直线的参数方程教案word

合集下载

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。

高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案第06课时2、2、3 直线的参数方程学习目标1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程一、学前准备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则 =︱︱ ;3、经过点,倾斜角为的直线的普通方程为。

二、新课导学◆探究新知(预习教材P35~P39,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则 = ,而直线的单位方向向量因为,所以存在实数,使得 = ,即有,因此,经过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?◆应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A ,B两点的距离之积。

(教材P36例1)解:例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材P37例2)解:◆反馈练习1.直线上两点A ,B对应的参数值为,则 =( )A、0B、C、4D、22.设直线经过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。

三、总结提升◆本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价一、自我评价你完成本节导学案的情况为( )A.很好B.较好C. 一般D.较差课后作业1. 已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程3.过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

直线的参数方程(第一课时)

直线的参数方程(第一课时)

教 案直线的参数方程(第一课时)教学设计一、教学目标1、初步能推导直线的参数方程,理解其几何意义2、了解何时选用直线的参数方程3、体会参数方程的消元作用,初步能用联系的观点理解参数的意义二、教学重点:直线参数方程的推导及简单应用三、教学难点:直线参数方程几何意义的应用四、教学过程1、引入:引例1. 直线的参数方程方案1. 已知直线上定点M 0(X 0、y 0)和倾斜角解决1. 如图1. 述M 0作X 轴、Y 轴垂线交于H在RT △MHM 0中易得cos sin x xo MMo x y yo MMo x=+⎧⎨=+⎩ 当点M 与Mo 重合时也适合⊗⎩⎨⎧=+=+==⎩⎨⎧-=-=为参数的参数方程可得直线合左行时也可得在同理,当t x ts yo y x t xo x mmosocx yo y x mmo xo x mo cos l , ter |t ||mmo |cos m 其中,参数t 为几何意义是|t |表示直线上任一点M 0到定点M 的距离,式称为直线参数方程的标准式。

解法2. 从直线普通方程化为参数方程)t (0cos 0x cos )(cosxsomx yo y )x -mx(t =y -y 的点斜式方程为L 直线0X 2)1(为参数即得记比值为时或π当⎩⎨⎧+=+=-=-⇒-==⇒≠≠tsomx y y x t x t x xo x somx yo y xo x x X ⊗为参数注意:也可写成的距离到定点表示直线上统一点的几何意义是其中参数为参数的参数方程为直线时也适合上式或当t o t M M |t |)(o Yo y cos t Xo X 02)2(⎩⎨⎧+=+=⎩⎨⎧+=+=∴==ttaonX Y Y Xo X o t t mXTs X l X X2.解法3,用向量方法推导直线的参数方程如图2的几何意义同上为参数的倾斜角则为直线,,可以取为参数,)(使得则存在平行即与非零向量若直线t t cos ,cos ),(,R 11),(a ),(⎩⎨⎧=+=+===⎩⎨⎧+=+=⇒==-=--xts go y x t xo x l x somx m x l ter t tmyo y tl xo x m l t yo y xo x T l MoM m l l Yo Y Xo X MoM ε你还有其他方案吗?程的非标准形式式为直线参数方的水平距离与定点终点的几何意义表示直线上其中参数时,符合)当(为参数,则记比值为时当的点斜式方程为直成和斜率⋯⋯⎩⎨⎧+=+==⎩⎨⎧+=+=-=≠=@o @x 2)(k yo -y 0k (1)xo)-k(x yo -y l K Yo )o,X o(M 上定点L 已知直线 2.方案m m t ktyo y t xo o k t ktyo y t xo x t xo x 练习2(1)o(1,2)32m,103203(t )cos 20l M x y x tsom o y t o χ+-==+⎧⎨=⎩设直线过点倾斜角为试写出它的一个参数方程。

