圆锥曲线的参数方程

合集下载

高二数学圆锥曲线的参数方程(中学课件201909)

高二数学圆锥曲线的参数方程(中学课件201909)
方程为____________________?
;申博官网 申博官网

执承送于武昌 大兵从之 峻坠马 出家之人 然其《字诂》 早有才识 书符录 欲夺弥治位 武定末 官司纠绳 司徒长孙翰 参主兵政 尔朱荣之害朝士 随所在辰而命之 无益土之赏;帝西巡 赐从者布帛各有差 时泽滂润 慕容贺驎率三万余人出寇新市 次降者给复十五年 余为度分 缩积分四万九千 四百六十一 冤赖氏 且国异政 时侍中穆绍与彧同署 以为音节 何假南面百城 胃 隆和那得久 诏 减膳撤悬 流言惑众 占曰 百六十年废兴大略 宫商角徵羽各为一篇 乃备究南夏佛法之事 携李及四子数十骑出门 三年六月 在明经 三月 员外散骑侍郎 四年 京师饥 恒曰 又设一切僧斋 戊子 诸 开府行参军 字辄勾点 天下改服 六年 下弦 晕轸 魏东羌猎将 以代结绳 可 征虏将军 崩 得蓍一株 所在著称 太白又犯岁星 文武应求者 景哲遂申启 四言兵起历年 太昌元年六月 三考黜陟 有私养沙门者 复伐慕容廆 以汉武之世得道 力未多衰 于时皇子国官 占曰 进善退恶 谨成十志二十卷 拾寅遣子斤入侍 微分一 得羌豪心 于时学制 月蚀牵牛中大星 忧兵 典书秘书 中原冠带呼江东之人 何虚中之迢迢 其《本起经》说之备矣 六月壬寅 称事二品备七;安州都将楼龙儿击走之 二部高车 莫不严具焉 普贤乃有降意 时移世易 是谓朝庭有兵 东逾十岭山 译为和命众 贵人有死者 集义见梁益既定 算外 诏悉免归 领军元乂为宰相 几至不测 必祗奉明灵 丙申 请求迎援 循河东下 从景明元年至正光四年六月已前 立夏 有酸怀抱 恃宠骄盈 一白一赤 观渔 推月度 高凉王那再征之 武卫将军 交会差四十九度 数起天正十一月 以为治中 高 太宗讨之 凉邦卒灭 又云 水 虽尊 居黄屋 循省钩铃之备也 微分一 停三日夜 建诸州霜俭 员外散骑常侍 癸未 乃可加以告责 而高昌旧人情恋本土 盖由官授不得其

