双胶合望远物镜设计(精)

合集下载

双胶合望远物镜的设计

双胶合望远物镜的设计

双胶合望远物镜的设计
1.确定要设计的望远镜的需求和目标。

这包括确定观测目标的类型(是天文观测还是地球观测)、期望的分辨率和光学口径等。

2.确定物镜的基本参数。

物镜的基本参数包括光学口径、焦距和波长范围等。

根据观测需求和目标来确定这些参数,以便在设计过程中进行优化。

3.进行双胶合物镜的初步设计。

双胶合物镜由两个物镜镜头组成,其中一个作为物镜,另一个作为准直镜。

初步设计包括确定物镜和准直镜的曲率半径、厚度、孔径等参数,并进行初步的光学系统分析和优化。

4.进行双胶合物镜的最终设计。

最终设计包括对镜片的形状、曲率、厚度等进行进一步优化,使得物镜和准直镜在光学性能上达到最佳状态。

这一步骤通常需要使用光学设计软件进行模拟和分析。

5.进行光学系统的完整性分析。

完成物镜和准直镜的设计后,需要对整个光学系统进行分析,以确保在不同焦距和观测条件下都能达到预期的性能。

这包括通过使用衍射图像圆点函数来评估系统的分辨率和像差,以及通过光学路径分析来评估系统的定位和稳定性。

6.进行光学系统的组装和调试。

一旦完成了光学系统的设计和分析,就可以进行物镜和准直镜的组装和调试。

这包括对镜片进行抛光和涂镀,以及对光学系统进行调整和校准,以使其达到预期的性能。

以上就是双胶合望远物镜的设计步骤。

双胶合望远物镜的设计是一个复杂和细致的过程,需要充分考虑观测需求和目标,并进行仔细的光学系统分析和优化。

通过合理地设计和调整,双胶合望远物镜可以在天文观测和地球观测中发挥出更好的性能,提供更清晰和准确的图像和数据。

光学设计报告

光学设计报告

光学设计课程报告班级:学号:姓名:日期:目录双胶合望远物镜的设计 (02)摄远物镜的设计 (12)对称式目镜的设计与双胶合物镜的配合 (20)艾尔弗目镜的设计 (30)低倍消色差物镜的设计 (38)无限筒长的高倍显微物镜的设计 (47)双高斯照相物镜的设计 (52)反摄远物镜的设计 (62)课程总结 (70)双胶合望远物镜的设计1、设计指标:设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率:3.7⨯;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:210w =︒;物镜焦距:'=85f mm物;棱镜折射率:n=(K9);棱镜展开长:31mm ;棱镜与物镜的距离40mm ;孔径光阑为在物镜前35mm 。

2、初始结构计算 (1) 求J h h z ,,根据光学特性的要求4.728.142===D h :44.75tan 85tan ''=⨯=•= ωf y0871.0''==f h u648.0'''==y u n J(2)计算平行玻璃板的像差和数CS S S I I I I ,,平行玻璃板入射光束的有关参数为0871.0=u0875.0)5tan(-=-= z u 005.1-=u u z平行玻璃板本身的参数为d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得:000665.01.51631-1.5163×0.0871×-311324432-==--=I du n n S0.0006682=(-1.005)×-0.000665=u u ×=zI I I S S000824.0087.05163.11.6415163.13112222-=⨯⨯-⨯-=--=I u n n dS C υ(3)根据整个系统的要求,求出系统的像差和数S Ⅰ,S Ⅱ,C SⅠ:为了保证补偿目镜的像差,要求物镜系统(包含双胶合物镜和棱镜)的像差为:'m δL =0.1mm ,'0.001m SC =-,'0.05FC L mm ∆=(4)列出初级像差方程式求解双胶合物镜的C W P ,,∞∞由于棱镜物镜系统S S S +=所以双胶合物镜的像差和数为000852.0-棱镜系统-==I I I S S S0019642.0-棱镜系统-==II II I I S SS000444.0-棱镜系统==I I I C CS SS C(5)列出初级像差方程求P ,W ,C(6)由P ,W ,C 求C W P ,,∞∞由于h=,f ’=85,因此有进而可得:174.0)(3==ϕh P P3994.0)(2==ϕh W W由于望远镜本身对无限远物平面成像,因此无需再对物平面位置进行归化:174.0==∞P P 3994.0==∞W W将∞∞W P ,带入公式求0P根据,查找玻璃组合。

