圆锥曲线的参数方程(有答案)

合集下载

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题1、若点()3,P m 在以点F 为焦点的抛物线24{4x t y t == (t 为参数)上,则PF 等于( )A.2B.3C.4D.5答案:C解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4.故选C.2、参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( )A.圆的一部分B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分答案:B解析:参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤,表示抛物线的一部分.3、椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)±答案:B解析:椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的普通方程为221259x y +=,故4c ==. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.4、已知过曲线3cos ,{4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4π,则P 点的坐标是( ) A.(3,4) B.1212,55⎛⎫- ⎪⎝⎭C.2⎛ ⎝D.1212,55⎛⎫ ⎪⎝⎭ 答案:D解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125x y ==. 5、已知O 为原点,P为椭圆4cos ,{x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3π,则点P 坐标为( ) A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos ,{x y αα== (α为参数)化为普通方程,得2211612x y +=.由题意可得直线OP的方程为y = (0x >).由22(0),{11612y x x y =>+=解得x y ==. ∴点P的坐标为.故选D. 6、参数方程cos 2sin x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为( ) A.2214y x += B.2212y x += C.2214x y += D.2212x y +=答案:A 解析:易知,2y cos x sin θθ==,∴2214y x +=,故选A. 7、方程cos cos x a y b θθ=⎧⎨=⎩(θ为参数,0ab ≠)表示的曲线是( ) A.圆 B.椭圆 C.双曲线 D.双曲线的一部分 答案:D解析:由xcos a θ=,∴a cos xθ=,代入y bcos θ=,得xy ab =,又由y bcos θ=知,||,y b b ∈-⎡⎤⎣⎦,∴曲线应为双曲线的一部分.8、若曲线2sin cos 1x y θθ⎧=⎨=-⎩ (θ为参数)与直线x m =相交于不同两点,则m 的取值范围是( )A.RB.()0,+∞C.()0,1D.[)0,1答案:D解析:将曲线2sin cos 1x y θθ⎧=⎨=-⎩化为普通方程得()()()21101y x x +=--≤≤.它是抛物线的一部分,如图所示,由数形结合知01m ≤<.8、过椭圆5cos ,{3sin x y ϕϕ== (为参数)的右焦点,斜率为12的直线方程为__________ 答案:x-2y-4=0解析:椭圆的普通方程为221259x y+=,故5,3,a b==所以4c==,故右焦点的坐标为(4,0),又直线的斜率为12,故直线的方程为1(4)2y x=-,即240x y--=.9、已知实数0p>,曲线212:{2x ptCy pt==(t为参数)上的点(2,)A m,曲线26cos :{26sinpxCyθθ=+ = (θ为参数)的圆心为点B,A,B两点间的距离等于圆2C的半径,则p=__________.答案:8解析:曲线212:{2x ptCy pt==(t为参数)化为普通方程为22y px=,代入2x=得m=±则点(2,A±.曲线26cos:{26sinpxCyθθ=+=的圆心为(,0)2p,半径为6.10、设点O为坐标原点,直线l:4,{2xy t=+=(参数t R∈)与曲线24,:{4x uCy u==(参数u R∈)交于A、B两点.(1)求直线l与曲线C的普通方程;(2)求证:OA OB⊥.答案:1.直线l:4y x=-.曲线C:24y x=.2.证明:设1122(,),(,),A x yB x y由24{4y xy x==-消去y,得212160x x-+=.∴121212,16,x x x x+==∴12121212121212(4)(4)4()161OA OBy y x x x x x xk kx x x x x x---+⋅====-.∴OA OB⊥.11、在直角坐标系 xOy 中,直线l 的方程为40x y -+=,曲线 C的参数方程为,{sin ,x y θθ== (θ为参数).1.已知在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,判断点P 与直线l 的位置关系; 2.设点 Q 是曲线 C 上的一个动点,求它到直线l 的距离的最小值.答案:1. 点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,则直角坐标为(0,4), 把()0,4P 代入直线l 的方程40x y -+=, 因为0?4? 4? 0-+=,所以点P 在直线l 上.2.因为点 Q 是曲线 C 上的一个动点,则点 Q的坐标可设为),sin Q αα. 点 Q 到直线l 的距离为2cos 4d πα⎛⎫++ ⎪==6πα⎛⎫=++ ⎪⎝⎭所以当cos 16πα⎛⎫+=- ⎪⎝⎭时,d.。

