CAN 总线(一) 物理层—屏蔽双绞线
SAE1939-21协议

商用车控制系统局域网络(CAN )通信协议第4 部分:数据链路层(英文名称)(SAE1939-21:1999 MOD )前言GB/T××××《商用车控制系统局域网络(CAN 总线)通信协议》包括11 个部分:—第1 部分:物理层—屏蔽双绞线(250K 比特/秒)—第2 部分:物理层—非车载诊断连接器—第3 部分:物理层—非屏蔽双绞线(250K 比特/秒)—第4 部分:数据链路层—第5 部分:应用层—车辆—第6 部分:应用层—诊断—第7 部分:网络管理—第8 部分:参数组分配—第9 部分:地址和标识分配—第10 部分:可疑参数编号(SPN)—第11 部分:网络层本标准为GB/T××××的第4 部分,对应于SAE1939-21:2001 《数据链路层》,本标准与SAE1939-21 的一致性程度为修改采用(技术内容完全等同),主要差异如下:—增加了“范围”及“规范性引用文件”—原文引用了1939 概述部分的术语,本标准将适用的大部分术语抄写过来,并给出了定义.本标准的附录A、B、C、D 均为资料性附录。
汽车控制系统局域网络(CAN 总线)通信协议第4 部分:数据链路层1 范围本部分规定了CAN 总线的数据链路层的技术要求。
本部分适用于M2、M3 及N 类车辆。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文GB/T××××.5 应用层—车辆GB/T××××.7 网络管理GB/T××××.8 参数组分配GB/T××××.9 地址和标识分配3 术语和定义本标准采用下列术语和定义。
CAN总线简介(2024版)

驱动系统的高速CAN
• 驱动系统CAN主要连接对象是发动机控制器 (ECU)、ABS控制器、安全气囊控制器、 组合仪表等等,它们的基本特征相同,都是 控制与汽车行驶直接相关的系统。
倍。这种传统布线方法不能适应汽车的发展。CAN总线可有效减少线束,节省空间。
例如某车门-后视镜、摇窗机、门锁控制等的传统布线需要20-30 根,应用总线 CAN 则
只需要 2 根。(3)关联控制在一定事故下,需要对各ECU进行关联控制,而这是传统
汽车控制方法难以完成的表1 汽车部分电控单元数据发送、接受情况
• (5)直接通信距离最远可达10km(速率5Kbps以下)。
• (6)通信速率最高可达1MB/s(此时距离最长40m)。
• (7)节点数实际可达110个。
• (8)采用短帧结构,每一帧的有效字节数为8个。
• (9)每帧信息都有CRC校验及其他检错措施,数据出错 率极低。
• (10)通信介质可采用双绞线,同轴电缆和光导纤维,一 般采用廉价的双绞线即可,无特殊要求。
可靠性高:传输故障(不论是由内部还是外部引起 的)应能准确识别出来 使用方便:如果某一控制单元出现故障,其余系统 应尽可能保持原有功能,以便进行信息交换 数据密度大:所有控制单元在任一瞬时的信息状态 均相同,这样就使得两控制单元之间不会有数据偏 差。如果系统的某一处有故障,那么总线上所有连 接的元件都会得到通知。 数据传输快:连成网络的各元件之间的数据交换速 率必须很快,这样才能满足实时要求。
• (2)网络上的节点(信息)可分成不同的优先级,可以满 足不同的实时要求。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种广泛应用于汽车、工业控制和通信领域的串行通信协议。
它的工作原理是基于一种分布式通信机制,可以同时连接多个节点,实现高效的数据传输和控制。
CAN的工作原理可以简单概括为以下几个方面:1. 物理层:CAN总线采用双绞线作为传输介质,通常使用差分信号传输方式。
这种方式可以有效地抵抗电磁干扰,提高通信的可靠性。
CAN总线上的每个节点都通过一个传输线连接到总线上。
2. 数据链路层:CAN总线采用一种基于帧的通信协议,数据传输以帧为单位进行。
每个CAN帧由四个部分组成:起始位、帧类型位、数据位和CRC校验位。
起始位用于同步节点的时钟,帧类型位用于标识数据帧或远程帧,数据位用于传输实际的数据,CRC校验位用于检测数据传输的错误。
3. 帧传输:CAN总线上的节点可以同时发送和接收数据。
当一个节点要发送数据时,它首先检查总线上是否有其他节点正在发送数据,如果没有,则它可以开始发送数据。
发送节点会将数据和标识符封装成一个CAN帧,并通过总线发送出去。
其他节点在接收到这个CAN帧后,会检查标识符,如果匹配,则接收数据。