《直线的参数方程》教学设计

《直线的参数方程》教学设计

《直线的参数方程》教学设计一、教学目标知识与技能:通过分析质点在匀速直线运动中时间与位置的关系,了解直线参数方程,体会参数的意义;通过直线的点斜式方程及向量法推导直线参数方程的标准形式与一般形式,理解标准形式中参数t 的几何意义,会初步利用参数的几何意义解决问题,体会直线参数方程在解决问题中的作用。

过程与方法:通过直线参数方程的推导与应用,培养学生分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想。

情感态度与价值观:通过建立直线参数方程的过程,培养学生数学抽象、数学建模以及逻辑推理的能力。

二、教学重、难点教学重点:建立直线的参数方程。

教学难点:理解参数t 的几何意义及其应用。

三、学情分析学生前面已经学习过参数方程的概念,普通方程与参数方程的互化,体验了参数方程在解决问题中的一些应用。

但是,由于学生刚刚接触参数方程的概念,所以对于直线参数方程中参数的选定还是比较困难的,根据确定直线的几何条件联想到向量进而建立联系也是难点。

四、教学过程复习引入:问题:选取适当参数,把直线方程23y x =+化为参数方程.【师生活动】教师提问,学生回答【设计意图】本问题是教材上一节课2.1中的例题,通过学生的回忆,既节省了时间,又让学生体会到直线参数方程对于大家来说是不陌生的,让学生认识到直线参数方程的形式不是唯一的。

探究一:把直线看作质点的匀速运动曲线,建立直线的参数方程问题:设质点从点00(,)M x y 出发,沿着与x 轴成α角的方向作匀速直线运动,其速率为0v .(1)写出质点在x 轴、y 轴上的速度分量;(2)设(,)M x y 为t 时刻质点所在位置,试用t 表示,x y【师生活动】教师提问,学生思考并回答【设计意图】从物理的角度引出直线的参数方程,选取时间t 为参数,这样可以使学生更深刻且自然的理解参数的意义,若不顾及t 的物理意义,则可以在参数t 与质点位置(,)x y 之间建立一个一一对应的关系。

