选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

合集下载

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。

)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。

例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。

高二数学选修44教案07圆锥曲线的参数方程

高二数学选修44教案07圆锥曲线的参数方程

高二数学选修4-4教案07圆锥曲线的参数方程一、数学构建1.圆的参数方程:(1)圆222r y x =+的参数方程为 为参数)(ϕ⎩⎨⎧ϕ=ϕ=sin r y cos r x (2)圆22020r )y y ()x x (=-+-的参数方程为 为参数)(ϕ⎩⎨⎧ϕ+=ϕ+=sin r y y cos r x x 00 2.椭圆的参数方程:(1)椭圆)(0b a 1b y a x 2222>>=+的参数方程为 为参数)(ϕ⎩⎨⎧ϕ=ϕ=sin b y cos a x (1)椭圆)(0b a 1b )y y (a )x x (220220>>=-+-的参数方程为为参数)(ϕ⎩⎨⎧ϕ+=ϕ+=sin b y y cos a x x 00 3.双曲线的参数方程:(1)双曲线1b y a x 2222=-的参数方程为 为参数)(ϕ⎩⎨⎧ϕ=ϕ=cot b y sec a x (1)椭圆1b )y y (a )x x (220220=---的参数方程为 为参数)(ϕ⎩⎨⎧ϕ+=ϕ+=cot b y y sec a x x 00 上述圆、椭圆、双曲线的参数方程中,参数ϕ的几何意义为离心角。

4.抛物线px 2y 2=的参数方程为为参数)(t pt 2y pt 2x 2⎩⎨⎧== 其中t 的几何意义是抛物线px 2y 2=上除顶点外的点与原点连线的斜率的倒数。

二、知识运用【例1】点P 在圆41)2y (x 22=-+上移动,点Q 在椭圆4y 4x 22=+上移动,求|PQ|的最大值及相应的点Q 坐标。

解 设Q (2cosa ,sina )、O ′(0,2),则328328)32a (sin 3)2a (sin a cos 4|Q 'O |2222≤++-=-+=。

2132|Q 'O |≤∴,当且仅当35a cos 32a sin ±=-=,时取等号。

213221|Q 'O |21|Q 'O ||'PO ||PQ |+≤+=+≤Θ,∴|PQ|的最大值是213221+,相应的点Q 坐标为),(32532-±。

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ

(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.

优质课选修4-4第二讲_参数方程(圆锥曲线的参数方程)

优质课选修4-4第二讲_参数方程(圆锥曲线的参数方程)

求该椭圆的离心率e的取值范围。
1.圆心在原点,半径为r的圆的参数方程:
x y
rcos(为 rsi n
参数

2.圆心为(a, b),半径为r的圆的参数方程:
xybarrscions(为参数)
y
M(x,y)
r
o
M0 x
例、已知圆方程x2+y2 +2x-6y+9=0,将它 化为参数方程。
解: x2+y2+2x-6y+9=0化为标准方程,
例6 θ取一切实数时,连接
A(4sinθ,6cosθ)和B(-4cosθ, 6sinθ)
两点的线段的中点轨迹是
.
A. 圆 B. 椭圆 C. 直线
D. 线段
例7
已知点A在椭圆
x2 144
y2 1 36
上运动,点B(0,
9)、
点M在线段AB上,且 AM 1 ,试求动点M的轨迹方程。
MB 2
解:由题意知B(0, 9), 设A(1c2o , 6 ssin ),并且设M(x, y)
由点到直线的距 ,得离到公 M 点到 式直线的 距离为
d|3cos4sin10|
5
|5cos53s5in5410|
15|5cos010|,
其0 中 满c足 o 0s 5 3,sin 05 4.
由三角函数 ,当 性 0质 0知 ,d取最小 5.值
此 ,3 c时 o 3 s co 0 s 5 9 ,2 si n 2 si0 n 5 8 .
1.代入法:利用解方程的技巧求出参数t,然后代入消 去参数
2.三角法:利用三角恒等式消去参数 3.整体消元法:根据参数方程本身的结构特征,从
整体上消去。

