M A A A A A =,{}269131415,,,,M A A A A A =, {}347101112,,,,M A A A A A =, 每个i M 中均无4点是等腰梯形的顶点.当时, 令14n ={}11381014,,,,M A A A A A =,{}24571112,,,,M A A A A A =,{}326913,,,M A A A A =, 每个i M 中均无4点是等腰梯形的顶点.当时, 令13n ={}15671,,,0M A A A A =,{}2181112,,,M A A A A =,{}3234913,,,,M A A A A A =, 每个i M 中均无4点是等腰梯形的顶点.在上述情形中去掉顶点, 染色方式不变, 即得到13A 12n =的染色方法; 然后再去掉顶点, 即得到的染色方法; 继续去掉顶点, 得到的染色方法.12A 11n =11A 10n =当时, 可以使每种颜色的顶点个数小于4, 从而无4个同色顶点是某个等腰梯形的顶点.9n ≤上面构造的例子表明不具备题目要求的性质. 16n ≤总上所述, 所求的n 的最小值为17.6. 试确定所有同时满足223mod n n q p ++≡()n n , 223(mod )n n p q ++≡的三元数组(, 其中为奇素数, 为大于1的整数.(陈永高提供),,)p q n ,p q n 解 易见()均为满足要求的数组. 假设3,3,(2,3,)n n =L (),,p q n 为其它满足要求的一数组, 则. 不妨设.,3,p q p q ≠≠≠35q p >≥如果, 则2n =2443q p −, 即22222(3)(3q p p −+)2. 由于q 不同时整除和, 故223p −23p +2223q p −或2223q p +. 但22032p q <−<, 2221(3)2p p +<<2q , 矛盾.因此. 由3n ≥22223,3n n n n n n p q q p ++++−−知222223,3n n n n n n n n p p q q p q ++++++−+−2+.又, 为素数, 故p q <,p q 223n n n n n p q p q 2+++−+2. (1)因此得22232n n n n n n p q p q q +++≤+−<+, 从而22n p q <.由223n n n q p ++−及知3p >223n n n n q p p 2++≤−<+, 从而21nq p+<, 结合22n p q <有44232nnnp pp++<<. 因此43n n<+, 故3n =. 这样 3553553,3p q q p −−.且由易知. 由55532111−=××35p >3553p q −知53p q 5−. 由费马小定理知13p p p q −−1−, 因此(5,1)(5,1)3p p p q −−−.如果(, 则)5,11p −=3p q −, 由5543223443333353(mod 3q q q q q p q −=+⋅+⋅+⋅+≡×−) 以及知5p ≥p 5533q q −−. 因此33p q −. 由3553q p −知()5535553333q p p pq ≤−<=<,矛盾.所以()5,11p −≠, 即51p −, 类似可得5q 1−. 由 q 3p −(因)及7q p >≥3553q p −知55333p qp −−, 从而5534322333333p q p p p p p −≤=+⋅+⋅+⋅−43+.由51p −及51q −知, . 因此11p ≥31q ≥2343433331q p p p p p ⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟≤++++⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠44111381p p p<⋅≤−. 从而1344811p q ⎛⎞>⎜⎟⎝⎠. 因此3555224133334311118p q p q p q q p q +−⎛⎞<+<+<⎜⎟⎝⎠1,这与(1), 即335553p q p q +−矛盾.综上, 即为所有满足要求条件的三元数组.()3,3,(2,3,)n n =L。
2008年全国 初中数学联赛(含答案)

12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
2004年第3届中国女子数学奥林匹克(CGMO)真题及参考答案_wrapper

解:答案:15 个 首先证明最多可放 15 个“十字形”。用反证法,假设可放 16 个“十字形”。对每个“十 字形”,我们称其中心的方格为“心”(记为*)。将 10×11 的棋盘去掉周围一圈方格, 得到一个 8×9 的方格表,显然,每个“十字形”的“心”都只能出现在这个 8×9 的方 格表中。
E0M 0 F0 N 0
FN EM
. (2)
由(1),(2)得 E0 M 0 F0 N 0 E0 F0 M 0 N 0 (定值).