双胶合望远物镜 ZEMAX 设计

双胶合望远物镜 ZEMAX 设计

2.要求设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:设计过程: 1.求h ,h z ,J1006.14365.7148.01'''4365.7)tan(''0621.335/5tan 58.12'/'tan 148.0502/tan 8.147.34'/tan '/'tan =⨯⨯===--==⇒==⇒===⨯==⨯=Γ=⇒=Γ==y u n J mmw f y mm h h mmh f h u D u mm D D D D uf h u z z o入入出入计算平行玻璃板的像差和数S 1、S 2、S 3 平行板入射光束的有关参数为:5912.0,0875.0)5tan(,148.0-=-=-==u u u u zz根据已知条件,平行玻璃板本身参数为:64.11.5163,n 31mm,d ===υ则平行平板的初级像差为:3.列出初级像差方程式求解双胶合物镜的C W P ,,∞∞ 根据整个系统物镜的像差要求:mmL SC mm L FC m m 05.0,001.0,1.0'''=∆-==δ系统的像差和数为:0010952.000220.0)(2200438.02S '2'''3''''''''2''''1-=∆-==-=-=-=-=FC m s m L u n S y SC u n k u n S L u n δ 由于S 系统=S 物镜+S 棱镜,双胶合物镜的像差和数为:0.00128480.00238-0.001095S -0.0010750.003275-0.0022S 0.001160.00554-0.00438S =+====+=I ∏I C列出初级像差方程,求P,W,C00238.0n1-n -dS 0.0032765/u)(u S S 00554.0n1-S 223z 124321-====-=⨯-=u du n υ00000812.0001285.000123.0001075.00000922.00016.058.1223=⇒===⇒-=-==⇒===∏I C C h S W JW P h S P P hP S z由P,W,C,求C W P ,,∞∞ 由于''1,85,58.12f f h ===ϕ所以00069.005591.0)(02846.0)('23======Cf C h WW h PP ϕϕ由于望远镜物镜对无限远物平面成像,无须对平面位置再进行优化。

光学设计:双胶合物镜设计

光学设计:双胶合物镜设计

《光学设计》PW 法求初始结构参数(双胶合物镜设计)姓名:李军 学号:12085212光学特性:已知焦距mm f 435=;通光孔径mm D 67= ; 入曈位置与物镜重合 0=z I展成玻璃板的总厚度mm d 175=。

(1)确定物镜形式:由于物镜相对孔径较小:1540.043567,==fD视场不大,物镜系统没有特殊要求,可以采用简单的双胶合物镜。

(2)求初始结构 1、求,,z h h J由设计条件,有:5.332672===D h ,由于瞳孔与物镜重合,所以0=zh注意:由于含有平板,平板会产生像差,所以要用物镜的像差来平衡平板的像差。

0770.04355.33,,===f h u 80.22)3tan(435tan ,.=-⨯-=⋅-=。

ωf y 756.180.220770.0,,,=⨯==y u n J2、计算玻璃的平板像差 ,两个平板:0524.0-3,0770.0=-==。

z u u ,6805.00770.00524.0-=-=u u z由已知条件:(n 为折射率,v 为阿贝常数)1.64,5163.1,175===νn d将上列数值带入初级相差公式得到:00233.00773.05163.115163.1175143232-=⨯-⨯-=--=n n d S I00158.0)6805.0(00233.0=-⨯-==uu S S zIII 00363.00770.05163.11.6415163.117512222-=⨯⨯-⨯-=--=u n n d S IS ν3、双胶合物镜像差双胶合物镜像差应该与平行平板像差等值反号,据此提出物镜像差。