《直线的参数方程》教学案3

《直线的参数方程》教学案3

《直线的参数方程》教学案3教学目标1. 了解直线参数方程的条件及参数的意义.2. 能根据直线的几何条件,写出直线的参数方程及参数的意义.3. 通过观察、探索、发现的创造性过程,培养创新意识.教学重点直线参数方程的定义及方法教学难点选择适当的参数写出曲线的参数方程.教学用具PPT 课件 多媒体教学过程直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),其中参数t 的几何意义是:|t |是直线l 上任一点M (x ,y )到点M 0(x 0,y 0)的距离,即|t |=|M 0M →|.课堂互动1.若直线l 的倾斜角α=0,则直线l 的参数方程是什么? 【提示】 参数方程为⎩⎪⎨⎪⎧x =x 0+t ,y =y 0.(t 为参数)2.如何理解直线参数方程中参数的几何意义?【提示】 过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的长度,即|t |=|M 0M →|.①当t >0时,M 0M →的方向向上; ②当t <0时,M 0M →的方向向下;例题讲解已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t ,(t 为参数).(1)求直线l 的倾斜角;(2)若点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.【思路探究】 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义求得t .【自主解答】 (1)由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.(2)由(1)知,直线l 的单位方向向量e =(cos π6,sin π6)=(32,12). ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4(32,12)=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).规律方法1.一条直线可以由定点M 0(x 0,y 0),倾斜角α(0≤α<π)惟一确定,直线上的动点M (x ,y )的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),这是直线参数方程的标准形式.2.直线参数方程的形式不同,参数t 的几何意义也不同,过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a 、b 为常数,t 为参数).变式训练设直线l 过点P (-3,3),且倾斜角为5π6.(1)写出直线l 的参数方程;(2)设此直线与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数)交于A ,B 两点,求|PA |·|PB |.【解】 (1)直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-3+t cos 56π=-3-32t ,y =3+t sin 56π=3+t 2.(t 为参数)(2)把曲线C 的参数方程中参数θ消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得 4(-3-32t )2+(3+12t )2-16=0. 即13t 2+4(3+123)t +116=0.由t 的几何意义,知 |PA |·|PB |=|t 1·t 2|, 故|PA |·|PB |=|t 1·t 2|=11613.课堂作业1.直线⎩⎪⎨⎪⎧x =-2+t cos 60°,y =3+t sin 60°(t 为参数)的倾斜角α等于( )A .30°B .60°C .-45° D.135°【解析】 由直线的参数方程知倾斜角α等于60°,故选B. 【答案】 B2.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α(α为参数,0≤a <π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)【解析】 直线表示过点(1,-2)的直线. 【答案】 A3.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1C.22 D .-22【解析】 消去参数t ,得方程x +y -1=0, ∴直线l 的斜率k =-1. 【答案】 B4.(2013·濮阳模拟)若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t (t 为参数)与直线4x +ky =1垂直,则常数k =________.【解析】 将⎩⎪⎨⎪⎧x =1-2ty =2+3t化为y =-32x +72,∴斜率k 1=-32,显然k =0时,直线4x +ky =1与上述直线不垂直. ∴k ≠0,从而直线4x +ky =1的斜率k 2=-4k.依题意k 1k 2=-1,即-4k ×(-32)=-1,∴k =-6.【答案】 -6课后作业(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.下列可以作为直线2x -y +1=0的参数方程的是( )A.⎩⎪⎨⎪⎧ x =1+t ,y =3+t (t 为参数)B.⎩⎪⎨⎪⎧x =1-t ,y =5-2t(t 为参数)C.⎩⎪⎨⎪⎧x =-t ,y =1-2t (t 为参数)D.⎩⎪⎨⎪⎧x =2+255t ,y =5+55t (t 为参数)【解析】 题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为2x -y +3=0,故选C.【答案】 C2.(2013·许昌模拟)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-ty =2+t(t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ,即x 2+y 2=x ,即(x -12)2+y 2=14,∴ρ=cos θ所表示的图形是圆.由⎩⎪⎨⎪⎧x =-1-ty =2+t (t 为参数)消参得:x +y =1,表示直线.【答案】 D3.原点到直线⎩⎪⎨⎪⎧x =3+4t y =-32+3t (t 为参数)的距离为( )A .1B .2C .3D .4【解析】 消去t ,得3x -4y -15=0, ∴原点到直线3x -4y -15=0的距离 d =|3×0-4×0-15|32+ -42=3. 【答案】 C4.直线⎩⎪⎨⎪⎧x =1+12ty =-33+32t ,(t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)【解析】 将x =1+t 2,y =-33+32t 代入圆方程,得(1+t 2)2+(-33+32t )2=16,∴t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,∴x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3).【答案】 D二、填空题(每小题5分,共10分)5.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3. 【答案】 36.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数,0≤θ≤π2)和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),则曲线C 1与C 2的交点坐标为________.【解析】 曲线C 1和C 2的普通方程分别为⎩⎪⎨⎪⎧x 2+y 2=5x -y =1(0≤x ≤5,0≤y ≤5)①②联立①②解得⎩⎪⎨⎪⎧x =2,y =1.∴C 1与C 2的交点坐标为(2,1).【答案】 (2,1)三、解答题(每小题10分,共30分)7.化直线l 的参数方程⎩⎨⎧x =-3+ty =1+3t,(t 为参数)为普通方程,并求倾斜角,说明|t |的几何意义.【解】 由⎩⎨⎧x =-3+t ,y =1+3t消去参数t ,得直线l 的普通方程为3x -y +33+1=0.故k =3=tan α,即α=π3.因此直线l 的倾斜角为π3.又⎩⎨⎧x +3=t ,y -1=3t .得(x +3)2+(y -1)2=4t 2,∴|t |= x +3 2+ y -122.故|t |是t 对应点M 到定点M 0(-3,1)的向量M 0M →的模的一半.8.已知曲线C 的极坐标方程是ρ=4cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t +1,y =22t ,(t 为参数)求直线l 与曲线C 相交所成的弦的弦长.【解】 由ρ=4cos θ,得ρ2=4ρcos θ.∴直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.直线l 的参数方程⎩⎪⎨⎪⎧x =22t +1,y =22t .(t 为参数)化为普通方程为x -y -1=0. 曲线C 的圆心(2,0)到直线l 的距离为12=22,所以直线l 与曲线C 相交所成的弦的弦长为24-12=14. 9.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C的普通方程,并求出它们的公共点的坐标.【解】 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2 x -1 ,y 2=2x ,解得公共点的坐标为(2,2),(12,-1).教后反思。