7
解:答案:如果记
A(
p,
q,
n)
(n 1)(n
第 3 届女子数学奥林匹克试题
第 3 届女子数学奥林匹克于 2004 年 8 月 11 日至 15 日在江西省南昌市举行,共有 45 个代表队的 179 名选手参加了此次竞赛,他们分别来自北京,上海等数十个城市以及美国, 俄罗斯,菲律宾,香港,澳门等国家和地区。竞赛共安排两天考试,每天四个小时,各考四 道题。通过竞赛,有 18 名选手获得金牌,39 名选手获得银牌,58 名选手获得铜牌。
k : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ak : 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 19 18 17
。
2 解:答案:最小值为 12 12 2
x a 2b c
令
y
a
b
2c
,则有
x
y
b,
现在,我们将 8×9 的方格表分为三个 8×3 的方格表,自左至右依次称它们为表(a), 表(b)和表(c)。由于 8×9 的方格表中共有 16 个“心”,所有必有一个 8×3 的方格 表中有 6 个“心” 如果在表(b)中有 6 个“心”,由于 8×3 的方格表中只有两种相互对称的放置 6 个“心” 的办法,故可不妨设 6 个“心”分布如下方左图:
2008年中国国家集训队选拔考试

q ≥2 p - 1.
三 、引理 1 若正整数集 N+ 中存在一个
无穷的等差数列 ,则结论成立.
事实上 ,设无穷序列 c1 < c2 < …< cn <
…是 一 个 N+ 中 的 红 色 的 等 差 数 列. 则 取
ai = c2 i - 1 ( i ∈N+ ) ,便得到一个满足要求的
无穷的红色正整数序列
二 、数列{ xn }定义为
x1 = 2 , x2 = 12 , xn + 2 = 6 xn + 1 - xn ( n = 1 ,2 , …) . 设 p 是一个奇质数 , q 是 xp 的一个质因 子. 证明 :若 q ≠2 ,3 ,则 q ≥2 p - 1.
(余红兵 提供)
三 、将每个正整数任意染红、蓝两色之
a2
、a2
+ 2
l 、l 同色 ,因此 ,可取
a3
=
l ;如此下
去 ,便得到一个满足要求的无穷的红色正整
数序列
a1
<
a1
+ 2
a2
<
a2
<
a2
+ 2
a3
<
a3
<
….
引理 3 若 N+ 中不存在无穷项的同色
的等差数列 ,且存在 i0 ∈N+ ,使得对任意 j ∈
N+
(j
>
i0 )
,得
i0
、i0 + 2
2i
+
1}
∞ n=
1
,它们的所有项都是
蓝色 ,但注意到它是一个等差数列 ,矛盾. 这
2008年第七届中国女子数学奥林匹克试题及解答

2008年第七届中国女子数学奥林匹克1.(a ) 问能否将集合{}1,2,,96 表示为它的32个三元子集的并集,且三元子集的元素之和都相等;(b ) 问能否将集合{}1,2,,99 表示为它的33个三元子集的并集,且三元子集的元素之和都相等.(刘诗雄供题)解:(a )不能.因为96(961)32|129648972⨯++++==⨯ .(b )能.每个三元集的元素和为129999(991)15033332+++⨯+==⨯ .将1,2,3,,66每两个一组,分成33个组,,每组两数之和可以排成一个公差为1的等差数列:150,349,,3334,+++ 266,465,,3251+++ .故如下33组数,每组三个数之和均相等:{}{}{}1,50,99,3,49,98,,33,34,83, {}{}{}2,66,82,4,65,81,,32,51,67. .注:此题的一般情况是设集合{}1,2,3,,3M n = 的三元子集族{},,i i i i A x y z =,1,2,i n = 满足12n A A A M ⋃⋃⋃= .记i i i s x y z =++,求所有的整数n ,使对任意,(1)i j i j n ≤≠≤,i j s s =.解:首先,|1233n n ++++ ,即3(31)2|312n n n n +⇒+.所以,n 为奇数.又当n 为奇数时,可将1,2,3,,2n 每两个一组,分成n 个组,每组两数之和可以排成一个公差为1的等差数列:111(),3(),,(1)22n n n n n n +-++++++ ;322,4(21),,(1)()2n n n n n +++--++.