4. 碰撞检测:由于CAN总线是一种共享总线结构,多个节点可能同时发送数据,导致碰撞。
为了解决碰撞问题,CAN总线采用了非破坏性的碰撞检测机制。
当一个节点发送数据时,它会同时监听总线上的数据,如果检测到其他节点同时发送数据,那么发送节点会停止发送,并等待一个随机的时间后重新发送。
5. 优先级:CAN总线上的每个节点都有一个唯一的标识符,用于标识节点的优先级。
当多个节点同时发送数据时,具有更低标识符的节点具有更高的优先级,可以优先发送数据。
这种优先级机制可以确保重要数据的及时传输。
总的来说,CAN的工作原理基于分布式通信机制,通过物理层和数据链路层的协议实现数据的高效传输和控制。
它具有高可靠性、抗干扰能力强、支持多节点等特点,因此在汽车、工业控制和通信领域得到广泛应用。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种广泛应用于汽车电子控制系统的通信协议,它的工作原理是通过一种高效的串行通信方式来实现多个电子控制单元(ECU)之间的数据传输。
本文将从引言概述、正文内容和结尾总结三个部份来详细阐述CAN的工作原理。
引言概述:CAN是一种被广泛应用于汽车电子控制系统的通信协议,它的浮现极大地促进了汽车电子化的发展。
CAN的工作原理基于一种高效的串行通信方式,通过在总线上传输数据帧来实现多个ECU之间的数据交换。
下面将详细介绍CAN的工作原理。
正文内容:一、物理层1.1 传输介质:CAN协议可以使用两种传输介质,即双绞线和光纤。
双绞线是最常见的传输介质,它具有成本低、抗干扰能力强等优点,适合于大多数汽车电子控制系统。
而光纤传输介质具有传输速度快、抗干扰能力更强等优点,适合于高速数据传输场景。
1.2 总线结构:CAN总线采用了一种主从结构,其中一个ECU扮演主节点的角色,负责控制总线上的数据传输,其他ECU作为从节点,接收和发送数据。
1.3 电气特性:CAN总线的电气特性是保证数据传输可靠性的重要因素之一。
CAN总线采用差分信号传输,即CAN_H和CAN_L两个信号线,通过CAN收发器将数据转换为差分信号进行传输,从而提高了抗干扰能力。
二、数据链路层2.1 帧结构:CAN数据帧由四个部份组成,分别是起始位、帧类型位、数据位和校验位。
起始位用于同步传输,帧类型位标识数据帧还是远程帧,数据位用于传输实际数据,校验位用于检测数据传输过程中的错误。
2.2 帧ID:CAN数据帧的帧ID用于标识数据的发送和接收对象。
帧ID由11位或者29位组成,其中11位的帧ID用于标识标准帧,29位的帧ID用于标识扩展帧。
2.3 确认机制:CAN协议采用了一种基于优先级的确认机制,即具有高优先级的数据帧可以中断低优先级的数据帧的传输,从而提高了数据传输的实时性。
三、网络层3.1 数据传输:CAN协议通过循环发送数据帧的方式来实现数据传输。
can总线的通信协议

can总线的通信协议Can总线是一种广泛应用于汽车行业的通信协议,它采用了差分信号传输技术,具有高可靠性和抗干扰能力。
Can总线的通信协议包括物理层、数据链路层和应用层三个部分,下面将逐一介绍。
一、物理层Can总线的物理层主要定义了通信的电气特性和连接方式。
Can总线采用双绞线进行通信,其中一根线为CAN_H,另一根为CAN_L,通过差分信号的方式传输数据。
双绞线的使用使得Can总线具有较好的抗干扰能力,可以在噪声较多的环境中正常工作。
同时,Can总线还采用了差分驱动器和终端电阻的方式来提高信号的可靠性和传输距离。
二、数据链路层Can总线的数据链路层主要负责数据传输的控制和错误检测。
Can总线采用了CSMA/CD(载波监听多路访问/冲突检测)的传输机制,即节点在发送数据之前先监听总线上是否有其他节点正在发送数据,若有,则等待一段时间后再发送。
这种机制可以有效避免数据冲突。
Can总线的数据链路层还包括帧格式的定义。
Can总线的数据传输单位是帧,每个帧由起始位、标识符、控制位、数据域和校验位组成。
其中,标识符用于标识帧的类型和发送节点,数据域用于存储实际的数据信息,校验位用于检测数据传输过程中是否发生错误。
三、应用层Can总线的应用层主要定义了数据的传输和处理方式。
Can总线上的节点可以进行点对点通信或广播通信。
点对点通信是指两个节点之间进行数据传输,而广播通信是指一个节点向整个总线发送数据,所有节点都能接收到。
Can总线上的节点需要事先约定好数据的传输格式和意义,以确保数据的正确解析和处理。
通常情况下,Can总线上的数据是采用十六进制表示的,通过不同的标识符和数据域来区分不同的数据类型和含义。