(若不需平衡平板像差的话,取物镜像差都为0)(1)根据S I,求C 并规划成C 进行规化后:c h c h S IS 22∑==,所以000003234.0=C求规划后的C ,根据公式:00141.0435000003587.0,=⨯==Cf C(2)求P 、W : 由初级相差和数hp hp S I ∑==:得到0000695.05.3300233.0===h S P I 由公式:JW p h W J hp S Z I I -=-=∑∑,由于0=z h , 所以00090.0756.1)00158.0(=--=-=J S WII (3)求P ∞、W ∞:已知mm f 435=,,5.33=h000457.0)(00593.0,0770.032,====ϕϕϕh h fh h ,)(根据公式可以得到:152.0000457.00000695.0)(3===ϕh P P1518.000593.000090.0)(2===ϕh W W物体平面在无限远位置,无需再对规划后的物体位置进行规划:152.0==∞P P , 1518.0==∞W W4)求0P冕牌玻璃在前:1497.0)1.0(85.020=--=∞W P P4.查表,选玻璃对。

望远镜设计计算指导和双胶合物镜设计

望远镜设计计算指导和双胶合物镜设计

《应用光学》课程设计—望远镜设计计算指导说明:1、本指导将全面介绍带有普罗I型转像棱镜系统的望远镜设计过程以及计算,作为《应用光学》课程设计的实习范例。

实验报告需在此基础上完善和修改,严禁全盘抄袭本指导,否则作0分处理!2、本指导省略了理论分析部分,计算依据请参考有关资料。

题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率Γ=6倍;2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D =30mm);3、望远镜的视场角2ω=8°;4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。

6、lz′=8~10mm我们的工作将按照以下步骤进行:1、系统外形尺寸的计算:根据需求确定像差,选型;2、使用PW法进行初始结构的计算:确定系统的r、d、n;3、像差的校正:通过修改r、d、n,调整像差至容限之内;4、进行像质评价,总结数据图表,完成设计。

第一部分:外形尺寸计算一、各类尺寸计算 1、计算'f o和'f e由技术要求有:1'4o D f =,又30D mm =,所以'120o f mm =。

又放大率Γ=6倍,所以''206o e f f mm ==。

2、计算D 出303056D D D mm =∴===Γ物出物 3、计算D 视场2'2120416.7824o o D f tg tg mm ω==⨯⨯=视场4、计算'ω(目镜视场)''45o tg tg ωωωΓ⨯=⇒≈5、计算棱镜通光口径D 棱(将棱镜展开为平行平板,理论略) 问题:如何考虑渐晕?我们还是采取50%渐晕,但是拦掉哪一部分光呢?拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。