其通项公式为1121(1)1,2213[12(1)][2(1)].22k n n k n k k a n n n k n k k n ++⎧-+++-≤≤⎪⎪=⎨++⎪-+-++--≤≤⎪⎩ 易知93312k n a n k +++-=为一常数,故如下n 组数每组三个数之和均相等:1111,,3,3,,31,,,1,31222n n n n n n n n n n +-+⎧⎫⎧⎫⎧⎫++-++-⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭;332,2,31,,1,,2122n n n n n n n ++⎧⎫⎧⎫+--++⎨⎬⎨⎬⎩⎭⎩⎭.当n 为奇数时,依次取上述数组为12,,,n A A A ,则其为满足题设的三元子集族.故n 为所有的奇数.2.已知实系数多项式32()x ax bx cx d ϕ=+++有三个正根,且(0)0ϕ<.求证:322970b a d abc +-≤. ①证明:设实系数多项式32()x ax bx cx d ϕ=+++的三个正根分别为1x ,2x ,3x ,由韦达定理有123b x x x a++=-,122331c x x x x x x a++=,123d x x x a=-.由(0)0ϕ<,可得0d <,故0a >. 不等式①两边同除以3a ,不等式①等价于3729b c b d a a a a ⎛⎫⎛⎫⎛⎫-≤-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 31231223311231237()()2()9x x x x x x x x x x x x x x x ⇔++++≤+++, 2222223331213212331321232()x x x x x x x x x x x x x x x ⇔+++++≤++ ②因为1x ,2x ,3x 大于0,所以221212()()0.x x x x --≥也就是2233122112.x x x x x x +≤+同理22332233233223311331,.x x x x x x x x x x x x +≤++≤+三个不等式相加可得不等式②,当且仅当123x x x ==时不等式等号成立.3.求最小常数1a >,使得对正方形A B C D 内部任一点P ,都存在,,,P A B P B C P C D P D A ∆∆∆∆中的某两个三角形,使得它们的面积之比属于区间1[,]aa -.解:m i n 152a +=.首先证明m i n 152a +≤,记152ϕ+=.不妨设正方形边长为2.对正方形A B C D 内部一点P ,令1S ,2S ,3S ,4S 分别表示P A B ∆,P B C ∆,P C D ∆,P D A ∆的面积,不妨设1243S S S S ≥≥≥.令1224,S S S S λμ==,如果,λμϕ>,由13241S S S S +=+=,得221S S μ=-,得21S μμ=+.故2121111111S S λμλϕϕλμϕμϕ===>==++++,矛盾.故{}m in ,λμϕ≤,这表明m in a ϕ≤.反过来对于任意(1,)a ϕ∈,取定15(,)2t a +∈,使得2819tb t=>+.我们在正方形A B C D 内取点P ,使得12342,,,1b b S b S S S b tt====-,则我们有122315(,)2S S t a S S +==∈,3242,(1)4(1)S b b a S t b b =>>>--由此我们得到对任意{},1,2,3,4i j ∈,有1[,]i jS aa S-∉.这表明m in a ϕ=.4. 在凸四边形ABCD 的外部分别作正三角形ABQ ,正三角形BCR ,正三角形CDS ,正三角形DAP ,记四边形ABCD 的对角线之和为x ,四边形PQRS 的对边中点连线之和为y ,求y x的最大值.(熊斌供题)解:若四边形ABCD 是正方形时,可得y x132+=.下面证明:y x132+≤.设1111,,,P Q R S 分别是边DA ,AB ,BC ,CD 的中点,SP ,PQ ,QR ,RS 的中点分别为E ,F ,G ,H .则1111P Q R S 是平行四边形.