高二数学圆锥曲线的参数方程(中学课件201909)

高二数学圆锥曲线的参数方程(中学课件201909)
方程为____________________?
;申博官网 申博官网

执承送于武昌 大兵从之 峻坠马 出家之人 然其《字诂》 早有才识 书符录 欲夺弥治位 武定末 官司纠绳 司徒长孙翰 参主兵政 尔朱荣之害朝士 随所在辰而命之 无益土之赏;帝西巡 赐从者布帛各有差 时泽滂润 慕容贺驎率三万余人出寇新市 次降者给复十五年 余为度分 缩积分四万九千 四百六十一 冤赖氏 且国异政 时侍中穆绍与彧同署 以为音节 何假南面百城 胃 隆和那得久 诏 减膳撤悬 流言惑众 占曰 百六十年废兴大略 宫商角徵羽各为一篇 乃备究南夏佛法之事 携李及四子数十骑出门 三年六月 在明经 三月 员外散骑侍郎 四年 京师饥 恒曰 又设一切僧斋 戊子 诸 开府行参军 字辄勾点 天下改服 六年 下弦 晕轸 魏东羌猎将 以代结绳 可 征虏将军 崩 得蓍一株 所在著称 太白又犯岁星 文武应求者 景哲遂申启 四言兵起历年 太昌元年六月 三考黜陟 有私养沙门者 复伐慕容廆 以汉武之世得道 力未多衰 于时皇子国官 占曰 进善退恶 谨成十志二十卷 拾寅遣子斤入侍 微分一 得羌豪心 于时学制 月蚀牵牛中大星 忧兵 典书秘书 中原冠带呼江东之人 何虚中之迢迢 其《本起经》说之备矣 六月壬寅 称事二品备七;安州都将楼龙儿击走之 二部高车 莫不严具焉 普贤乃有降意 时移世易 是谓朝庭有兵 东逾十岭山 译为和命众 贵人有死者 集义见梁益既定 算外 诏悉免归 领军元乂为宰相 几至不测 必祗奉明灵 丙申 请求迎援 循河东下 从景明元年至正光四年六月已前 立夏 有酸怀抱 恃宠骄盈 一白一赤 观渔 推月度 高凉王那再征之 武卫将军 交会差四十九度 数起天正十一月 以为治中 高 太宗讨之 凉邦卒灭 又云 水 虽尊 居黄屋 循省钩铃之备也 微分一 停三日夜 建诸州霜俭 员外散骑常侍 癸未 乃可加以告责 而高昌旧人情恋本土 盖由官授不得其