选修4-4第二讲参数方程(文)

选修4-4第二讲参数方程(文)

一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。

2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。

3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。

4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。

二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。

难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。

三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。

一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。

知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。

2017-2018学年高中数学人教A版选修4-4第二讲参数方程二圆锥曲线的参数方程课堂导学案

2017-2018学年高中数学人教A版选修4-4第二讲参数方程二圆锥曲线的参数方程课堂导学案

二圆锥曲线的参数方程讲堂导学三点分析一、利用参数方程求点的轨迹【例 1】已知 A、 B 分别是椭圆x2 y2 =1 的左极点和上极点, 动点 C 在该椭圆上运动 , 求36 9△ABC的重心 G的轨迹的一般方程 .分析 : 此题有两种思虑方式, 求解时把点 C 的坐标设为一般的(x ,y ) 的形式或依据它在该椭1 1圆上运动也能够设为 (6cos θ,3sin θ ) 的形式 , 进而予以求解 .解:由动点 C 在该椭圆上运动, 故据此可设点 C 的坐标为 (6cos θ ,3sin θ ), 点 G 的坐标为(x,y), 则由题意可知点 A(-6,0) 、 B(0,3).由重心坐标公式可知6 0 6 cos2 2cos ,x 30 3 3sin1 sin .y 3由此消去θ 获得( x 2) 22即为所求 .4 +(y-1) =1,温馨提示此题的解法表现了椭圆的参数方程关于解决有关问题的优胜性, 运用参数方程显得更简单、更便利 .各个击破类题操练 1已知双曲线x2 y 2=1(a>0,b>0) 的动弦 BC平行于虚轴 ,M、N 是双曲线的左、右极点 .a 2b 2(1)求直线 MB、 CN的交点 P 的轨迹方程 ;(2)若 P(x 1,y 1),B(x 2,y 2), 求证 :a 是 x1、x2的比率中项 .(1) 解 : 由题意可设点B(asec θ ,btan θ), 则点 C(asec θ ,-btanθ ),又M(-a,0),N(a,0),∴直线 MB的方程为 y=b tan(x+a), a sec a直线 CN的方程为 y=b tana (x-a).a sec将以上两式相乘得点P 的轨迹方程为x 2 y 2a 2b 2 =1.(2) 证明 : 因为 P 既在 MB 上 , 又在 CN 上 , 由两直线方程消去 y 1 得 x 1=a, 而 x 2=asec θ , 因此sec有 x 1x 2=a 2, 即 a 是 x 1、 x 2 的比率中项 . 变式提高 1在直角坐标系 x 2t 1, xOy 中, 参数方程2t 2(t 为参数 ) 表示的曲线是 ___________.y 1分析 : t=x 1代入 y=2t 2-1 得 y=2(x 1) 2-1, 即 (x-1) 2=2(y+1).22答案 : 抛物线二、利用参数方程求坐标 【例 2】 在椭圆 短距离 .7x 2+4y 2=28 上求一点 , 使它到直线l:3x-2y-16=0的距离最短, 并求出这一最解:把椭圆方程化为x 2 y 2 4=1 的形式 ,7则可设椭圆上点 A 坐标为 (2cos α ,7sin α ),则 A 到 直 线 l的 距 离 为 d=| 6 cos27 sin 16 | | 8sin() 16|(此中13133).