连接11,P E S E ,设点M ,N 分别是DP ,DS 的中点,则11D S S N D N E M ===, 11D P P M M D E N ===,又113606060P D S P D S ∠=︒-︒-︒-∠240(180)60E N D E N D=︒-︒-∠=︒+∠11E N S E M P =∠=∠,所以 1111D P S M P E N E S ∆≅∆≅∆, 从而,△11E P S 是正三角形.同理可得,△11G Q R 也是正三角形.设U ,V 分别是11P S ,11Q R 的中点,于是有1111113322E G E U U V V G P S P Q Q R ≤++=++111113322P Q P S B D A C =+=+,同理可得 1322F H A C B D ≤+,把上面两式相加,得132y x +≤,即y x132+≤.5. 已知凸四边形ABCD 满足AB =BC ,AD =DC .E 是线段AB 上一点,F 是线段AD 上一点,满足B ,E ,F ,D 四点共圆.作△DPE 顺向相似于△ADC ;作△BQF 顺向相似于△ABC .求证:A ,P ,Q 三点共线.(叶中豪供题)(注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.) 证明将B 、E 、F 、D 四点所共圆的圆心记作O .联结OB 、OF 、BD .QPCABDEF在△BDF 中,O 是外心,故∠BOF =2∠BDA ; 又△ABD ∽△CBD ,故∠CDA =2∠BDA . 于是∠BOF =∠CDA =∠EPD ,由此可知等腰△BOF ∽△EPD . ①另一方面,由B 、E 、F 、D 四点共圆知△ABF ∽△ADE . ② 综合①,②可知,四边形ABOF ∽四边形ADPE , 由此得∠BAO =∠DAP . ③同理,可得∠BAO =∠DAQ . ④ ③,④表明A 、P 、Q 三点共线. 【附注】事实上,当四边形ABCD 不是菱形时,A 、P 、Q 三点共线 与B 、E 、F 、D 四点共圆互为充要条件.可利用同一法给予说明:取定E 点,考虑让F 点沿着直线 AD 运动.根据相似变换可知,这时Q 点的轨迹必是一条直线,它经 过P 点(由充分性保证).以下只要说明这条轨迹与直线AP 不重合即可,即只要论 证A 点不在轨迹上.为此,作△BAA ′∽△BQF ∽△ABC .于是由∠BAA ′=∠ABC , 可得A ′A ∥BC .又因四边形ABCD 不是菱形,故AD 不平于BC .这就表明A ′、A 、D 三点不共线,也就保证了A 点不在轨迹上. 因此,只有当B 、E 、F 、D 四点共圆时,Q 点才落在直线AP 上. 而当四边形ABCD 是菱形时,不管E 、F 位置如何,所得到的 P 、Q 两点总位于对角线AC 上.6.设正数列12,,,,n x x x 满足721187)8x x x -=(及 88211171,2()k k k k k k k x x x x x k x x -+----=≥.求正实数a ,使得当1x a >时,有单调性12n x x x >>>> ; 当10x a <<时,不具有单调性. 解:由88211171()k k k k k k k x x x x x x x -+----=,有1881111k k kk k k x x x x x x +---=-即1288811111117==8k kkkk k x x x x x x x xx+---=-=-A'QPCABDEFP QCBDAFE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 3n(3n 1) 2 | 3n 1 . 2
所以, n 为奇数. 又当 n 为奇数时,可将1, 2, 3,, 2n 每两个一组,分成 n 个组,每组两数之和
可以排成一个公差为 1 的等差数列:
1 (n n 1), 3 (n n 1),, n (n 1) ;
xk xk 1
1 x8
k 1
=
x2 x1
1 x18
=7 8
于是,
xk 1
7 8
xk
xk7 ,则当
x1
0 时, xk
0,
k
2.
由
xk 1
xk
xk (xk8
1) ,则当 8
xk8
1 8
0 ,即 xk
1
88 时,有
xk1
xk
0 ,即
xk1 xk , k 1.