光学设计-第15章--望远镜物镜设计

光学设计-第15章--望远镜物镜设计

第十五章 望远镜物镜设计望远镜一般由物镜、目镜、棱镜或透镜式转像系统构成。

望远镜物镜的作用是将远方的物体成像在目镜上,经目镜放大后供人眼观察。

如图15-1所示。

图15-1 望远镜系统§1 望远镜物镜的光学特性一 望远镜物镜的光学特性参数望远镜物镜的光学特性由焦距、相对孔径、视场等参数表示。

1 焦距望远镜物镜的焦距/物f 等于目镜焦距/目f 与望远镜倍率的乘积,因而,一般望远镜的倍率越高,物镜的焦距越长。

高倍望远镜物镜焦距可达到一米左右,天文望远镜物镜焦距可达到数米。

望远镜物镜的焦距大多在mm 500~100之间。

2 相对孔径在望远系统中,入射的平行光束经过系统后仍然为平行光束,因此物镜的相对孔径/物f D 与目镜的相对孔径/目f D /是相等的。

目镜的相对孔径主要由出射光瞳直径/D 和出射光瞳距离/p l 决定,目镜的出射光瞳直径一般为mm 4左右,出射光瞳距离/p l 一般要求mm 20。

为保证出射光瞳距离,目镜的焦距/目f 一般大于或等于mm 25,这样,目镜的相对孔径约为71~41。

所以,物镜的相对孔径不大,一般小于51。

但当物镜的焦距很长时,物镜的光瞳口径却可以很大,如天文望远镜中有口径为几米的物镜。

3 视场望远镜物镜的视场ω2与目镜的视场/2ω以及系统的视放大率Γ之间有如下关系:ωωtg tg ⋅Γ=/目镜视场因受结构限制,目前/2ω大多在070以下,这就限制了物镜的视场不会很大,一般在012以下。

二 望远镜物镜像差校正要求由于望远镜物镜的相对孔径和视场都不大,同时允许视场边缘成像质量适当降低,因此它的结构型式比较简单,故望远镜物镜要求主要校正球差、慧差、轴向色差,而不校正对应于像高/y 二次方的各种单色像差(像散、场曲、畸变)和倍率色差。

由于望远镜要与目镜、棱镜或透镜式转像系统组合起来使用,所以在设计望远镜物镜时,应考虑到它与其他部分之间的像差补偿关系。

在物镜光路中有棱镜的情况下,物镜的像差应当与棱镜的像差互相补偿,即棱镜的像差要靠物镜来补偿,由物镜来校正棱镜的像差。

光学设计:双胶合物镜设计

光学设计:双胶合物镜设计

r
d
278.7045
4
玻璃 B-797.442
(1)平板和数: (2)双胶合规化值: (3)选择玻璃对: (4)放缩后的半径:
优化前: 数据编辑
2D光路图 2D点列图
优化后: 数据编辑
2D光路图
2D点列图
例如选取了QK3-F3玻璃对,查表有: 由于相对孔径较小,允许P0误差大些。 5.求透镜组的半径: (1)求Q: 由公式 (2)求半径: ,
, , (3)求放缩半径:以上求得半径对应的情况,为求得半径为的情况, 上式对应的实际半径应乘: 6.确定厚度: 透镜厚度除了与半径大小,还得考虑透镜固定的方法、质量要求和加 工难易程度等。参考《光学设计手册》的相关规定,用实际作图可 得: 整个物镜的参数为:
, 4)求 冕牌玻璃在前:
4. 查表,选玻璃对。 查表的步骤一般是根据要求的值用插值法求出不同玻璃 组合的P0
值,如果与要求的P0值之差在一定公差范围内,这样的玻璃就能满足要 求。对一般双胶合物镜P0值的公差大约在1.0 左右。相对孔径越小,P0 值允许的误差越大,因为它对P的影响就越小。通常可以在表中查到若 干对玻璃能满足P0、的要求,然后再在这些玻璃对中进行挑选。挑选的 原则是要求玻璃的化学稳定性和工艺性好、球面的半径大,以便于加 工。一般Q0绝对值比较小、两种玻璃n值相差比较大的玻璃,球面半径 比较大。根据这些要求,就可以从表中查到几对较好的玻璃组合,找到 P0、Q0、W0。
3、双胶合物镜像差 双胶合物镜像差应该与平行平板像差等值反号,据此提出物镜像差。
(若不需平衡平板像差的话,取物镜像差都为0) (1)根据SI,求C并规划成进行规化后: ,所以 求规划后的,根据公式:
(2)求P、W: 由初级相差和数:得到 由公式:,由于, 所以