16 直线的参数方程(2)(教师版)

16  直线的参数方程(2)(教师版)

16. 直线的参数方程(2)主备: 审核:学习目标:1.了解直线参数方程的条件及参数的意义;2. 能根据直线的几何条件,写出直线的参数方程. 学习重点:直线参数方程的简单应用,学习难点:直线参数方程中参数意义的理解. 学习过程:一、课前准备:阅读教材3739P P -的内容,仔细体会例2、例3、例4三种题型的解法,并思考下列问题:1.化下列参数方程为普通方程: (1)22()12x tt y t =-⎧⎨=-+⎩为参数,答:10x y +-=.(2)222()21x t t y ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数,答:10x y +-=. (3)1()x t t y t =-⎧⎨=⎩为参数,答:10x y +-=.(4)212()2x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数.答:10x y +-=. 2. 上面所化成的普通方程有上面关系?那些参数方程中的参数有明显的几何意义?答:(2)、(4)的参数有明显的几何意义. 二、典型例题:【例2】经过点(1,2)M 作直线l ,交椭圆22186x y +=于两点A 、B .如果点M 恰好为线段AB 的中点,求直线l 的方程.【解析】设过点(1,2)M 的直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数),代入椭圆方程,得22(sin3)2(3cos 8sin )50t t ααα+++-=,则1AM t =,2MB t =.M 在椭圆内,所以1202t t +=,即3cos 4sin 0αα+=, 所以3tan 4k α==-, 所以直线l 的方程为32(1)4y x -=--,即34110x y +-=.【例3】如图所示,AB 、CD 是双曲线221x y -=的 两条相交弦,交点为P ,两弦AB 、CD 与双曲线实轴长轴的夹角为α、β,且αβ=. 求证:||||||||PA PB PC PD ⋅=⋅.【证明】由已知,βπα=-,设点P 坐标为00(,)x y ,则直线AB 的方程为00cos sin x x t y y t αα⎧⎪⎨⎪⎩=+=+(t 为参数),代入双曲线方程221x y -=并整理,得222220000(cos sin )2(cos sin )(1)0t x y t x y αααα-+-+--=,由于22cos sin 0αα-≠,已知直线AB 与椭圆有两个交点,因此上述方程有个实根,设为1t 、2t ,容易得到 2200121222|1|||||||||||cos sin x y PA PB t t t t αα--⋅=⋅=⋅=-…………① 同理,对于直线CD ,将α换成πα-,即得到220022|1|||||cos ()sin ()x y PC PD παπα--⋅=---2200221||cos sin x y αα--=-…………………② 由①②得,||||||||PA PB PC PD ⋅=⋅.【例4】当前台风中心P 在某海滨城市O 向东400km 处生成,并以30/km h 的速度向西偏北θ(5tan θ=)方向移动. 已知台风中心300km 以内的地方都属于台风侵袭的范围,那么经过多长时间后该城市开始受到侵袭?【解析】取O 为原点,OP 所在的直线为x 轴,建立直角坐标系,则点P 的坐是(400,0). 以O 为圆心,300km 为半径作圆O ,圆O 的方程为 222300x y +=. 当台风中心移动的位置在圆O 内或圆O 上是时,城市O 受到台风侵袭. 