β=arcsin4∴当 β - α=时,d 有最小值 , 最小值为88 1313.213此时 α =β-, ∴sin α =-cos β =7 ,cos α =sin β = 3 .244 ∴A 点坐标为 3 7( ,).24温馨提示用参数方程解决一些坐标问题 , 简单易行 , 本例是很典型的 .类题操练 2椭圆x 4 cos ,y( θ 为参数 ) 的左焦点的坐标是 __________.3sin分析 : a=4,b=3, ∴c= 7 . ∴坐标为 ( 7 ,0).答案:(7 ,0)变式提高 2在椭圆x 2y 2 上求一点 P, 使四边形 OAPB 的面积最大 , 并求最a 2b 2 =1(a>b>0) 的第一象限的大面积 .分析 : 如图 , 将四边形 OAPB 切割成△ OAP 与△ OPB,则 P 点纵坐标为△ OAP 的 OA 边上的高 ,P 点横坐标为△ OPB 的 OB 边上的高 . 解: 设 P(acos θ ,bsin θ ),S四边形 OAPB=S △OAP +S △OPB = 1 absin θ + 1abcos θ22= 1ab(sin θ +cos θ )=2absin(+θ).224当 θ =时,四边形 OAPB 面积最大,最大面积为2 点坐标为ab, 此 时 ,P42(2a,2b).22三、范围及最值问题【例 3】 圆 M 的方程为 x 2+y 2-4Rxcos α -4Rysin α +3R 2=0(R>0).(1) 求该圆圆心 M 的坐标以及圆 M 的半径 ;(2) 当 R 固定 , α 变化时 , 求圆心 M 的轨迹 , 并证明此时无论 α 取什么值 , 全部的圆 M 都外切 于一个定圆 .思路分析 : 此题中所给的圆方程中的变数有多个, 此时要联合题意分清终究是哪个真实在变,而像这样的详细题目特别简单犯弄不清真实的参数的错误 .解 :(1) 由 题 意 得 圆 M 的 方 程 为 (x-2Rcos α ) 2+(y-2Rsin α) 2=R 2, 故 圆 心 为M(2Rcos α ,2Rsin α ), 半径为 R.x 2Rcos , ( 此中 α 为参数 ), 两式平方相加得(2) 当 α 变化时 , 圆心 M 的轨迹方程为2Rsiny222半径为 2R 的圆 . x +y =4R, 因此圆心 M 的轨迹是圆心在原点 ,因为(2Rcos )2(2R sin )2=2R=3R-R, (2Rcos) 2 (2Rsin )2 =2R=R+R,因此全部的圆 M 都和定圆 222222内切 .x +y =R 外切 , 和定圆 x +y =9R 类题操练 3x cos ,曲线 C:( θ 为参数 ) 的一般方程是 , 假如 C 与直线 x+y+a=0 有 ________公共y1 sin点, 那么实数 a 的取值范围是 _________. 分析: 参数方程消去 θ 得 x 2+(y+1) 2=1.曲线 C 与直线 x+y+a=0 有公共点 , 则圆心到直线的距离不超出半径长 ,即| 01a |≤1. ∴1-2 ≤a ≤1+ 2 .2答案 : x2+(y+1) 2=1 1- 2 ≤a≤1+ 2变式提高 3设 a、b∈ R,a 2+2b2=6, 则 a+b 的最小值是 ________.2 2分析 : ∵a+2b =6,∴a 2 b26 =1.3设a 6 cos ,( θ为参数 ), b 3 sin∴a+b= 6 cosθ+ 3 sinθ=3sin(θ+φ),3φ = 6此中 cos φ=,sin ,3 3 即 a+b 的最小值是 -3.答案:-3。