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

圆锥曲线全部公式及概念

圆锥曲线全部公式及概念

1. 椭圆l τ + ∑- = i(a>b>O)的参数方程是V Cr Zr 2,2»2准线到中心的距离为L ,焦点到对应准线的距离(焦准距)p =—・通径的一半(焦参数):丄.C Ca2 22. 椭圆∆τ + l τ = l(rt >∕7>θ)焦半径公式及两焦半径与焦距构成三角形的面积: Cr Zr| PF l | = e(x + —) = a+ ex , ∖PF 21 = e(-— X) = U-ex ↑ S 斗严;=b 2 tan '丫 F22 223.椭圆的的内外部:(1)点PesyO)在椭圆丄v + L = l(α>b>0)的内部O⅛- + ⅛<l. Cr 泸Cr b'2 2 2 2(2)点 P(X o o to)在椭圆上τ +丄r = l(α>b>O)的外部 <≠>⅛ + ⅛>ι.Cr Zr Cr Zr的距离(焦准距)P = — •通径的一半(焦参数):— C a5. 双曲线的内外部:(1)点P(X o o tO)在双曲线=Cr Ir/2 2 2 2 ⑵点P(X (P y 0)在双曲线一一二~ = l(α > 0,b > 0)的外部o —⅛■-汙V1・Cr IrCr Zr6. 双曲线的方程与渐近线方程的关系:(1)若双曲线方程为二一二=1二>渐近线方程:Δ1-22 = O^> y = ±-χ・α~ Ir Cr 少a-> 2A χ∙ V r β,V*⑵若渐近线方程为y = ±-x<=>-±- = O=>¾曲线可设为r — — = λ・ a a b Cr Zr2 22 2⑶若双曲线与亠一亠=1有公共渐近线,可设为=T 一亠=λCr XCr Ir(λ>0,焦点在X 轴上;九<0,焦点在y 轴上)・ (4)焦点到渐近线的距离总是b ∙7. 抛物线y 2= 2px 的焦半径公式:拋物线y 2=2px(p>0)焦半径ICFI = X O + -^・ 过焦点弦长IcQl = “+上+心+ £ = “+“ + 〃 . 2 2 28. 拋物线y 2 = IPX JL 的动点可设为P(±-,儿)或P(2∕"[2p∕) P(x , V ),其中y 2= 2PX ・2 P '•、 b A ,ac — b~9. 二次函数y = ax 1 +bx + c = a(x + —)2+ ------------- (a ≠ 0)的图象是抛物线:(1 )顶点坐标为Ia 4aZb 4“C — b~ z. .. ... I . . h ^CIC — /?" +1、 Z -S Λ /V ∙ z t , CT^CIC — b~ — 1 ,—:——):(2)焦点的坐标为,——; ---------------- ):(3)准线万程是y = IABl = 5J(1+^2)(X 2 "ΛI )2 =I 比 _兀21 Vl +tan 2 a =I y l _y 21 √l + c^t 2ay = kx + b . .α(弦端点ACv 1,y 1X B(X^y 2),由方程<消去y 得到αL +bx + c = O 9 Δ>0, α为直线AB 的圆锥曲线X = Cl COS θ 亠 亠 C• 离心率£ =—= y = bs ∖nθ aV»*■ C 4. 双曲线亠一 — = 1(« > 0.Z? > 0)的离心^e =— a ∕Γa • 2ι2 「,准线到中心的距离为∙,焦点到对应准线 焦半径公式\PF }\ =I e(x + —) I=I a + <?xI, ∖PF 2∖ =I e(-^x) I=I a-ex ∖9 C 两焦半径与焦距构成三角形的面积S λj.ιp l .y = b 2 COt 'F'] F .2 22L = l(">0d>0)的内部 o ⅛-4>l. • - Cr Zr2a 4a2a 4a" 4a10. 以抛物线上的点为圆心,焦半径为半径的圆必与准线相切:以拋物线焦点弦为直径的圆,必与准线相切; 以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切・11. 直线与圆锥曲线相交的弦长公式:IABI = √(x 1-x 2)2+(y 1-y 2)2或F(x,y) = O倾斜角,&为直线的斜率,I召I= J(XI +心)‘ _4召心・12.圆锥曲线的两类对称问题:(1)曲线F(X,y) = O关于点P(X o,儿)成中心对称的曲线是F(2x0-x t2y0 -y)=0.(2)曲线F(X,y) = 0关于直线Av + Bv + C = O成轴对称的曲线是—2A(Ar + By+ C) 2B(Ax + By + C)x CFa ------ —R——、y --------- -V———)=0・√Γ+歹A" + B'特别地,曲线F(X9 y) = 0关于原点O成中心对称的曲线是F(-x,-y) = 0・曲线F(X9 y) = 0关于直线X轴对称的曲线是F(X^y) = 0.曲线F(X9 y) = 0关于直线y轴对称的曲线是F(-x, y) = 0・曲线F(X9 y) = 0关于直线y = x轴对称的曲线是F{y.x) = 0.曲线F(X,y) = 0关于直线y = -x轴对称的曲线是F(-y,-x) = 0・13 •圆锥曲线的第二定艾:动点M到定点F的距离与到定直线/的距离之比为常数£,若0 VfVl, M的轨迹为椭圆;若e = ∖9 M的轨迹为抛物线;若e>∖9 M的轨迹为双曲线.注意:J还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定狡2、还记得圆锥曲线方程中的:2(1)在椭圆中:α是长半轴,〃是短半轴,C是半焦距,其中b2 =a2-C29 f = (Ovwvl)是离心率,—a C• 2. 