设过时间t 后,台风中心(,)M x y ,则由题意得,台风中心M 移动形成的直线l 的方程为40030cos()30sin()x t y t πθπθ⎧⎨⎩=+-=-(t 为参数),即240030()330x t y ⎧⎪⎪⎨⎪⎪⎩=+⨯-=(t 为参数), 化简得40020105x t y t ⎧⎪⎨⎪⎩=-=(t 为参数).当点(40020,105)M t t -在圆O 内或圆O 上时, 有222(300(40020)105)t t +≤-,291607000t t -+≤,解得70910t ≤≤. 因此大约在7.7小时后该城市开始受到台风侵袭,受侵袭的时间大约持续2.2个小时. 三、总结提升:直线的参数方程00x x at y y bt ⎧⎪⎨⎪⎩=+=+(t 为参数),称为直线方程的一般式;只有在221a b +=时,才会变为00cos sin x x t y y t αα⎧⎪⎨⎪⎩=+=+(t 为参数),称为标准式.标准式中的参数t 才有明显的几何意义.我们只需掌握标准式就行了.认真研读教材中的例2、例3、例4和本学案的例题,体会这几种题型的解法. 四、反馈练习:1. 曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是 ( B )A .21(0,)(,0)52、B .11(0,)(,0)52、C .(0,4)(8,0)-、D .5(0,)(8,0)9、 2. 将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为 ( C ) A .2y x =- B .2y x =+C .2(23)y x x =-≤≤D .2(01)y x y =+≤≤3. 直线l 经过点(1,2),倾斜角为34π,则其参数方程可以是 ( D )A .12x t y t =+⎧⎨=+⎩()t 为参数 B .12x ty t =-⎧⎨=-⎩()t 为参数 C .3x t y t =+⎧⎨=⎩()t 为参数 D .3x ty t=-⎧⎨=⎩()t 为参数 4. 直线l :y x =与曲线2y x =交于A 、B 两点,若点M 坐标为(1,1)--,则||||MA MB ⋅= ( C )A .15B .16C .17D .185. 直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为54-. 6. 过点(3,1)M 作直线l 交双曲线2212y x -=于A 、B 两点,若(3,1)M 为线段AB 的中点,求直线l 的方程.【解析】设直线l 的参数方程为3cos 1sin x t y t αα⎧⎨⎩=+=+(t 为参数),代入双曲线方程,得222(2cos sin )(12cos 2sin )150t t αααα-+-+=, 则1AM t =,2MB t =. 因为(3,1)M 为线段AB 的中点,所以1202t t +=, 即12cos 2sin 0αα-=,所以tan 6k α==,所以直线l 的方程为16(3)y x -=-,即6170x y --=.五、学后反思:。

直线的参数方程课时教案(第一课时)

直线的参数方程课时教案(第一课时)

课时教案一、课题直线的参数方程(第一课时,共两课时)二、教学目的1.了解直线参数方程的条件以及参数的几何性质2.能根据直线的几何条件,写出直线的参数方程3.通过观察、探索、发现的过程,发展学生数学核心素养的“知识理解”、“知识迁移”、“知识创新”三级目标。

三、课型与教法新授课引导—发现模式四、教学重点直线参数方程的构建五、教学难点从动点M点的坐标变成直线l的参数方程的转化、t的几何意义、证明直线的参数方程、辨别是否是直线的标准参数方程六、教学过程探究一建立已知直线的参数方程1.复习引入(1)若点是直线l上的两相异点,则直线l的方向向量为,倾斜角为时,直线单位方向向量为;(2)已知两个向量),则共线的充要条件是;(3)如果直线l过定点,且倾斜角为,则直线l的方程为。