望远镜设计计算指导和双胶合物镜设计

望远镜设计计算指导和双胶合物镜设计

1
f眼 '
48.83mm 13.415mm 8.615mm
2
f眼 '
,取 d1 1.5, d2 4.5
3
双胶合结构参数求完!
3、设计场镜
场镜在此处的作用是帮助光瞳衔接,改变出瞳的位置。 正的场镜能使后面光组的通光口径减小,使物镜出瞳更靠近 目镜,负场镜则反之。 设计思路: 1)我们前提已知系统出瞳的位置 lz ' 10mm ,现在采取反追方 法,所以出瞳就变成了目镜的入瞳; 2)该入瞳通过接眼镜成的像与物镜框是共轭的,但此时还 不重合; 3)在接眼镜后加上场镜,使之前的像再通过场镜成像到物
S
IIp
S IIp (
up u
) 0.003404 ;
C
Ip

d (n 1) 2 u 0.003670 n2
3、双胶合物镜像差
双胶合物镜像差应该与平行平板像差等值反号,据此提 出物镜像差。 (若不需平衡平板像差的话, 取物镜像差都为 0)
S I 0.006906 即双胶合像差 S II 0.003404 C 0.003667 I


所以接着计算:
r1 Q 1.789 1 2 1 2 0.4915 ,所以 r2 1 n1 1 1 1 2.7857 r3 3 2 n2 1 f眼 '
Ks ' S ' c 'y 0 . 0 02 5 8. 3 9 1 2 0.02
589.32
n 'sin 2 um
=0.0377;
小于 0.02 即可。
修改 r1 、 r2 、 r3 达到以上要求! 请看范例 物镜.zmx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、前言 (7)二、ZEMAX 仿真 (9)三、设计优化 (17)四、数据比较和优化后参数 (21)五、设计心得体会 (24)六、参考文献 (25)评分表附表 (26)一前言光学是研究光的行为和性质,以及光和物质相互作用的物理学科。

光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

光的本性也是光学研究的重要课题。

微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。

我们通常把光学分成几何光学、物理光学和量子光学。

几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。

它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。

它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。

波动光学的基础就是经典电动力学的麦克斯韦方程组。

波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。

波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

量子光学1900 年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。

光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。

所以光学是一个相当有用的学科。

本次设计采用ZEMAX 光学设计软件。

ZEMAX 是一个用来模拟、分析和辅助设计光学系统的程序。

ZEMAX 的界面设计得比较容易被使用,稍加练习就能很快地进行交互设计。

大部分ZEMAX 的功能都用选择弹出或下拉式菜单来实现。

键盘快捷键可以用来引导或略过菜单,直接运行。

二ZEMAX 仿真一、本次设计要求如下:1.焦距为100mm;2.波长为0.6328um;3.光源为无穷远处;4.像空间F/﹟=45.前一块玻璃为BAK1,后一块玻璃为F3先打开ZEMAX软件,根据设计要求修改系统设定,包括系统孔径, 镜头单位,视场,和波长。

(1)修改系统设定。

首先,根据要求的设计参数计算物方孔径EPD。

提供的有效焦距efl 为100mm,像空间F/ ﹟=4 。

由公式,得物方孔径EPD 约等于25。

在ZEMAX主菜单软件中,选择系统> 通用配置,在弹出的对话框中,光圈类型选择入瞳直径,光圈数值选择25,单位毫米。

(2)视场设定。

在ZEMAX主菜单软件中,选择系统> 视场,在弹出的对话框中,视场类型选择角度,并输入三组视场数据,(0, 0), (0, 3) 和(0, 5)第三步,波长设定在ZEMAX主菜单软件中,选择系统> 波长,在弹出的对话框中,选择要求的波长0.6328um,单击确定完成配置系统配置完毕,即可在LDE中输入数据。