高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-

高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-

二 圆锥曲线的参数方程1.理解椭圆的参数方程及其应用.(重点) 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点、易错点)[基础·初探]教材整理1 椭圆的参数方程阅读教材P 27~P 29“思考”及以上部分,完成下列问题.普通方程参数方程x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φy =b sin φ(φ为参数)y 2a 2+x2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数)椭圆⎩⎪⎨⎪⎧x =4cos φy =5sin φ(φ为参数)的离心率为( )A.45 B.35 C.34D.15【解析】 由椭圆方程知a =5,b =4,∴c 2=9,c =3,e =35.【答案】 B教材整理2 双曲线的参数方程 阅读教材P 29~P 32,完成下列问题.普通方程参数方程x 2a 2-y2b 2=1(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φy =b tan φ(φ为参数)下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 【解析】 由x =3sec θ得, x 2=3cos 2θ=3sin 2θ+cos 2θcos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适. 【答案】 B教材整理3 抛物线的参数方程阅读教材P 33~P 34“习题”以上部分,完成下列问题. 1.抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数).2.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t2y =4t (t 为参数)上,则|PF |=________.【解析】 抛物线为y 2=4x ,准线为x =-1, |PF |等于点P (3,m )到准线x =-1的距离,即为4. 【答案】 4[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a ,b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.[再练一题]1.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2, 则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b2sec 2 φ-tan 2 φ|a 2+b 2=a 2b2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.[再练一题]2.如图2­2­1,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图2­2­1【证明】 设P (sec φ,tan φ), ∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1.∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l于Q ,求QF 与OP 的交点M 的轨迹方程.【导学号:91060021】【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0). 当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.[再练一题]3.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2[构建·体系]圆锥曲线的参数方程—⎪⎪⎪—椭圆的参数方程—双曲线的参数方程—抛物线的参数方程1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x 24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )【导学号:91060022】A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax, 代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0) 4.在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1. 又a >0,∴a =32.【答案】 325.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.【解】 将⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得:516t 4+t 2-1=0,解得t 2=45,∴t =255(y =t ≥0),x =54t 2=54×45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A 2.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125 【解析】 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34,所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.【答案】 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( )A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3) D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α, 所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤3,∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B5.方程⎩⎪⎨⎪⎧x =2t-2-ty =2t +2-t(t 为参数)表示的曲线是( )【导学号:91060023】A .双曲线B .双曲线的上支C .双曲线的下支D .圆【解析】 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,得y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 【答案】 B 二、填空题6.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,得点M 的坐标为(1,23) 直线OM 的斜率k =231=2 3.【答案】 2 37.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=08.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 由⎩⎨⎧x =t ,y =t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 【答案】 (1,1) 三、解答题9.如图2­2­2所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图2­2­2【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.10.已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,① x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0, 解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),⎝ ⎛⎭⎪⎫85,-35,则|AB |=⎝ ⎛⎭⎪⎫-35-12+⎝ ⎛⎭⎪⎫852=825,故所求的弦长为825.[能力提升]1.P 为双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0) B .9x 2+16y 2=16(y ≠0) C .9x 2-16y 2=1(y ≠0) D .9x 2+16y 2=1(y ≠0)【解析】 由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 【答案】 A2.若曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A .RB .(0,+∞)C .(0,1)D .[0,1)【解析】 将曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2=-(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.【答案】 D3.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θy =4sin θ(0≤θ≤2π),恒有公共点,则b 的取值范围是________.【解析】 将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解.令f (θ)=4sin θ-2cos θ=25sin(θ+φ)⎝ ⎛⎭⎪⎫tan φ=12,∴-25≤f (θ)≤25, ∴-25≤b ≤2 5. 【答案】 [-25,25]4.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。

高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-

高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-

第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦点在y 轴上的椭圆的参数方程:2222y 1,b ax +=练习:已知椭圆4922y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。

(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧?错解:由已知可得a =3,b =2,θ=600,∴x =acos θ=3cos60°=23,y =bsin θ=2sin60°=3。

从而,点M 的坐标为)3,23(。

正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4922y x +=1联立, 解得x =31316, y =93316。

所以点M 的坐标为(31316,93316)。

另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。

代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。

例1 求椭圆)0b a (1by a x 2222>>=+的内接矩形的面积及周长的最大值。

解:如图,设椭圆1by a x 2222=+的内接矩形在第一象限的顶点是A )sin cos (ααb a ,)20(πα<<,矩形的面积和周长分别是S 、L 。

ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α⋅α=⨯=,当且仅当4a π=时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ϕϕ=⎧⎨=⎩53arcsin 23-π=α时,距离d 有最大值2。

例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且21MB AM =,试求动点M 的轨迹方程。

解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。

则,α=+⨯+α=++=cos 8211021cos 12211x 21x x B A 3sin 4211921sin 6211y 21y y B A +α=+⨯+α=++=, 动点M 的轨迹的参数方程是⎩⎨⎧+α=α=3sin 4y cos 8x (α是参数),消去参数得116)3y (64x 22=-+。