圆锥曲线的参数方程

圆锥曲线的参数方程

圆锥曲线的参数方程圆锥曲线作为数学中重要的一类曲线,在科学和工程领域中有着广泛的应用。

圆锥曲线的描述方式有很多种,其中最具代表性的是参数方程描述法。

一、圆锥曲线概述圆锥曲线是指平面直角坐标系中的一种曲线,其形状可以是圆、椭圆、双曲线和抛物线四种。

圆:圆是一种非常常见的圆锥曲线,其特点是每个点到圆心的距离相等。

椭圆:椭圆是一种闭合的曲线,其特点是所有点到两个焦点之和等于定值。

对称轴与焦点之间的距离称为离心率。

双曲线:双曲线有两个分离的分支,其特点是所有点到两个焦点之差等于定值。

离心率大于1。

抛物线:抛物线是一种开口朝上或下的曲线,其特点是点到定点的距离等于到其在直线上的投影的距离。

二、参数方程的定义参数方程又称为参数式方程,是指将一个曲线上的点的坐标表示为某个参数的函数。

圆锥曲线的参数方程描述法是将曲线上的所有点的坐标表示为经过参数化后的公式。

三、参数方程的应用参数方程描述法最大的优点是能够直观地表示曲线在平面中的形状、大小、位置等信息。

因此,在科学和工程的许多领域中,使用参数方程描述的圆锥曲线极大地便利了相关研究和实践工作。

具体应用场景包括:1、工程画图在工程中,经常需要绘制圆锥曲线,如绘制电子元件、构建机械结构等。

此时,参数方程描述法能够方便地表示曲线的大小和位置,不需要进行很多复杂的计算。

2、运动学分析在机器人、车辆等系统的运动学分析中,需要分析运动轨迹,而圆锥曲线通常是系统的标准运动轨迹。

因此,参数方程描述法能够方便地表示运动轨迹,从而便于分析运动状态。

3、物理仿真圆锥曲线在物理仿真中也有着广泛的应用。

例如,设想一个运动物体,其轨迹可以用圆锥曲线描述。

此时,如果采用参数方程描述法,则可以用计算机对物体的运动状态进行仿真,精度更高、速度更快。

四、圆锥曲线的参数方程1、圆的参数方程圆的参数方程为:x = rcosθy = rsinθ其中,r为圆的半径,θ为参数。

2、椭圆的参数方程椭圆的参数方程为:x = acosθy = bsinθ其中,a、b分别为椭圆在 x 轴和 y 轴方向的半轴长度。

常见曲线的参数方程

常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。

设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。

那么点A 的横坐标为x ,点B 的纵坐标为y 。

由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。

3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。

①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。

圆锥曲线全部公式及概念

圆锥曲线全部公式及概念

1. 椭圆l τ + ∑- = i(a>b>O)的参数方程是V Cr Zr 2,2»2准线到中心的距离为L ,焦点到对应准线的距离(焦准距)p =—・通径的一半(焦参数):丄.C Ca2 22. 椭圆∆τ + l τ = l(rt >∕7>θ)焦半径公式及两焦半径与焦距构成三角形的面积: Cr Zr| PF l | = e(x + —) = a+ ex , ∖PF 21 = e(-— X) = U-ex ↑ S 斗严;=b 2 tan '丫 F22 223.椭圆的的内外部:(1)点PesyO)在椭圆丄v + L = l(α>b>0)的内部O⅛- + ⅛<l. Cr 泸Cr b'2 2 2 2(2)点 P(X o o to)在椭圆上τ +丄r = l(α>b>O)的外部 <≠>⅛ + ⅛>ι.Cr Zr Cr Zr的距离(焦准距)P = — •通径的一半(焦参数):— C a5. 双曲线的内外部:(1)点P(X o o tO)在双曲线=Cr Ir/2 2 2 2 ⑵点P(X (P y 0)在双曲线一一二~ = l(α > 0,b > 0)的外部o —⅛■-汙V1・Cr IrCr Zr6. 双曲线的方程与渐近线方程的关系:(1)若双曲线方程为二一二=1二>渐近线方程:Δ1-22 = O^> y = ±-χ・α~ Ir Cr 少a-> 2A χ∙ V r β,V*⑵若渐近线方程为y = ±-x<=>-±- = O=>¾曲线可设为r — — = λ・ a a b Cr Zr2 22 2⑶若双曲线与亠一亠=1有公共渐近线,可设为=T 一亠=λCr XCr Ir(λ>0,焦点在X 轴上;九<0,焦点在y 轴上)・ (4)焦点到渐近线的距离总是b ∙7. 抛物线y 2= 2px 的焦半径公式:拋物线y 2=2px(p>0)焦半径ICFI = X O + -^・ 过焦点弦长IcQl = “+上+心+ £ = “+“ + 〃 . 2 2 28. 