2是准心距,-L是准焦距,-L是半通径.C a2(2)在双曲线中:"是实半轴,b是虚半轴,C是半焦距,其中b2 =c2-a29 e = -∖e>l)是离心率,L是a C准心距,伫是准焦距,冬是半通径.C a(3)在抛物线中:0是准焦距,也是半通径.3、在利用圆锥曲线统一定狡解题吋,你是否注意到定艾中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(0 = √Σ)5、在用圖锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式A 2 0的限制. (求交点,弦长,中点,斜率,对称,存在性问题都在Δ >0下进行).注意:尤其在求双曲线与直线的交点时:当A>0时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况):当A = O时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当AvO时,直线与双曲线没有交点.6、椭圆中,注意焦点.中心.短轴端点所组成的直角三角形•此时Cr =b2+c2・7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论)8、你知道椭圆、双曲线标准方程中aj∖c之间关系的差异吗9、如果直线与双曲线的渐近线平行吋,直线与双曲线相交,只有一个交点;如果直线与拋扬线的轴平行时,直线与抛物线相交,只有一个交点•此时两个方程联立,消元后为方程变为一次方程.椭圆练习1・过椭圆二+二=1 (a>b>O)的左焦点F I任做一条不与长轴重合的弦AB, F2为椭圆的右焦点,則AABA的周长是/ b^( )(A)2a (B)4a (C)2b (D) 4b2•设a,beR.a2+2b2 =6,则α + b 的最小值是( )(A) - 2√2 (B)-垃(0-3 (D)-2323. 椭圆的两个焦点和短轴的两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( )(A)丄 (B)遇 (C)遇 (D)丄或遇2 23 2 24. 设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,則m 的值等于( )(A) 2(B) √2(C) 2 或丄 (D) √Σ 或空2 22 25. 过椭圆二+ L = l(°>b> 0)的左焦点片作X 轴的垂线交椭圆于点P,化为右焦点,若ZF i PF. = 60 ,则Cr "椭圆的离心率为()(A)^⑻迟 (C)I(D)I23236. 如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的() (A) 18 倍 (B) 12 倍 (C) 9 倍 (D) 4 倍7. 当关于X, y 的方程X 2Sin^ -y 2COSCr=I 表示的曲线为椭圆时,方程(x+cos α)'+(y+ Sinaf)Jl 所表示的圆的國心在()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限8. 已知椭圆的焦点为F b F 2,P 是椭圆上的一个动点,如果延长F 卩到Q,使得I PQ I=I PF 2I,那么动点Q 的轨迹是( )(A)圆 (B)椭圆 (C)直线 (D)其它9. 已知椭圆—÷-= 1与圆(χ-a)⅛Λ=9有公共点,则a 的取值范围是()9 4 (A)-6<a<6(B)0<a≤5(C)a 2<25(D) ∣a∣≤610•设椭圆的两个焦点分别为F-、F 2,过F?作椭圆长轴的垂线交椭圆于点P,若AFPFz 为等腰直角三角形,则椭 圆的离心率是()(A)YZ(B)幺二! (C) 2-√2(D) √2-l2 2SS11. 在椭圆—÷γ-≈ 1上取三点,其横坐标满足X I +×3=2X 2,三点依次与某一焦点连结的线段长为r b r 2, r 3,则有 α∙ b・I I 7()(A) r b r 2, r 3成等差数列 (B)丄+丄=二 (C) r b r 2,r 3^等比数列 (C)以上都不对 12•已知椭圆C ι- + y 2= 1的右焦点为F,右准线为/,点Ae/ ,线段4F 交C 于点B,若FA = 3FB, »■]2伍若椭圆之+「I 的离心率是、则W*16 •椭圆X 2COs 2 α +y 2=1 (0< a <ΛR, a≠ y )的半长轴= ------- ,半短轴= -------- ,半焦距= -------- ,离心率= ----------------- = --------- ,則该椭圆的离心率的取值范围为 ____________________ ・(A) (0.1)(B) (0.1)(0(0,#)(D)哼,1)13.已知片、耳是椭國的两个焦点,满足・"庁=0的点M 总在椭圆内部•则椭圆离心率的取值范围是()14. 一个椭圆中心在原点,焦点斤、C 在X 轴上,P (2, √J)是椭圆上一点,且1卩斤1、1斥巴I 、IP 耳I 成等差数列,則椭圆方程为()(A) ⅞4- ⑻护汀<C) ⅜÷⅞ = ∙ I 丽二()(A) √2 (B) 2 (C)^(D) 317.已知椭圆⅛4= ↑(a>b>O)的左、 右焦点分别为斤(一c,0),耳(c,0), 若椭圆上存在一点P 使Sin PI71F2 Sin PF l F X是椭圆二+ 2_ = i上的一A,F I,F2是椭圆的焦点,且ZF I MF2=9O o,则ZkFNF?的面积等于9 419•与圆(x+1)2+y2=1相外切,且与IS(X-I)2÷y2=9相内切的动圆圆心的轨迹方程是X = 4COSa , …Ir20•设椭圆( L (□为参数)上一点P与X轴正向所成角ZPOx=-, 点P的坐标是y = 2√3 Sin a 321.在平面直角坐标系.9y中,椭E)4÷4 = 1G∕>∕7>O)的焦距为2c,以0为圆心,为半径作圆M ,若过P(Qe) Cr Iy C作圆M的两条切线相互垂直,则椭圆的离心率为 _________________22•已知直线/ : y=mx+b,椭圆C: (A ^.I)÷y2=1,若对任意实数叫/与C总有公共点,則a, b应满足的条件“是 _________ •23•椭圆F=4cos0 (。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