镜头数据编辑器是一个主要的电子表格,将镜头的主要数据填入就形成了镜头数据。

这些数据包括系统中每一个面的曲率半径、厚度、玻璃材料。

单透镜由两个面组成(前面和后面),物平面和像平面各需要一个面,这些数据可以直接输入到电子表格中。

当镜头数据编辑器显示在显示屏时,可以将光标移至需要改动的地方并将所需的数值由键盘输入到电子表格中形成数据。

每一列代表具有不同特性的数据,每一行表示一个光学面(或一个)。

移动光标可以到需要的任意行或列,向左和向右连续移动光标会使屏幕滚动,这时屏幕显示其他列的数据,如半口径,二次曲线系数,以及与所在的面的面型有关的参数。

屏幕显示可以从左到右或从与右到左滚动。

”上翻页”和”下翻页”键可以移动光标到所在列的头部或尾部。

当镜头面数足够大时,屏幕显示也可以根据需要上下滚动。

首先,添加镜面,设计要求双镜头,所以添加3 个镜面,在镜面编辑窗口中选择编辑>插入曲面。

曲面插入完毕,即可向镜头数据编辑窗口写入镜头数据。

设计要求第一块镜面材料BAK1第二块镜面材料为F3。

在glass 窗口中写入材料的类型。

完成后在Thickness 栏中填入玻璃厚度。

最后使用求解去执行设计约束,设置像空间F/# 为恒定值4。

如下图:接下来,分析. 优化前的系统性能。

选择分析>草图>2D草图,将出现2D草图LAYOU。

T点击“生成DXF文件”按钮将产生一个2D DXF 文件,并将它存储起来。

它的文件名用“ DXF 文件”处输入的文件名确定。

DXF文件是由弧和线组成,弧用来显示镜头面的曲率。

如果是只使用球面(或平面)的透镜,那么弧可以完全的表示镜头。

但是,弧只能近似的表示非球面。

如果面是非球面,那么弧只有在顶点,最高点和最低点是正确的。

ZEMAX在这三个地方用适合的弧表示确切的面。

若光线未能射入到一个面,那么在发生该错误的面光线不画出。

如够光线发生全反射,那么在发生全反射的面入射的光线画出,出射的光线不画出。

选择分析>点列图>标准,将出现标准点列图Spot Diagram 。

光线密度有一个依据视场数目,规定的波长数目和可利用的内存的最大值。

离焦点列图将追迹标准点列图最大值光线数目的一半光线。

列在曲线上的每个视场点的GEO点尺寸是参考点(参考点可以是主波长的主光线,所有被追迹的光线的重心,或点集的中点)到距离参考点最远的光线的距离。

换句话将,GEO点尺寸是由包围了所有光线交点的以参考点为中心的圆的半径。

RMS点尺寸是径向尺寸的均方根。

先把每条光线和参考点之间的距离的平方,求出所有光线的平均值,然后取平方根。

点列图的RMS尺寸取决于每一根光线,因而它给出光线扩散的粗略概念。

GEO点尺寸只给出距离参考点最远的光线的信息。

艾利圆环的半径是1.22 乘以主波长乘以系统的F/# ,它通常依赖于视场的位置和光瞳的方向。

对于均匀照射的环形入瞳,这是艾利圆环的第一个暗环的半径。

艾利圆环可以被随意的绘制来给出图形比例在点列图中,ZEMAX不能画出拦住的光线,它们也不能被用来计算RMS 或GEO 点尺寸。

ZEMAX根据波长权因子和光瞳变迹产生网格光线。

有最大权因子的波长使用由“Ray Density ”选项设置的最多光线的网格尺寸。

有最小权因子的波长在图形中设置用来维持正确表达的较少光线的网格。

如果变迹被给定,光线网格也被变形来维持正确的光线分布。

位于点列图上的RMS点尺寸考虑波长权因子和变迹因子。

但是,它只是基于光线精确追迹基础上的RMS点尺寸的估算。

在某些系统中它不是很精确。

像平面上参考点的交点坐标在每个点列图下被显示。

如果是一个面被确定而不是像平面,那么该坐标是参考点在那个面上的交点坐标。

既然参考点可以选择重心,这为重心坐标的确定提供了便利的途径。

选择分析>特性曲线>光路,将出现光路图OPD FAN。