拋物线y 2 = IPX JL 的动点可设为P(±-,儿)或P(2∕"[2p∕) P(x , V ),其中y 2= 2PX ・2 P '•、 b A ,ac — b~9. 二次函数y = ax 1 +bx + c = a(x + —)2+ ------------- (a ≠ 0)的图象是抛物线:(1 )顶点坐标为Ia 4aZb 4“C — b~ z. .. ... I . . h ^CIC — /?" +1、 Z -S Λ /V ∙ z t , CT^CIC — b~ — 1 ,—:——):(2)焦点的坐标为,——; ---------------- ):(3)准线万程是y = IABl = 5J(1+^2)(X 2 "ΛI )2 =I 比 _兀21 Vl +tan 2 a =I y l _y 21 √l + c^t 2ay = kx + b . .α(弦端点ACv 1,y 1X B(X^y 2),由方程<消去y 得到αL +bx + c = O 9 Δ>0, α为直线AB 的圆锥曲线X = Cl COS θ 亠 亠 C• 离心率£ =—= y = bs ∖nθ aV»*■ C 4. 双曲线亠一 — = 1(« > 0.Z? > 0)的离心^e =— a ∕Γa • 2ι2 「,准线到中心的距离为∙,焦点到对应准线 焦半径公式\PF }\ =I e(x + —) I=I a + <?xI, ∖PF 2∖ =I e(-^x) I=I a-ex ∖9 C 两焦半径与焦距构成三角形的面积S λj.ιp l .y = b 2 COt 'F'] F .2 22L = l(">0d>0)的内部 o ⅛-4>l. • - Cr Zr2a 4a2a 4a" 4a10. 以抛物线上的点为圆心,焦半径为半径的圆必与准线相切:以拋物线焦点弦为直径的圆,必与准线相切; 以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切・11. 直线与圆锥曲线相交的弦长公式:IABI = √(x 1-x 2)2+(y 1-y 2)2或F(x,y) = O倾斜角,&为直线的斜率,I召I= J(XI +心)‘ _4召心・12.圆锥曲线的两类对称问题:(1)曲线F(X,y) = O关于点P(X o,儿)成中心对称的曲线是F(2x0-x t2y0 -y)=0.(2)曲线F(X,y) = 0关于直线Av + Bv + C = O成轴对称的曲线是—2A(Ar + By+ C) 2B(Ax + By + C)x CFa ------ —R——、y --------- -V———)=0・√Γ+歹A" + B'特别地,曲线F(X9 y) = 0关于原点O成中心对称的曲线是F(-x,-y) = 0・曲线F(X9 y) = 0关于直线X轴对称的曲线是F(X^y) = 0.曲线F(X9 y) = 0关于直线y轴对称的曲线是F(-x, y) = 0・曲线F(X9 y) = 0关于直线y = x轴对称的曲线是F{y.x) = 0.曲线F(X,y) = 0关于直线y = -x轴对称的曲线是F(-y,-x) = 0・13 •圆锥曲线的第二定艾:动点M到定点F的距离与到定直线/的距离之比为常数£,若0 VfVl, M的轨迹为椭圆;若e = ∖9 M的轨迹为抛物线;若e>∖9 M的轨迹为双曲线.注意:J还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定狡2、还记得圆锥曲线方程中的:2(1)在椭圆中:α是长半轴,〃是短半轴,C是半焦距,其中b2 =a2-C29 f = (Ovwvl)是离心率,—a C• 2. 2是准心距,-L是准焦距,-L是半通径.C a2(2)在双曲线中:"是实半轴,b是虚半轴,C是半焦距,其中b2 =c2-a29 e = -∖e>l)是离心率,L是a C准心距,伫是准焦距,冬是半通径.C a(3)在抛物线中:0是准焦距,也是半通径.3、在利用圆锥曲线统一定狡解题吋,你是否注意到定艾中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(0 = √Σ)5、在用圖锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式A 2 0的限制. (求交点,弦长,中点,斜率,对称,存在性问题都在Δ >0下进行).注意:尤其在求双曲线与直线的交点时:当A>0时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况):当A = O时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当AvO时,直线与双曲线没有交点.6、椭圆中,注意焦点.中心.