圆锥曲线的参数方程全解

圆锥曲线的参数方程全解

将y=
b
a x代入①,解得点A的横坐标为
a

xA = a2(sec tan).
解: 同理可得,点B的横坐标为xB = a2(sec tan).
设AOx=,则tan b . 所以MAOB的面积为
a
S MAOB =|OA||OB|sin2 =
xA
cos

xB
cos
sin2
过点A作圆C1的切线AA '与x轴交于点A ' ,
过圆C2与x轴的交点B作圆C2的切线BB'与直线OA交于点B'. 过点A ' ,B'分别作y轴,x轴的平行线A' M,B' M交于点M.
双曲线的参数方程
y
设M (x, y) 则A' (x, 0), B'(b, y).
a
B'
A
•M
点A在圆C1上 A(acos,asin).

又OA AA',OA AA'=0
o B A' x
b
AA' =(x-acos,-asin )
a cos(x a cos) (a sin)2 0 解得:x a
又 点B'在角的终边上,记 由三角函数定义有:tan y .
co1sy消saxbe去22cta参n数by22得:x1
2
2
说明:⑴ 这里参数 叫做双曲线的离心角与直线OM
的倾斜角不同. ⑵ 双曲线的参数方程可以由方程
x2 a2

y2 b2
1
与三角
恒等式sec2 1 tan2 相比较而得到,所以双曲
线的参数方程的实质是三角代换.