2. 讲授新课问题1 如图1,位于原点的机器人以单位速度沿单位方向向量行走时间t到达点M,求M点的坐标。

借助前面准备的知识由三角函数的定义不难得到,写成方程即。

问题2 如图2,如果初始位置不在原点,而在点,其他条件不变,求点M的坐标。

借助前面问题1和坐标的定义,不难得到,写成方程即。

问题3一般地,设直线l过点,且倾斜角为,点为其上任意一点,求M点的坐标。

可以提示学生引入参数t,则学生可类比得到(t为参数),此即为过点且倾斜角为的直线l的参数方程。

问题4 你能写出具体推导过程吗?指导学生利用向量法证明,同时指导学生借助点斜式方程进行证明。

探究二直线参数方程中t的几何意义问题5直线的参数方程(t为参数)中哪些是变量?哪些是常量?很容易由问题1,2,3得出是变量,是常量。

问题6 参数的几何意义是什么?为什么?结合参数方程的推导过程,可以引导学生从,且,得到,也可由。

由此可知|t|表示直线上的动点到定点的距离,即为参数的几何意义。

问题7参数t的取值范围是什么?t的正负与点的位置之间有什么关系?由中的正负可确定和的大小,从而确定的正负与点位置之间的关系,再利用图3可知:当时,点在点的上方;当时,点在点的下方;当时,点与点重合。

人教A版选修4-4 第二讲 第三节 直线的参数方程教案设计

人教A版选修4-4 第二讲 第三节 直线的参数方程教案设计

三、直线的参数方程一、重点难点点拨重点:直线的参数方程难点:应用直线的参数方程去处理解决问题二、知能目标解读1.掌握直线参数方程的标准形式,明确参数的几何意义。

2.能运用直线的参数方程解决某些相关的应用问题(弦长问题、中点问题等)3.通过关于直线和圆锥曲线的综合练习,进一步从中体会到参数方程的方便之处和参数的作用,增强在处理这一类问题中的参数意识。

三、授课内容1.经过点),(000y x P ,倾斜角α的直线l 的参数方程为)t t y y t x x 为参数(sin cos 00⎩⎨⎧+=+=αα 2.直线的参数方程(标准形式)中,||t 表示参数t 对应的动点),(y x M 与直线上的定点),(000y x M 这间的距离,就是有向线段→M M 0相对于→e 的坐标。

①设直线上的任意两点21,P P 对应的参数分别为21,t t ,则||||2121t t P P -=(弦长公式) ②位于直线上的三点21,,P P P 把对应的参数分别为21,,t t t ,若P 是线段21P P 中点,则有221t t t +=,特别,当210,P P P 为的中点时,有021=+t t 3、典例:【例12】已知直线01:=-+y x l 与抛物线2x y =交于B A ,两点,求线段AB 的长和点)2,1(-M 到B A ,两点的距离之积【解析】因为直线l 过定点M ,且l 的倾斜角为43π,所以它的参数方程是)(43sin 243cos 1为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+=+-=ππ 即 )(222221为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+=--= 代入2x y =,得0222=-+t t 得,2,22121-=⋅-=+t t t t由参数的几何意义,得2||||||,10||||2121=⋅=⋅=-=t t MB MA t t AB【例13】.2221x t t x y y =+⎧⎪-=⎨=⎪⎩直线为参数)被双曲线上截得的弦长为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.
4. 等价转化,深入探究
问题:如果点 ,M的坐标分别为 ,怎样用参数 表示 ?
教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:
因为 ,( ), ,
,所以存在实数 ,使得 ,即
【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.
三、运用知识,培养能力
练习
例1.已知直线 与抛物线 交于A,B两点,求线段AB的长度和点 到A,B两点的距离之积.
先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:
解法一:由 ,得 .