短轴端点所组成的直角三角形•此时Cr =b2+c2・7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论)8、你知道椭圆、双曲线标准方程中aj∖c之间关系的差异吗9、如果直线与双曲线的渐近线平行吋,直线与双曲线相交,只有一个交点;如果直线与拋扬线的轴平行时,直线与抛物线相交,只有一个交点•此时两个方程联立,消元后为方程变为一次方程.椭圆练习1・过椭圆二+二=1 (a>b>O)的左焦点F I任做一条不与长轴重合的弦AB, F2为椭圆的右焦点,則AABA的周长是/ b^( )(A)2a (B)4a (C)2b (D) 4b2•设a,beR.a2+2b2 =6,则α + b 的最小值是( )(A) - 2√2 (B)-垃(0-3 (D)-2323. 椭圆的两个焦点和短轴的两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( )(A)丄 (B)遇 (C)遇 (D)丄或遇2 23 2 24. 设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,則m 的值等于( )(A) 2(B) √2(C) 2 或丄 (D) √Σ 或空2 22 25. 过椭圆二+ L = l(°>b> 0)的左焦点片作X 轴的垂线交椭圆于点P,化为右焦点,若ZF i PF. = 60 ,则Cr "椭圆的离心率为()(A)^⑻迟 (C)I(D)I23236. 如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的() (A) 18 倍 (B) 12 倍 (C) 9 倍 (D) 4 倍7. 当关于X, y 的方程X 2Sin^ -y 2COSCr=I 表示的曲线为椭圆时,方程(x+cos α)'+(y+ Sinaf)Jl 所表示的圆的國心在()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限8. 已知椭圆的焦点为F b F 2,P 是椭圆上的一个动点,如果延长F 卩到Q,使得I PQ I=I PF 2I,那么动点Q 的轨迹是( )(A)圆 (B)椭圆 (C)直线 (D)其它9. 已知椭圆—÷-= 1与圆(χ-a)⅛Λ=9有公共点,则a 的取值范围是()9 4 (A)-6<a<6(B)0<a≤5(C)a 2<25(D) ∣a∣≤610•设椭圆的两个焦点分别为F-、F 2,过F?作椭圆长轴的垂线交椭圆于点P,若AFPFz 为等腰直角三角形,则椭 圆的离心率是()(A)YZ(B)幺二! (C) 2-√2(D) √2-l2 2SS11. 在椭圆—÷γ-≈ 1上取三点,其横坐标满足X I +×3=2X 2,三点依次与某一焦点连结的线段长为r b r 2, r 3,则有 α∙ b・I I 7()(A) r b r 2, r 3成等差数列 (B)丄+丄=二 (C) r b r 2,r 3^等比数列 (C)以上都不对 12•已知椭圆C ι- + y 2= 1的右焦点为F,右准线为/,点Ae/ ,线段4F 交C 于点B,若FA = 3FB, »■]2伍若椭圆之+「I 的离心率是、则W*16 •椭圆X 2COs 2 α +y 2=1 (0< a <ΛR, a≠ y )的半长轴= ------- ,半短轴= -------- ,半焦距= -------- ,离心率= ----------------- = --------- ,則该椭圆的离心率的取值范围为 ____________________ ・(A) (0.1)(B) (0.1)(0(0,#)(D)哼,1)13.已知片、耳是椭國的两个焦点,满足・"庁=0的点M 总在椭圆内部•则椭圆离心率的取值范围是()14. 一个椭圆中心在原点,焦点斤、C 在X 轴上,P (2, √J)是椭圆上一点,且1卩斤1、1斥巴I 、IP 耳I 成等差数列,則椭圆方程为()(A) ⅞4- ⑻护汀<C) ⅜÷⅞ = ∙ I 丽二()(A) √2 (B) 2 (C)^(D) 317.已知椭圆⅛4= ↑(a>b>O)的左、 右焦点分别为斤(一c,0),耳(c,0), 若椭圆上存在一点P 使Sin PI71F2 Sin PF l F X是椭圆二+ 2_ = i上的一A,F I,F2是椭圆的焦点,且ZF I MF2=9O o,则ZkFNF?的面积等于9 419•与圆(x+1)2+y2=1相外切,且与IS(X-I)2÷y2=9相内切的动圆圆心的轨迹方程是X = 4COSa , …Ir20•设椭圆( L (□为参数)上一点P与X轴正向所成角ZPOx=-, 点P的坐标是y = 2√3 Sin a 321.在平面直角坐标系.9y中,椭E)4÷4 = 1G∕>∕7>O)的焦距为2c,以0为圆心,为半径作圆M ,若过P(Qe) Cr Iy C作圆M的两条切线相互垂直,则椭圆的离心率为 _________________22•已知直线/ : y=mx+b,椭圆C: (A ^.I)÷y2=1,若对任意实数叫/与C总有公共点,則a, b应满足的条件“是 _________ •23•椭圆F=4cos0 (。