这样的设计使得Can总线可以同时传输多种类型的数据,满足复杂系统中各种需求。
总结:Can总线的通信协议具有高可靠性、抗干扰能力强的特点,广泛应用于汽车行业。
通过物理层、数据链路层和应用层的定义和规范,Can总线实现了节点之间的可靠通信和数据传输。
CAN的工作原理

CAN的工作原理CAN总线是一种常用于汽车和工业控制系统中的通信协议,它的全称是控制器局域网络(Controller Area Network)。
CAN总线的工作原理是通过在一个总线上连接多个节点,实现节点之间的高速数据传输和通信。
CAN总线的工作原理主要包括以下几个方面:1. 物理层:CAN总线使用双绞线作为传输介质,采用差分信号传输方式。
每一个节点都通过一个收发器与总线相连,收发器负责将节点发送的电信号转换为差分信号,以及将总线上的差分信号转换为节点可以处理的电信号。
2. 帧格式:CAN总线的数据传输是以帧为单位进行的。
每一个CAN帧由一个起始位、一个标识符、一个控制位、数据域和校验位组成。
标识符用于区分不同的帧,控制位用于指示帧的类型和数据域的长度,数据域用于存储实际的数据,校验位用于检测数据传输过程中的错误。
3. 帧传输:CAN总线采用非冲突的CSMA/CR(Carrier Sense Multiple Access with Collision Resolution)访问机制。
节点在发送数据前会先监听总线上是否有其他节点正在发送数据,如果没有冲突,则节点可以发送数据。
如果多个节点同时发送数据,会发生冲突,此时节点会根据优先级进行竞争,优先级高的节点会继续发送数据,而优先级低的节点会住手发送。
4. 错误检测和恢复:CAN总线具有强大的错误检测和恢复能力。
每一个节点在发送数据时都会对发送的数据进行CRC校验,并在接收数据时对接收到的数据进行CRC校验。
如果校验失败,节点会认为数据浮现错误,并进行错误处理。
此外,CAN总线还具有错误重传机制,当节点发送的数据未能成功接收时,会进行重传操作,以确保数据的可靠传输。
5. 网络拓扑:CAN总线可以支持多个节点的连接,形成一个网络拓扑。
常见的网络拓扑结构包括总线型、星型和树型。
总线型拓扑是最常见的结构,所有节点都连接到同一根总线上。
星型拓扑是将所有节点连接到一个中心节点上。
can电路标准设计

can电路标准设计CAN电路标准设计是一种常用的通信协议,广泛应用于汽车和工业领域的电子系统中。
它的设计目的是在一根双向传输线上实现高速、可靠的通信,并且能够适应恶劣的环境条件。
在CAN电路标准设计中,主要包括物理层和数据链路层两个方面。
物理层是指电缆、电阻和收发器等硬件组成部分,用于传输和接收数据。
数据链路层则负责传输数据、错误检测和纠错等功能。
下面将分别介绍这两个方面的具体要求和设计原则。
首先是物理层的设计要求。
在CAN电路标准设计中,传输线一般采用双绞线或者双绞屏蔽线,以减少外界干扰。
电缆的长度、传输速率以及线路负载要根据具体应用场景进行选择和设计。
同时,还需要在电路中加入终端电阻,以保证信号质量和匹配阻抗。
收发器的选择也是关键,需要具备高速、低功耗、抗干扰等特性。
其次是数据链路层的设计要求。
CAN电路标准设计采用了CSMA/CD(载波监听多点接入/冲突检测)的共享总线机制。
在数据传输过程中,需要实现数据帧的发送、接收和错误检测等功能。
数据帧的格式包括起始位、帧ID、控制位、数据域、CRC校验等字段,需要按照标准来进行组织和解析。
在进行CAN电路标准设计时,还需要考虑一些设计原则。
首先是可靠性和稳定性,要保证在噪声和干扰的环境中能够正常工作。
其次是实时性和响应速度,要能够满足实时控制和通信的需求。
此外,还需要考虑成本、功耗和尺寸等因素,以实现经济、高效和紧凑的设计。
综上所述,CAN电路标准设计是一种广泛应用的通信协议,其设计要求包括物理层和数据链路层。
在设计过程中,需要考虑可靠性、稳定性、实时性等因素,并且合理选择电缆、电阻和收发器等硬件组成部分。
保持良好的设计原则可以有效地满足相关应用的通信需求。
CAN-bus现场总线基础教程【第1章】现场总线CAN-bus-CAN-bus物理层(2)

文库资料 ©2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.第1章 现场总线CAN-bus1.1 CAN-bus 物理层物理层主要是完成设备间的信号传送,把各种信息转换为可以传输的物理信号(通常为电信号或光信号),并将这些信号传输到其他目标设备。