于是 , ,
即 , .
因此,经过定点 ,倾斜角为 的直线的参数方程为
( 为参数).
教师提出如下问题让学生加强认识:
①直线的参数方程中哪些是变量?哪些是常量?
②参数 的取值范围是什么?
③参数 的几何意义是什么?
总结如下:① , 是常量, 是变量;
② ;
③由于 ,且 ,得到 ,因此 表示直线上的动点M到定点 的距离.当 的方向与数轴(直线)正方向相同时, ;当 的方向与数轴(直线)正方向相反时, ;当 时,点M与点 重合.
2、直线参数方程探究
1.回顾数轴,引出向量
数轴是怎样建立的?数轴上点的坐标的几何意义是什么?
教师提问后,让学生思考并回答问题.
教师引导学生明确:如果数轴原点为O,数1所对应的点为A,数轴上点M的坐标为 ,那么:
① 为数轴的单位方向向量, 方向与数轴的正方向一致,且 ;②当 与 方向一致时(即 的方向与数轴正方向一致时), ;
直线的参数方程
教学目标:
1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.
2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.
3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研
2.直线的方向向量的概念.
3.在平面直角坐标系中,确定一条直线的几何条件是什么?直线的方程有几种形式?
4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程.
5.如何建立直线的参数方程?
这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考.
【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备.
【设计意图】明确参数.
问题(2):如何确定直线 的单位方向向量 ?
教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.
教师引导学生确定单位方向向量,在此基础上启发学生得出 .
的科学精神、严谨的科学态度.
教学重点:联系数轴、向量等知识,写出直线的参数方程.
教学难点:通过向量法,建立参数 (数轴上的点坐标)与点在直角坐标系中的坐标 之间的联系.
教学方式:启发、探究、交流与讨论.
教学手段:多媒体课件.
教学过程:
一、回忆旧知,做好铺垫
教师提出问题:
1.圆,椭圆,双曲线,抛物线的参数方程.
【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.
探究:直线 ( 为参数)与曲线 交于 两点,对应的参数分别为 .
(1)曲线的弦 的长是多少?
(2)线段 的中点M对应的参数 的值是多少?
先由学生思考,讨论,最后师生共同得到:

【设计意图】通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.
【设计意图】体会直线参数方程在解决弦中点问题时的作用.
四、课堂练习
2.已知过点 ,斜率为 的直线和抛物线 相交于A,B两点,设线段AB的中点为M,求点M的坐标.
解:设过点 的直线AB的倾斜角为 ,由已知可得: , .
所以,直线应参数是 ,
所以点M的坐标是 .
【设计意图】注重知识的落实,通过问题的解决,使学生进一步理解所学知识.
设 , ,由韦达定理得: .

由(*)解得 ,

所以 .


解法二、因为直线 过定点M,且 的倾斜角为 ,所以它的参数方程是
( 为参数), 即 ( 为参数).
把它代入抛物线的方程,得 ,
解得 , .
由参数 的几何意义得: ,

在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.
【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.
3. 选好参数
问题(1):当点M在直线 上运动时,点M满足怎样的几何条件?
让学生充分思考后,教师引导学生得出结论:将直线 当成数轴后,直线 上点M运动就等价于向量 变化,但无论向量怎样变化,都有 .因此点M在数轴上的坐标 决定了点M的位置,从而可以选择 作为参数来获取直线 的参数方程.
当 与 方向相反时(即 的方向与数轴正方向相反时), ;
当M与O重合时, ;
③ .教师用几何画板软件演示上述过程.
【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.
2.类比分析,异曲同工
问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?
(2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?
教师提出问题后,引导学生思考并得出以下结论:选取直线 上的定点 为原点,与直线 平行且方向向上( 的倾斜角不为0时)或向右( 的倾斜角为0时)的单位向量 确定直线 的正方向,同时在直线 上确定进行度量的单位长度,这时直线 就变成了数轴.于是,直线 上的点就有了两种坐标(一维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.
相关文档
最新文档