例6 椭圆)0b a (1by a x 2222>>=+与x 轴的正向相交于点A ,O 为坐标原点,若这个椭圆上存在点P ,使得OP ⊥AP 。

求该椭圆的离心率e 的取值范围。

解:设椭圆)0b a (1by a x 2222>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A(a ,0)。

则acos a 0sin b k cos a sin b k AP OP -α-α=αα=,。

而OP ⊥AP , 于是1acos a 0sin b cos a sin b -=-α-α⋅αα,整理得0b cos a cos )b a (22222=+α-α- 解得1cos =α(舍去),或222ba b cos -=α。

因为1cos 1<α<-,所以1b a b 1222<-<-。

可转化为1ee 1122<-<-,解得21e 2>,于是1e 22<<。

故离心率e 的取值范围是⎪⎪⎭⎫⎝⎛122,。

例7 四边形ABCD 内接于椭圆16922y x +=1,其中点A(3,0),C(0,4),B 、D 分别位于椭圆第一象限与第三象限的弧上。

求四边形ABCD 面积的最大值。

双曲线的参数方程与研究椭圆参数方程的方法类似,我们来研究双曲线②)0,0(12222>>=-b a b y a x的参数方程。

如图, 以原点O 为圆心, a, b(a>0, b>0)为半径分别作同心圆C 1、C 2。

设A 为圆C 1上任一点, 作直线OA, 过A 作圆C 1的切线AA'与x 轴交于点A', 过圆C 2与x 轴的交点B 作圆C 2的切线BB'与直线OA 交于点B'。

过点A',B'分别作y 轴, x 轴的平行线A'M, B'M 交于点M,设OA 与OX 所成的角为φ(φ∈[0, 2π)且φ≠π/2,φ≠3π/2), 求点M 的轨迹方程, 并说出点M 的轨迹。

设Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是),(y x .那么点1A 的坐标为)0,(x ,点1B 的坐标为),(y b .因为点A 在圆1C 上,由圆的参数方程得点A 的坐标为(ϕϕsin ,cos a a ),所以,)sin ,cos (,)sin ,cos (1ϕϕϕϕa a x AA a a OA --==.因为1AA OA ⊥,所以01=•AA OA ,从而0)sin ()cos (cos 2=--ϕϕϕa a x a ,解得ϕcos a x =.记ϕϕsec cos 1=,(ϕsec 是正割函数,它表示余弦函数的倒数,现在只是为推导参数方程才引入,所以不要求引入,仅供同学们学习了解使用)则ϕsec =x .因为点1B 在角ϕ的终边上,由三角函数的定义有by=ϕtan ,即ϕtan b y =.所以,点M 的轨迹的参数方程为⎩⎨⎧==ϕϕtan sec b y a x (ϕ为参数)(2) 因为1cos sin cos 1222=-ϕϕϕ,即1tan sec 22=-ϕϕ,所以,从(2)方程中消去参数ϕ后得到点M 的轨迹的普通方程(1).这是中心在原点,焦点在x 轴上的双曲线.所以(2)就是双曲线(1)的参数方程.此时的参数ϕ的范围为[)πϕ2,0∈,且23,2πϕπϕ≠≠. 由图可知,参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.与椭圆类似,12222=-by a x 双曲线上任意一点的坐标可以设为()ϕϕtan ,sec b a ,这是解决与双曲线有关的问题的重要方法.例1.求点M 0(0, 2)到双曲线x 2-y 2=1的最小距离。