基于该目的,CAN-bus 对信号电平、通信时使用的电缆及连接器等做了详细规定。
CAN-bus 由ISO 标准化后发布了两个标准,分别是ISO11898(125kbps~1Mbps 的高速通信标准)和ISO11519(小于125kbps 的低速通信标准)。
这两个标准仅在物理层不同,在数据链路层是相同的。
1.1.1 CAN 收发器与信号电平位于CAN-bus 物理层的器件要完成逻辑信号与电缆上物理信号的转换,该器件被称为收发器,其外形如图1.1所示。
图1.1 CAN 收发器的引脚与实物图CAN-bus 使用两根线缆进行信号传输,如图1.2所示,这两根线缆的名称分别为CAN_High 和CAN_Low (简称CAN_H 和CAN_L )。
CAN 收发器根据两根线缆之间的电压差来判断总线电平,这种传输方式被称为差分传输。
线缆上传输的电平信号只有两种可能,分别为显性电平和隐性电平,其中显性电平代表逻辑0,隐性电平代表逻辑1。
ISO11898和ISO11519-2电信号数据对比如表1.1所示。
表1.1 ISO11898和ISO11519-2电信号数据对比图1.2 双绞线文库资料 ©2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.双绞线(屏蔽/非屏蔽)双绞线(屏蔽/非屏蔽)CAN-bus 采用双绞线连接,并配合差分传输方式,可以有效的抑制共模干扰。
共模干扰是指信号线上的干扰信号的幅度和相位都相同,如图1.3所示。
例如通信电缆被一个电磁脉冲辐射了,根据中学的物理知识我们知道交变的磁场能感应出产生交变的电场,反映在信号电位上就是出现了瞬间的电压跌落或尖峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、物理层一般要求
1.1 物理层
物理层实现网络中电控单元(ECU)的电连接。
ECU 的数目限制于总线线路的负载承
受能力。
根据本部分的电气参数定义,在特定网段上ECU 的最大数目定为30。
1.2 物理介质
物理介质为屏蔽双绞线。
双绞线特性阻抗为120Ω,电流对称驱动。
两条线分别命名为
CAN_H 和CAN_L。
相应ECU 的管脚引线也分别用CAN_H 和CAN_L 来表示。
第三条连
接屏蔽终端的线用CAN_SHLD 表示。
1.3 差动电压
CAN_H和CAN_L相对于每个单独ECU地的电压有VCAN_H和VCAN_L 。
VCAN_H和VCAN_L
间的差动电压由下式计算:
Vdiff = VCAN_H — VCAN_L 1.4 总线电平
总线总是处于两种逻辑状态,即隐性和显性的其中之一(见图1)。
在隐性状态VCAN_H
和VCAN_L 固定在一个中值电压电平。
在带终端电阻的总线上,Vdiff 接近于零。
显性状态由大于最小门限的差动电压表示。
显性状态覆盖隐性状态并在显性位中传输。
1.5 仲裁期间的总线电平
在特定的位时间里,总线线路上两个不同的ECU 的显性位和隐性位的冲突仲裁结果是
显性位。
(见图1)
1.6 共模的总线电压范围
共模的总线电压范围定义为CAN_H 和CAN_L 的边界电压值。
在连接在总线上的所有ECU 正常运行的前提下,CAN_H 和CAN_L 的电压值由各个ECU 对地测得。
1.7 总线终端
在线路的两个末端上,必须接有负载电阻R 终结L。
RL 不得放置在ECU 中,以
避免其中一个ECU 断线,总线将失去终端(见图2)。
1.8 内部电阻
ECU 的内部电阻Rin 为隐性位状态,ECU 和总线线路断开下的CAN_H(或CAN_L)和ECU 地之间的电阻值。
(见图3)。
1.9 差动内部电阻
ECU 的差动内部电阻Rdiff 为隐性位状态,ECU 和总线线路断开下的CAN_H 和CAN_L间的电阻值。
(见图4)。
1.10 内部电容
ECU 的内部电容Cin 为隐性位状态,ECU 和总线线路断开下的CAN_H(或CAN_L)和ECU 逻辑地之间的电容值。
(见图3)。
1.11 差动内部电容
ECU 的差动内部电容Cdiff 为隐性位状态,ECU 和总线线路断开下的CAN_H 和CAN_L间的电容值。
(见图4)。
1.12 位时间
位时间tB 为一比特的持续时间(见图5)。
在位时间内执行的总线管理功能(如ECU同步,网络传输延迟补偿和采样点定位)由CAN 协议的可编程位计时逻辑集成电路定义。
本标准对应于250kbit/s 位时间是4μs。
CAN 协议集成电路供应商通常使用位段名称,它也可能是2 个位的段对应一个名称。