而
xk 1
7 8
xk
xk7
88
1 87
A
E F
。
B
P O
。
D
C
【附注】 事实上,当四边形 ABCD 不是菱形时,A、P、Q 三点共线与 B、E、F、D 四 点共圆互为充要条件. 可利用同一法给予说明:取定 E 点,考虑让 F 点沿着直线 AD 运动. 根据相似变换可知,这时 Q 点的轨迹必是一条直线,它经过 P 点(由充分
性保证). 以下只要说明这条轨迹与直线 AP 不重合即可,即只要论证 A 点不在轨迹
A'
A
E F
P
B
D
Q
C
而当四边形 ABCD 是菱形时,不管 E、F 位置如何,所得到的 P、Q 两点总 位于对角线 AC 上.
A E
B P Q
F D
C
6、解:由 xk1xk1
xk2
x8 k 1
xk8
(xk xk1)7
,有
xk1 xk 1 1
xk
xk 1
xk8
x8 k 1
即
xk 1 xk
1 xk8
三个不等式相加可得不等式②,当且仅当 x1 x2 x3 时不等式等号成立.
3、解: amin
1 2
5
.首先证明 amin
1 2
5
,记
1 2
5
.不妨设正方形
边长为 2 .对正方形 ABCD 内部一点 P ,令 S1 , S2 , S3 , S4 分别表示 PAB ,
PBC , PCD , PDA 的面积,不妨设 S1 S2 S4 S3 .
7. 给定一个 2008×2008 的棋盘,棋盘上每个小方格的颜色均不相同.在棋 盘的每一个小方格中填入 C , G , M , O 这 4 个字母中的一个,若棋盘中每一 个 2×2 的小棋盘中都有 C ,G ,M ,O 这 4 个字母,则称这个棋盘为“和谐棋盘”.问 有多少种不同的“和谐棋盘”?(冯祖鸣供题)
2
1t 9
方形
ABCD
内取点
P
,使得
S1
b, S2
b t
, S3
b t2
, S4
1 b ,则我们有
S1 S2
S2 S3
t (a,1 2
5),
S3 S4
b t2 (1 b)
b 4(1 b)
2 a,
由此我们得到对任意 i,
j 1, 2,3, 4 ,有
Si Sj
[a1,
a] .这表明 amin
.
4、解:若四边形 ABCD 是正方形时,可得 y 1 3 . x2
注:此题的一般情况是
设 集 合 M 1, 2, 3,, 3n 的 三 元 子 集 族 Ai xi , yi , zi , i 1, 2,n 满 足
A1 A2 An M . 记 si xi yi zi , 求 所 有 的 整 数 n , 使 对 任 意 i, j (1 i j n) , si s j .
之和为 y,求 y 的最大值.(熊斌供题) x
5. 已知凸四边形 ABCD 满足 AB=BC,AD=DC.E 是线段 AB 上一点,F 是线段 AD 上一点,满足 B,E,F,D 四点共圆.作△DPE 顺向相似于△ADC;作△BQF 顺向相似于△ABC.求证:A,P,Q 三点共线.(叶中豪供题)
(注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时 针方向排列.)
33
33 2
1, 2, 3,, 66 每两个一组,分成 33 个组,,每组两数之和可以排成一个公差为 1
的等差数列: 1 50, 3 49,, 33 34 , 2 66, 4 65,, 32 51.
故如下 33 组数,每组三个数之和均相等:
1,50, 99,3, 49,98,, 33,34 ,83, 2, 66,82, 4, 65,81,, 32,51, 67..
DP1 P1M MD EN ,
又
P1DS1 360 60 60 PDS
240 (180 END) 60 END
ENS1 EMP1 ,
所以
DP1S1 MP1E NES1 ,
从而,△ EP1S1 是正三角形.