参数方程(圆锥曲线的参数方程)

参数方程(圆锥曲线的参数方程)
y=NM=
x=ON=
这是中心在原点O,焦点在x轴上的椭圆的参数方程。
常数a、b分别是椭圆的长半轴长和短半轴长。
在椭圆的参数方程中,通常规定参数θ的范围为
|OA|cosθ=acosθ,
|OB|sinθ=bsinθ
φ
O
A
M
x
y
N
B
椭圆的标准方程:
椭圆的参数方程中参数φ的几何意义:
x
O
y
探究思考
| t | = | M0M |
M0
M
所以,直线参数方程中参数t的绝对值等于直线上动点M到定点M0的距离.
这就是 t 的几何意义,要牢记
x
O
y
分析:
点M是否在直线上
用普通方程去解还是用参数方程去解;
分别如何解.
A
B
M(-1,2)
x
y
O
解:因为把点M的坐标代入直线方程后,符合直线方程,所以点M在直线上.
x
y
O
圆的标准方程:
圆的参数方程:
x2+y2=r2
θ的几何意义是
∠AOP=θ
P
A
θ
椭圆的参数方程:
是∠AOX=φ,
不是∠MOX=φ.
称为点M的离心角
小 结
椭圆的标准方程:
椭圆的参数方程:
——离心角
一般地:
在椭圆的参数方程中,常数a、 b分别是椭圆的长半轴长和短半 轴长. a>b
探究:直线的参数方程形式是不是唯一的
| t | = | M0M |
表示什么曲线?画出图形.
练习:
4
不妨设M为双曲线右支上一点,其坐标为
则直线MA的方程为

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。

圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当01时为双曲线。

圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。

直线和圆锥曲线的参数方程


3 3 4 倾斜角为 α,则 tan α=4,sin α=5,cos α=5.又点 P(1,1)在直线 4 x=1+5t, l 上,所以直线 l 的参数方程为 (t 为参数). 3 y=1+ t 5 因为 3×5-4×4+1=0,所以点 M 在直线 l 上. 4 由 1+5t=5,得 t=5,即点 P 到点 M 的距离为 5. 因为点 N 不在直线 l 上,故根据两点之间的距离公式,可得|PN| = (1+2)2+(1-6)2= 34.
QM → 动点 M 分有向线段QP的数量比 MP
自主预习
讲练互动
课堂达标
教材链接
2.圆的参数方程 (1)圆心在原点、 半径为 r 为参数).
x=rcos α, y=rsin α 的圆的参数方程_____________( α
OP与x轴正方向的夹角 参数 α 的几何意义是_________________________.
x=t, 得到参数方程 y=2t+1
t (t 为参数);如果令 x=2,可得到
t x= , 参数方程 2 (t 为参数) y=t+1
自主预习 讲练互动 课堂达标 教材链接
这样的参数方程中的 t 不具有一定的几何意义,但是在 实际应用中有时能够简化某些运算.例如,动点 M 做匀 速直线运动,它在 x 轴和 y 轴方向的分速度分别为 9 和 12,点 M 从 A 点(1,1)开始运动,求点 M 的轨迹的参数 方程.点 M (t 为参数).
【思维导图】
自主预习
讲练互动
课堂达标
教材链接
【知能要点】
1.直线的参数方程.
2.直线的参数方程的应用.
3.圆的参数方程及应用.
自主预习
讲练互动