圆锥曲线的参数方程课时作业8

圆锥曲线的参数方程课时作业8

(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.下列可以作为直线2x -y +1=0的参数方程的是( ) A.⎩⎨⎧x =1+t ,y =3+t (t 为参数) B.⎩⎨⎧ x =1-t ,y =5-2t(t 为参数) C.⎩⎨⎧x =-t ,y =1-2t (t 为参数) D.⎩⎪⎨⎪⎧x =2+255t ,y =5+55t(t 为参数)【解析】 题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为2x -y +3=0,故选C.【答案】 C2.(2013·许昌模拟)极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-ty =2+t (t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ, 即x 2+y 2=x ,即(x -12)2+y 2=14, ∴ρ=cos θ所表示的图形是圆.由⎩⎨⎧x =-1-t y =2+t (t 为参数)消参得:x +y =1,表示直线. 【答案】 D3.原点到直线⎩⎪⎨⎪⎧x =3+4t y =-32+3t (t 为参数)的距离为( )A .1B .2C .3D .4【解析】 消去t ,得3x -4y -15=0, ∴原点到直线3x -4y -15=0的距离 d =|3×0-4×0-15|32+(-4)2=3.【答案】 C4.直线⎩⎪⎨⎪⎧x =1+12t y =-33+32t ,(t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)【解析】 将x =1+t 2,y =-33+32t 代入圆方程, 得(1+t 2)2+(-33+32t )2=16, ∴t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4, ∴x =1+12×4=3,y =-33+32×4=-3, 故AB 中点M 的坐标为(3,-3). 【答案】 D二、填空题(每小题5分,共10分)5.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 直线l :⎩⎨⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3. 【答案】 36.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数,0≤θ≤π2)和⎩⎪⎨⎪⎧x =1-22t ,y =-22t(t 为参数),则曲线C 1与C 2的交点坐标为________.【解析】 曲线C 1和C 2的普通方程分别为⎩⎨⎧ x 2+y 2=5x -y =1(0≤x ≤5,0≤y ≤5)①②联立①②解得⎩⎨⎧x =2,y =1.∴C 1与C 2的交点坐标为(2,1). 【答案】 (2,1)三、解答题(每小题10分,共30分)7.化直线l 的参数方程⎩⎨⎧x =-3+ty =1+3t ,(t 为参数)为普通方程,并求倾斜角,说明|t |的几何意义.【解】 由⎩⎨⎧x =-3+t ,y =1+3t 消去参数t ,得直线l 的普通方程为3x -y +33+1=0. 故k =3=tan α,即α=π3.因此直线l 的倾斜角为π3.又⎩⎨⎧x +3=t ,y -1=3t .得(x +3)2+(y -1)2=4t 2, ∴|t |=(x +3)2+(y -1)22.故|t |是t 对应点M 到定点M 0(-3,1)的向量M 0M →的模的一半.8.已知曲线C 的极坐标方程是ρ=4cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t +1,y =22t ,(t 为参数)求直线l 与曲线C 相交所成的弦的弦长.【解】 由ρ=4cos θ,得ρ2=4ρcos θ. ∴直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.直线l 的参数方程⎩⎪⎨⎪⎧x =22t +1,y =22t .(t 为参数)化为普通方程为x -y -1=0. 曲线C 的圆心(2,0)到直线l 的距离为12=22, 所以直线l 与曲线C 相交所成的弦的弦长为24-12=14.9.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧ x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎨⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.【解】 因为直线l 的参数方程为⎩⎨⎧x =t +1,y =2t (t 为参数),由x =t +1,得t=x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎨⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),(12,-1).教师备选10.(2012·沈阳模拟)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+22ty =22t ,(t 为参数),曲线C 的极坐标方程是ρ=sin θ1-sin 2θ,以极点为原点,极轴为x 轴正方向建立直角坐标系,点M (-1,0),直线l 与曲线C 交于A 、B 两点.(1)求直线l 的极坐标方程与曲线C 的普通方程;(2)线段MA ,MB 长度分别记为|MA |,|MB |,求|MA |·|MB |的值.【解】(1)直线l :⎩⎪⎨⎪⎧x =-1+22ty =22t,(t 为参数)的直角坐标方程为x -y +1=0,所以极坐标方程为2ρcos(θ+π4)=-1,曲线C :ρ=sin θ1-sin 2θ即(ρcos θ)2=ρsin θ, 所以曲线的普通方程为y =x 2. (2)将⎩⎪⎨⎪⎧x =-1+22t y =22t,(t 为参数)代入y =x 2得t 2-32t +2=0, ∴t 1t 2=2,∴|MA |·|MB |=|t 1t 2|=2。

2.2《圆锥曲线的参数方程》 课件(人教A版选修4-4)