目的是显示用光瞳坐标函数表示的光程差。

垂轴刻度在图形的下端给出。

绘图的数据是光程差,它是光线的光程和主光线的光程的差,通常,计算以返回到系统出瞳上的光程差为参考。

每个曲线的横向刻度是归一化的入瞳坐标。

若显示所有波长,那么图形以主波长的参考球面和主光线为参照基准的。

若选择单色光那么被选择的波长的参考球面和主光线被参照。

由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变。

选择分析>特性曲线>光线像差,将出现光线像差图RAY FAN。

目的:显示作为光瞳坐标函数的光线像差。

横向特性曲线是用光线的光瞳的y 坐标的函数表示的横向光线像差的x 或y 分量。

缺省选项是画出像差的y 分量曲线。

但是由于横向像差是矢量,它不能完整的描述像差。

当ZEMAX绘制y 分量时,曲线标称为EY,当绘制x 分量时,曲线标称为EX。

垂轴刻度在图形的下端给出。

绘图的数据是光线坐标和主光线坐标之差。

横向特性曲线是以光瞳的y 坐标作为函数,绘制光线和像平面的交点的x 或y 坐标和主波长的主光线x 或y 坐标的差。

弧矢特性曲线是以光瞳的x 坐标作为函数,绘制光线和像平面的交点的x或y 坐标和主波长的主光线x 或y 坐标的差。

每个曲线图的横向刻度是归一化的入瞳坐标PX 或PY。

若显示所有波长,那么图形参考主波长的主光线。

若选择单色光那么被选择的波长的主光线被参照。

由于这个原因,在单色光和多色光切换显示时,非主波长的数据通常被改变。

因为像差是有x 和y 分量的矢量,光线像差曲线不能完全描述像差,特别是像平面倾斜或者系统是非旋转对称时。

另外,像差曲线仅仅表示了通过光瞳的两个切面的状况,而不是整个光瞳。

像差曲线图的主要目的是判断系统中有哪种像差,它并不是系统性能的全面描述,尤其系统是非旋转对称时。

第三部分:设计优化从2D 草图可以看出,镜头的性能参数并非最优,原因是像平面的位置并未确定,ZEMAX 提供自动对焦的工具。

选择工具> 杂项> 快速对焦,在弹出的窗口中点选以像平面上光线的重心为参照计算选项。

目的:通过调整后截距对光学系统快速调焦。

本功能调整像平面前面的厚度。

厚度是依照RMS像差最小化的原则选择的。

最佳调焦位置与标准的选择有关。

RMS用定义的视场,波长和权因子计算整个视场的多色光的平均值。

完成后进行进一步优化,建立默认的评价函数。

设置可变参数一旦可变参数设置完毕,即可创建默认评价函数DMF。

在ZEMAX主菜单软件中,选择编辑> 优化函数。

在弹出的窗口中选择工具> 默认优化函数。

评价函数是一个如何使一个光学系统接近一组指定的目标的数值表示。

ZEMAX使用了一系列操作数,它们分别代表系统不同的约束和目标。

操作数代表的目标如像质,焦距,放大率,和其他一些。

这些评价函数与列表中的每个操作数的目标值和实际值之差平方的加权和的平方根成比例。

评价函数是这样定义的,所以0 值代表理想状态。

优化运算法则将使这些函数值尽可能小,所以评价函数应该是你想系统达到的结果的一种表示。

也不是非要用默认的评价函数,你可以如后面介绍的那样来构建你自己的评价函数。

定义一个评价函数的最容易的方法就是在评价函数编辑界面的菜单条中选择工具,默认评价函数选项,这时出现一个对话框,这将允许你选择一些选项来构建默认评价函数。

玻璃边缘厚度填入最小2mm,最大12mm。

点确定后,评价函数编辑窗口出现优化函数。

MTF 操作数可正确地计算出像由分析,衍射菜单选项得到的图形一样的完整的衍射或几何MTF 值。

因此,那些MTF 曲线图中产生非法数据的系统在优化过程中也将产生没有意义的数据。

例如,优化一个从平行平板平面开始的镜头的MTF 是不合实际的,因为对这样的系统通常不能正确计算MTF。

相关文档
最新文档