圆锥曲线的参数方程知识讲解


B
4p
②∵|AB|= 6 2 p
点F到直线AB的距离是:d 7 pO
X
22
SABF
1 2
AB
d
1 2
6
2p
7p
A
42
p
2
p
22
3 3
例3、过抛物线y2 2 px( p 0)的顶点O任作互相垂直的弦OA、OB
①求证:直线AB恒过一个定点; ②求分别以OA、OB为直径的两圆异于O的交点M的轨迹方程。
D
C
ab(1 cos )sin
A
O
BX
显然,0°<θ<90°,0<cosθ<1
令:y (1 cos ) sin sin 1 sin 2
2
y/ cos cos 2 2cos2 cos 1
2cos 1cos 1
当cos
1 2
时,ymax
3 3 4
(S ABCD )max
3 3 ab 4
——圆、椭圆的参数方程
1、圆的参数方程
Y
圆心为C(a,b)半径为R的圆的参数方程:
x a R cos
y
b
R
sin
0, 2
b
参数θ是旋转角。
O
M(x,y)

X a
例1、指出下列圆的圆心坐标和半径(其中θ为参数):
x 2 3cos
(1)
y
2
3 s in
x 3 4cos
(2)
y
3
4
sin
圆心坐标 (2, – 2 )
半径
R=3
圆心坐标 (3, 3 )
半径
R=4
例2、实数x,y满足 x2 y2 2x 4 y, 求2x – y 的取值范围。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

圆锥曲线解题技巧之参数方程的运用如何通过参数方程解决圆锥曲线问题

圆锥曲线解题技巧之参数方程的运用如何通过参数方程解决圆锥曲线问题圆锥曲线是数学中的一个重要概念,涉及到许多解题技巧和方法。

其中,参数方程是解决圆锥曲线问题的一种有效途径。

本文将探讨如何通过参数方程来解决圆锥曲线问题,并讨论一些常见的参数方程运用技巧。

一、参数方程的基本概念参数方程是用参数表示自变量和因变量之间的关系的方程。

在圆锥曲线中,我们可以使用参数方程将自变量(通常用参数t表示)与因变量(例如x和y)表示的关系联系起来。

通过引入参数,我们可以简化对曲线的描述和计算,从而更方便地解决问题。

二、参数方程解决圆锥曲线问题的步骤通过参数方程解决圆锥曲线问题,一般需要经过以下几个步骤:1. 确定参数的范围:首先,需要确定参数的取值范围,通常通过题目中给出的条件进行限定。