例3 求证:等轴双曲线平行于实轴的弦在两顶点所张的角均为直角. 分析:(1)实轴和虚轴等长的双曲线,叫等轴双曲线,所以等轴双曲线的渐近线,方程为x y ±=,两渐近线的夹角为直角.(2)此题求证:221π=∠=∠B AA A BA证明:设双曲线方程为222a y x =-,取顶点A 2(0,a ),弦AB ∥Ox ,),tan ,sec (ααa a B 则)tan ,sec (ααa a A -.∵,sec tan ,sec tan 22aa a k a a a k BA A A -=--=αααα∴122-=•BA A A k k∴弦AB 对1A 张直角,同理对2A 也张直角.经验:①掌握等轴双曲线的定义和等轴双曲线方程的设法222a y x =-.②根据题义要能化出较标准的图象.③证明是直角,实际是证明所在直线的斜率积为-1.例4 已知双曲线)0,0(12222>>=-b a b y a x ,A ,B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P )0,(0x ,求证:ab a x 220||+>.分析:证明题是学生学习较困难的部分,而不等式是更困难的部分,所以在证明前学会分析条件和结论之间的联系是解题的关键.解:设A ,B 坐标分别为)tan ,sec (ααb a ,)tan ,sec (ββb a ,则中点为M ))sec (sec 2(βα+a ,))tan (tan 2βα+b,于是线段AB 中垂线方程为⎥⎦⎤⎢⎣⎡+----=+-)sec (sec 2)tan (tan )sec (sec )tan (tan 2βαβαβαβαa x b a b y 将)0(,0x P 代入上式,∴)sec (sec 2220βα++=ab a x .∵2|sec sec |>+βα(∵A ,B 相异),∴ab a x 220||+>.经验:①中垂线的特点是直线过AB 中点且与线段AB 垂直.②关键点是2|sec sec |>+βα,由此得出结论.抛物线的参数方程前面曾经得到以时刻t 为参数的抛物线的参数方程:)10000(215001002g t t gt y tx ≤≤⎪⎩⎪⎨⎧-==为参数,且对于一般抛物线,怎样建立参数方程呢?以抛物线的普通方程px y 22=为例,其中p 为焦点到准线的距离。