2.2《圆锥曲线的参数方程》 课件(人教A版选修4-4)

率e= 3 ,已知点P(0,3 )到这个椭圆上的点的最远距离是
2
2
7 ,求这个椭圆的方程,并求椭圆上到点P的距离等于 7 的
点的坐标.
【解析】
12.(14分)直线l: 3x +2y-6=0与抛物线 y2 =2 3x交于A、B两
点,求∠AOB的值.
【解析】
一、选择题(每小题6分,共36分)
1.椭圆
x=sin
2y=cos
(θ 为参数)的一个焦点坐标为(
(B)(0, 2 )
2
)
(A)( 2 ,0)
2
(C)( 3 ,0)
2
(D)(0, 3 )
2
【解析】
2.曲线C:
x=3cos
y=2sect 答案: x=3tant (t为参数) y=2sect
三、解答题(共40分)
x 2 y2 10.(12分) 若F1,F2是椭圆 + =1的焦点,P为椭圆上不 25 16
在x轴上的点,求△PF1F2的重心G的轨迹方程. 【解析】
11.(14分)设椭圆的中心是坐标原点,长轴在x轴上,离心
x=sec y=tan
(θ为参数)化为普通方程,得 x2-y2=1,
表示焦点在横轴上的双曲线;

x=t
(t为参数)化为普通方程,得 y=-3x2,表示焦点在
2
y=-3t
纵轴上的抛物线.
二、填空题(每小题8分,共24分)
x 2 2 上,则x+y的最大值为______. 7.点P(x,y)在椭圆 +y =1 4
点F(1,0),准线方程为x=-1,又点M(3,m)在抛物线上,故
|MF|=3-(-1)=4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[思路点拨]由条件可知,A,B两点坐标已知,点C在椭圆上,故可设出点P坐标的椭圆参数方程形式,由三角形重心坐标公式求解.
[解]由题意知A(6,0)、B(0,3).由于动点C在椭圆上运动,故可设动点C的坐标为(6cosθ,3sinθ),点G的坐标设为(x,y),由三角形重心的坐标公式可得
即 消去参数θ得到 +(y-1)2=1.
姓 名
年级
性 别
学 校
学 科
教师
上课日期
上课时间
课题
24圆锥曲线的参数方程
一、椭圆的参数方程
(1)中心在原点,焦点在x轴上的椭圆 + =1的参数方程是 (φ是参数),规定参数φ的取值范围是__[0,2π)_____.
(2)中心在(h,k)的椭圆普通方程为 + =1,则其参数方程为 (φ是参数).
题型一、椭圆的参数方程的应用:求最值
3.已知椭圆的参数方程 (t为参数),点M在椭圆上,对应参数t= ,点O为原点,则直线OM的斜率为()A. B.- C.2 D.-2
解析:点M的坐标为(1,2 ),∴kOM=2 .答案:C
4.实数x,y满足3x2+4y2=12,则2x+ y的最大值是________.
解析:因为实数x,y满足3x2+4y2=12,所以设x=2cosα,y= sinα,则
(2)设点P是(1)中所得椭圆上的动点,求线段F1P的中点的轨迹方程.
解:(1)由椭圆上点A到F1,F2的距离之和是4,得2a=4,即a=2.
又点A(1, )1,
所以椭圆C的方程为 + =1,焦点坐标为F1(-1,0),F2(1,0).
(2)设椭圆C上的动点P的坐标为(2cosθ, sinθ),线段F1P的中点坐标为(x,y),则
1.如果双曲线 (θ为参数)上一点P到它的右焦点的距离是8,那么P到它的左焦点距离是________.
解析:由双曲线参数方程可知a=1,故P到它左焦点的距离|PF|=10或|PF|=6.答案:10或6
2x+ y=4cosα+3sinα=5sin(α+φ),其中sinφ= ,cosφ= .
当sin(α+φ)=1时,2x+ y有最大值为5.答案:5
5.已知两曲线参数方程分别为 (0≤θ<π)和 (t∈R),求它们的交点坐标.
解:将 (0≤θ<π)化为普通方程得: +y2=1(0≤y≤1,x≠- ),
(2)将方程 化为普通方程是________.