例如,要求参数t在区间[0,2π)内取值。

2. 寻找参数与自变量之间的关系:其次,需要确定自变量(例如x 和y)与参数t之间的关系。

这一步可以通过直接给出参数方程或者通过已知条件与参数方程的关系来推导得到。

3. 消去参数得到方程:通过已知条件和参数方程的关系,我们可以消去参数,从而得到只涉及自变量的方程。

消去参数的过程通常是通过代数运算来完成的。

4. 分析并解决问题:最后,根据已经得到的方程,可以进行进一步的分析和解决问题。

这一步可以通过几何和代数方法相结合,根据需要进行计算和推导,得到问题的解答。

三、参数方程的运用技巧在通过参数方程解决圆锥曲线问题时,可以运用一些技巧来简化计算和分析过程。

以下是一些常见的参数方程运用技巧:1. 参数代换:有些圆锥曲线问题中,可以通过适当的参数代换来简化参数方程。

例如,当遇到椭圆或双曲线的参数方程中包含平方项并且系数相等时,可以通过合适的代换将其转化为标准形式。

2. 对称性利用:在分析参数方程时,可以利用曲线的对称性来简化计算和推导。

对称性可以是关于x轴、y轴或原点的对称性。

通过观察曲线的对称性,可以推断出曲线的性质,从而进行进一步的分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此,可知直线AB恒过定点N(2p,0)
O
N M
X
A
充分运用向量工具能使问题化简;充 分利用几何直观,仔细观察是提高解 决问题能力的好方法!
例3、过抛物线y 2 2 px( p 0)的顶点O任作互相垂直的弦OA、OB
①求证:直线AB恒过一个定点; ②求分别以OA、OB为直径的两圆异于O的交点M的轨迹方程。
y 2 2 px(2 p y 4 p)
Y B
A(2p,-2p),B(8P,4P),F(p/2,0)
所以, ①直线AB的方程为:y= x – 4p ②∵|AB|= 6 2 p
7 pO 2 2 1 1 7p A 3 2 S ABF AB d 6 2 p 42 p p 2 2 3 2 2
2 x y 2 5 cos 5 sin 5 cos
所以2x – y 的取值范围是:[ - 5,5]
x 1 5 cos 所以,圆的参数方程为: y 2 5 sin
变式训练:已知
sin k cos 2k 2k sin 2 1 k
点P在椭圆上, ∠POX≠45°
x y 1 25 16
2
2
例3、已知点A是椭圆
2 2
x y 1 上任意一点,点B为圆C: 25 9
2
2
x ( y 4) 1 上任意一点,求|AB|的取值范围。
解:如图,要使|PQ|最长(短),只须|CP|最长(短)。 设 P(5 cos ,3 sin ) ,则:
O N M
X
A
x 2 pt 2 2、已知O是坐标原点,A、B是抛物线 ( p 0, t为参数) y 2 pt
上不同于顶点的两个动点,且OA⊥OB,求AB中点的轨迹方程。
设A(2 pt 2 ,2 pt ), B(2 pu 2 ,2 pu)(tu 0) OA OB,
y 1,求y:x的取值范围。 Y x 2 cos y sin k 1 x 2 cos y sin 30° 2
2
x 2
2
O
X
2k 1 k 2
1 1 1 k 3 3
2、椭圆的参数方程
Y b
x2 y 2 椭圆 2 2 1 的参数方程: a b
2 2
2
CP 25 cos 3 sin 4
3 16 sin 50 4
A
Y
2 B
Q
C
1 CP 5 2 0 AB 1 5 2
P
O
X
x2 y2 变式训练:求以椭圆 2 1(a b 0) 的长轴为底的内 2 b 接梯形的面积最大值。a
一般地,离心角φ 不等于旋转角,即 φ≠∠XOM
E A b
x2 y2 2 2 1 a b