设M(x, y)为抛物线上除顶点外的任意一点,以射线OM 为终边的角记作α。

显然,当α在)2,2(ππ-内变化时,点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的点M 与之对应,因此,可以取α为参数来探求抛物线的参数方程.因为点M 在α的终边上,根据三角函数定义可得αtan =x y ,由方程px y 22=,αtan =xy联立,得到⎪⎪⎩⎪⎪⎨⎧==ααtan 2tan 22p y p x (α为参数),这是抛物线(不包括顶点)的参数方程.如果令αtan 1=t ,),0()0,(+∞⋃-∞∈t ,则有⎩⎨⎧==pt y pt x 222(t 为参数).当t=0时,由参数方程⎩⎨⎧==pt y pt x 222(t 为参数)表示的点正好就是抛物线的顶点(0,0),因此,当),(+∞-∞∈t 时,参数方程⎩⎨⎧==pt y pt x 222(t 为参数)就表示整条抛物线.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.说明:1、抛物线的参数方程因参数选择的不同会有不同的形式,要注意所选参数的几何意义.(例如:抛物线的参数方程为⎪⎪⎩⎪⎪⎨⎧==ααtan 2tan 22p y p x 时(α为参数),这是不包括顶点的抛物线的参数方程,α是X轴正半轴到OM (M 为抛物线上的点)所成的角.抛物线的参数方程为⎩⎨⎧==pt y pt x 222时(t 为参数),参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数).2、抛物线参数方程要注意和普通方程的等价性,要注意抛物线的完整性.例1 如图,O 为原点,A,B 为抛物线)0(22>=p px y 异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 于M ,求点M 的轨迹方程.又当点A,B 在什么位置时,ΔAOB 面积最小?最小值是多少?分析:①注意直线垂直时的条件,斜率积为-1或向量的数量积为0,引出参数间的关系.②注意挖掘三点共线的条件:01221=-y x y x解:根据条件,设点M ,A ,B 的坐标分别为),(y x ,)2,2(121pt pt ,(2222,2pt pt )(21t t ≠,且021≠•t t ),则),(y x OM =,)2,2(121pt pt OA =,)2,2(222pt pt OB =,))(2),(2(122122t t p t t p AB --=.因为OB OA ⊥,所以0=•AB OA ,即 0)2()2(212221=+t t p t pt ,所以121-=t t ①因为AB OM ⊥,所以0=•AB OM ,即0)(2))(2(1221221=-+-t t py t t px所以0)(21=++y t t x ,即)0(21≠-=+x xyt t . ②因为)2,2(),2,2(222121y pt x pt MB pt y pt x AM --=--=,且A ,M ,B 三点共线, 所以)2)(2()2)(2(221221x pt pt y y pt pt x --=--,化简,得02)(2121=--+x t pt t t y ③ 将①和②代入02)(2121=--+x t pt t t y 得到02)(=-+-x p xyy ,即)0(0222≠=-+x px y x ,这就是点M 的轨迹方程.(2).4,44)(222)1()1(212)2()2(12)2()2(221222122221222212122222222*********p AOB x B A t t p t t p t t p t t t t p S AOB t t p pt pt OB t t p pt pt OA AOB 的面积最小,最小值为轴对称时,关于,即当点当且仅当的面积为所以,,=∆-=≥++=++=+⋅+=∆+=+=+=+∆经验:①此题的重点是向量垂直,向量的数量积为0.由此找到参数之间的关系. ②三点共线得到01221=-y x y x ,消去参数21,t t 得到点M 的轨迹方程.③此出用关系式①②③得到方程)0(0222≠=-+x px y x ,采用的方法是整体消元,方法不多见,但不可忽视,目的告诉学生在解题过程中注意分析规律,注意观察综合应用.例2 过点)4,2(M 且与抛物线⎩⎨⎧==ty t x 422只有一个公共点的直线有( )条A 0B 1C 2D 3分析:如图,当只有一个公共点时,直线与抛物线相切或与对称轴平行,所以直线有两条,答案选C .经验:①抛物线的普通方程为x y 82=,顶点在原点,开口向右;且点M 在抛物线上. ②判断椭圆和双曲线与直线交点个数时,一般联立方程,方程组有两解时,有两个交点;有惟一解时,有一个交点;无解时,没有交点.但抛物线例外,因为直线与对称轴平行时,直线与抛物线有一个交点.所以,判断抛物线与直线的交点个数时,把直线方程与抛物线方程联立,方程组两解时有两个交点;有一解时,如直线所过的点在抛物线内,则一条直线;若点在抛物线上,则两条直线,一条是切线,另一条是平行于对称轴的直线;若在抛物线外,且直线不过抛物线的顶点时,有三条直线于抛物线有一个公共点,其中两条切线,一条与对称轴平行;当直线过抛物线外一点,且过抛物线顶点时,与抛物线有一个交点的直线有一条.此题直线过点)4,2(M (且点在抛物线上,)所以与抛物线只有一个交点的直线有两条,所以选项为C .例3 过抛物曲线⎩⎨⎧==22at y atx (t 为参数)的焦点F 作直线交抛物线于A ,B ,设ΔAOB(O 为原点)的面积为S ,求证:|:|2AB S 为定值.分析:求面积的平方与弦长的比为定值,需要求出面积的表达式和弦长的表达式,此时再用参数方程表示未知数太多,不易表示,所以采用参数方程转化为普通方程形式,用直线方程与抛物线方程联立,一元二次方程求弦长方式即求.解:抛物线ay x 42=的焦点为),0(a F ,(不妨设a>0),过焦点的直线AB 方程a kx y +=,代入抛物线方程得04422=--a akx x .设),(11y x A ,),(22y x B ,则221214,4a x x ak x x -==+.)1(44)(1||2212212k a x x x x k AB +=-++=.又点O 到直线的距离21ka d +=∴2222121)1(421||21k a k ak a d AB S +=+•+⋅=•=∴32242)1(4:)1(4|:|a k a k a AB S =++=为定值.经验:①解题方法不是千篇一律的,有时要参数方程化为普通方程,有时要普通方程化为参数方程,此题即要求把参数方程化为普通方程,且抛物线的开口向上,焦点在y 轴上.,,.O OA OB OA k AB M 的顶点任作两条互相垂直的线段和以直线的斜率为参数求线段的中点的轨迹的参数方程2P Q OP OQ x x a ⋅=⋅= 所以为定值。

相关文档
最新文档