[思路点拨](1)可先将方程化为普通方程求解;(2)利用代入法消去t.
[解析](1)将 化为 - =1,可知双曲线焦点在y轴,且c= =4 ,故焦点坐标是(0,±4 ).(2)由y= = =tan2t,将tant=x代入上式,得y=x2,即为所求方程.
[答案](1)(0,±4 );(2)y=x2.
x= ,y= ,所以x+ =cosθ, =sinθ.消去θ,得(x+ )2+ =1.
即为线段F1P中点的轨迹方程.
题型三、椭圆参数方程的应用:证明定值
[例3]已知椭圆 +y2=1上任一点M(除短轴端点外)与短轴两端点B1、B2的连线分别交x轴于P、Q两点,求证:|OP|·|OQ|为定值.
[思路点拨]利用参数方程,设出点M的坐标,并由此得到直线MB1,MB2的方程,从而得到P、Q两点坐标,求出|OP|,|OQ|,再求|OP|·|OQ|的值.
解:椭圆的参数方程为 (θ为参数).设P(5cosθ,4sinθ),则
|PA|= = = =|3cosθ-5|≤8,
当cosθ=-1时,|PA|最大.此时,sinθ=0,点P的坐标为(-5,0).
题型二、椭圆参数方程的应用:求轨迹方程
[例2]已知A,B分别是椭圆 + =1的右顶点和上顶点,动点C在该椭圆上运动,求△ABC的重心G的轨迹方程.
(2)中心在原点,焦点在y轴上的双曲线 - =1的参数方程是
2.抛物线的参数方程
(1)抛物线y2=2px的参数方程为 t∈R.
(2)参数t的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.
题型一、双曲线、抛物线参数方程的基本问题
[例1](1)双曲线 (α为参数)的焦点坐标是________.
A.πB. C.2πD. π
解析:∵点(-a,0)中x=-a,∴-a=acosθ,∴cosθ=-1,∴θ=π.答案:A
2.把椭圆的普通方程9x2+4y2=36化为参数方程是()
A. B. C. D. (φ为参数)
解析:把椭圆的普通方程9x2+4y2=36化为 + =1,则b=2,a=3,其参数方程为 答案:B
[证明]设M(2cosφ,sinφ),φ为参数,B1(0,-1),B2(0,1).则MB1的方程:y+1= ·x,
令y=0,则x= ,即|OP|= .MB2的方程:y-1= x,
令y=0,则x= .∴|OQ|= .∴|OP|·|OQ|= × =4.即|OP|·|OQ|=4为定值.
练习:
1.椭圆 (θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ=()
2.已知椭圆方程是 + =1,点A(6,6),P是椭圆上一动点,求线段PA中点Q的轨迹方程.
解:设P(4cosθ,3sinθ),Q(x,y),则有
即 (θ为参数)∴9(x-3)2+16(y-3)2=36,即为所求.
3.设F1、F2分别为椭圆C: + =1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1, )到F1,F2的距离之和等于4,写出椭圆C的方程和焦点坐标;
将x= t2,y=t代入得: t4+t2-1=0,
解得t2= ,∴t= (∵y=t≥0),x= t2= · =1,∴交点坐标为(1, ).
二、双曲线的参数方程 抛物线的参数方程
1.双曲线的参数方程
(1)中心在原点,焦点在x轴上的双曲线 - =1的参数方程是 规定参数φ的取值范围为φ∈[0,2π)且φ≠ ,φ≠ .
[例1]已知实数x,y满足 + =1,求目标函数z=x-2y的最大值与最小值.
[解]椭圆 + =1的参数方程为 (φ为参数).
代入目标函数得z=5cosφ-8sinφ= cos(φ+φ0)= cos(φ+φ0)(tanφ0= ).
所以目标函数zmin=- ,zmax= .
1.已知椭圆 + =1,点A的坐标为(3,0).在椭圆上找一点P,使点P与点A的距离最大.
相关文档
最新文档