同理可得,△ GQ1R1 也是正三角形.设 U,V 分别是 P1S1 , Q1R1 的中点,于 是有
上. 为 此 , 作 △BAA′∽△BQF∽△ABC . 于 是 由 ∠BAA′ = ∠ABC , 可 得
A′A∥BC. 又因四边形 ABCD 不是菱形,故 AD 不平于 BC. 这就表明 A′、A、D 三点不共线,也就保证了 A 点不在轨迹上. 因此,只有当 B、E、F、D 四点共圆时,Q 点才落在直线 AP 上.
EG EU UV VG
3 2
P1S1
P1Q1
3 2 Q1R1
P1Q1
3P1S1
1 2
BD
3 AC , 2
同理可得 把上面两式相加,得
FH 1 AC 3 BD ,
2
2
y 1 3 x , 2
即
y 1 3 .
x2
5、证明
将 B、E、F、D 四点所共圆的圆心记作 O.联结 OB、OF、BD. 在△BDF 中,O 是外心,故∠BOF=2∠BDA; 又△ABD∽△CBD,故∠CDA=2∠BDA. 于是∠BOF=∠CDA=∠EPD, 由此可知等腰△BOF∽△EPD. ① 另一方面,由 B、E、F、D 四点共圆知△ABF∽△ADE. ② 综合①,②可知,四边形 ABOF∽四边形 ADPE, 由此得∠BAO=∠DAP. ③ 同理,可得∠BAO=∠DAQ. ④ ③,④表明 A、P、Q 三点共线.
令 S1 , S2 , 如 果 , , 由
S2
S4
S1
S3
S2
S4
1 ,得 S2 1 S2
,得 S2
1
.故
S1
S2
1
1
1
1
1
2 1
1,矛盾.故
min, ,这表明 amin .
反过来对于任意 a (1, ) ,取定 t (a, 1 5 ) ,使得 b t2 8 .我们在正
下面证明: y 1 3 . x2
设 P1,Q1, R1, S1分别是边 DA,AB,BC,CD 的中点,SP,PQ,QR,RS 的中点
分别为 E,F,G,H.则 P1 Q1 R1 S1 是平行四边形.
连接 P1E, S1E ,设点 M,N 分别是 DP,DS 的中点,则
DS1 S1N DN EM ,
8. 对于正整数 n ,令 fn 2n 2008 2n 2009 .求证:数列 f1, f2, 中有无 穷多个奇数和无穷多个偶数.([x]表示不超过 x 的最大整数) (冯祖鸣供题)
参考答案
1、解:(a)不能.因为 32 | 1 2 96 96 (96 1) 48 97 . 2
(b) 能 . 每 个 三 元 集 的 元 素 和 为 1 2 99 99 (99 1) 150 . 将
1,
n
n
2
1
,
3n
,
3,
n
n
1 2
,
3n
1
,,
n,
n
1,
3n
1
n
1 2
;
2,
2n,
3n
1
n
2
3
,
,
n
1,
n
n
2
3
,
2n
1
.
当 n 为奇数时,依次取上述数组为 A1, A2,, An ,则其为满足题设的三元子集 族.故 n 为所有的奇数.
2、证明:设实系数多项式(x) ax3 bx2 cx d 的三个正根分别为 x1 , x2 , x3 ,由韦达定理有
1
=88
,且当
1
xk =88
时,等号成立.
1
1
于是,取 a=88 ,则当 xk >88 时
x1 x2 xn .
1
当 x1 88 时, x2 x1 且 x2 x3 xn .
1
故所求常数 a=88 .
7、解:有12 ×22008 −24 种不同的“和谐棋盘”.我们首先证明下面这个结论: 在每个“和谐棋盘”中,至少出现以下情况中的某一种:(1) 每一行都是某两 个字母交替出现;(2) 每一列都是某两个字母交替出现. 其实,假设某一行不是交替的,则这一行必定包含三个相邻的小方格填有不
2b3 9a2d 7abc 0 .
①
(朱华伟供题)
3. 求 最 小 常 数 a 1 , 使 得 对 正 方 形 ABCD 内 部 任 一 点 P , 都 存 在 PAB, PBC, PCD, PDA 中的某两个三角形,使得它们的面积之比属于区间 [a1, a] .(李伟固供题)