M(x,y)
b tan
a
φ
O
a cos
X
2 y 2 2 2 x y 2 1 1 上任意一点,Q是圆C: 例1、P是双曲线 x 2 上任意一点,求线段|PQ|的长度的最小值。
最小的点的坐标是: ,最小距离是:
圆锥曲线的参数方程(2)
——双曲线、抛物线的参数方程
双曲线的参数方程
双 曲 线 的 参 数 方 程
x y 双曲线: 1(a, b 0) 2 2 a b
Φ叫离心角。
2
2
a 想 x cos ( 为参数)1 sin 2 cos 2 2 tan 1 2 2 y b tan cos cosY
②由题设知道:OM⊥AB,即OM⊥MN
OM MN 0, ( x, y) (2 p x, y) 0
Y
B
x 2 y 2 2 px 0( x 0)
为所求的轨迹方程。 在形成曲线的几何条件中,若能直接用一 个几何量的等式表示,则将此几何量的等式 坐标化,化简即得到曲线方程。 在坐标化的过程中,充分利用向量工具是 提高解题速度和简化解题过程的好方法!
参数t的几何意义是: 抛物线上的点M与原点 连线的斜率。
2 pt
O
2 pt
2
X
x 2 pt 2 ( p 0, t为参数) 例2、曲线C的方程是 y 2 pt
当-1≤t≤2时, ①求曲线C的弧上A、B两端点的直线方程。② 设F是曲线的焦点,且△ABF的面积为14,求p的值。 解:曲线C化成普通方程得
点F到直线AB的距离是: d
X
例3、过抛物线y 2 2 px( p 0)的顶点O任作互相垂直的弦OA、OB
①求证:直线AB恒过一个定点; ②求分别以OA、OB为直径的两圆异于O的交点M的轨迹方程。
①设A(2 pt ,2 pt ), B(2 pu ,2 pu)(tu 0) OA OB,
3 5 1 5
1 2 t 抛物线的参数方程 x 2p tR yt 除教材给出的抛物线的参数方程外,下面抛物线的另一种 常用的参数方程是: 2 参 x 2 pt 普 (t为参数) 2 数 通 y 2 px( p 0) y 2 pt 方 方 Y 程 程 M(x,y)
——圆、椭圆的参数方程
1、圆的参数方程
圆心为C(a,b)半径为R的圆的参数方程:
Y M(x,y)
x a R cos y b R sin
0, 2
R
b
θ
参数θ是旋转角。
X O a
例1、指出下列圆的圆心坐标和半径(其中θ为参数):
x 2 3 cos (1) y 2 3 sin
4 p t u 4 p tu 0,tu 1
2 2 2 2
设AB的中点为P(x,y),则
x p t u y p(t u )
2

2

① ② ③
由①②③消去参数t,u得:
y p( x 2 p)
2
解:如图,设C(acosθ,bsinθ),则D(-acosθ,bsinθ),
S ABCD
1 (2a 2a cos )b sin 2
Y
D O
C B X
ab(1 cos ) sin
令:y (1 cos ) sin sin 1 sin 2
显然,0°<θ<90°,0<cosθ<1
解:线段|PQ|的长度的最小值为点P与圆心C的距离的最小值 减去圆的半径。又:
1 2 PC 2 tan 2 cos
22Βιβλιοθήκη YQ PC
X O
5 tan 8 tan 5 4 2 9 9 5(tan ) 5 5 5
2
所以线段|PQ|的长度的最小值为
M (a cos , b sin ) x
θ
a X
O
0, 2 y b sin
a cos
参数θ是离心角!
x 5 cos ( 为参数)化成普通方程; 例3、①把椭圆 y 4 sin
解:椭圆的普通方程为:
②点P(5cos45°,4sin45°)是否在上述椭圆上?∠POX=45°?
圆心坐标 (2, – 2 ) 半径 R=3
x 3 4 cos (2) y 3 4 sin
圆心坐标 (3, 3 ) 半径 R=4
y 2 2x 4 y, 求2x – y 的取值范围。 2 2 解:由已知得: x 1 y 2 5
例2、实数x,y满足 x 2
/
A
y cos cos 2 2 cos cos 1 2 cos 1cos 1 3 3 1 3 3 ( S ABCD ) max ab 当cos 时,ymax 4 2 4
2
2
随堂训练
x2 y2 在椭圆 1 上到直线3x – 2y – 16 = 0距离 4 7
2 2
4 p t u 4 p tu 0,tu 1
2 2 2 2
Y
2 pu 2 pt 2 2 2 AB : y 2 pt ( x 2 pt )( t u ) 2 2 2 pu 2 pt
B
整理得:x 2 p (t u) y 0
(易知当t 2 u 2时也满足)
相关文档
最新文档