第4章+气体动理论

合集下载

气体动理论

气体动理论

第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。

这称为气体动理论。

气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。

早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。

之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。

1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。

在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。

1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。

1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。

之后,麦克斯韦又建立了输运过程的数学理论。

1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。

第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。

假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。

如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。

如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。

选择几个描写系统状态的参量,称为状态参量。

2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。

如体积 。

力学参量:描述系统的强度。

如压强 。

化学参量:描述系统的化学组分。

如各组分的质量,物质的量。

电磁参量:描述系统的电磁性质。

如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。

气体动理论

气体动理论
子)杂乱旳热运动
1
追踪每一种分子,不可能,也不必要
微观量:大小、质量、速度、能量
宏观量:如温度、压强、体积
宏观量和微观量必然有着内在联络,尽管个别分 子旳运动是无规律旳,但是就大量分子旳集体体现 来看,却存在着一定旳统计规律,所以能够求出大 量分子旳某些微观量旳统计平均值,用来解释从试 验中直接测得旳物体旳宏观性质。
x
y
z
x
y
z
22
y
四.压强公式
v v l 一种分子与器壁A1碰撞一
y
v 次予以A1 旳冲量为: 2mvx A2
v 连续两次碰A1 所需时间间
z
l x 隔:
2l1
z l vx
单位时间内与A1 碰撞次数:
1 2l1
vx
1
vx 2l
1
y
x A1 2
3
一种分子单位时间内予以A1
旳冲量: 1 2mvx 2l
(2) O2旳质量密度;
(3) 氧分子旳质量;
(4) 分子间旳平均距离;
(5) 分子旳平均平动动能.
解:(1) P nkT
n
P kT
1.38
1.013 105
1023 273
27
2.45
1025

m3
(2)
PVMMV RT
P
RT
32 103 1.013105
8.31 273 27
1.30 kg m3
3.将小球看作是完全弹性小球(遵照牛顿力学规律)
自由旳、无规则运动旳弹性球分子旳集合 三.统计规律
1.每个分子处于容器空间内任一点旳几率相同,即任 一点分子数密度均相等
2.每个分子向各个方向运动旳几率相同,即气体分子 旳速度沿各个方向旳分量旳多种平均值相等

第四章气体动理论总结

第四章气体动理论总结

第四章⽓体动理论总结第四章⽓体动理论单个分⼦的运动具有⽆序性布朗运动⼤量分⼦的运动具有规律性伽尔顿板热平衡定律(热⼒学第零定律)实验表明:若 A 与C 热平衡 B 与C 热平衡则 A 与B 热平衡意义:互为热平衡的物体必然存在⼀个相同的特征--- 它们的温度相同定义温度:处于同⼀热平衡态下的热⼒学系统所具有的共同的宏观性质,称为温度。

⼀切处于同⼀热平衡态的系统有相同的温度。

理想⽓体状态⽅程: 形式1:mol M PV =RT =νRTM形式2:222111T V p T V p =形式3: nkT P =n ----分⼦数密度(单位体积中的分⼦数) k = R/NA = 1.38*10 –23 J/K----玻⽿兹曼常数在通常的压强与温度下,各种实际⽓体都服从理想⽓体状态⽅程。

§4-2 ⽓体动理论的压强公式VNV N n ==d d 1)分⼦按位置的分布是均匀的2)分⼦各⽅向运动概率均等、速度各种平均值相等kj i iz iy ix iv v v v ++=分⼦运动速度单个分⼦碰撞器壁的作⽤⼒是不连续的、偶然的、不均匀的。

从总的效果上来看,⼀个持续的平均作⽤⼒。

2213212()323p nmvp n mv n ω===v----摩尔数R--普适⽓体恒量描述⽓体状态三个物理量: P,V T 压强公式122ω=mv理想⽓体的压强公式揭⽰了宏观量与微观量统计平均值之间的关系,说明压强具有统计意义;压强公式指出:有两个途径可以增加压强 1)增加分⼦数密度n 即增加碰壁的个数2)增加分⼦运动的平均平动能即增加每次碰壁的强度思考题:对于⼀定量的⽓体来说,当温度不变时,⽓体的压强随体积的减⼩⽽增⼤(玻意⽿定律);当体积不变时,压强随温度的升⾼⽽增⼤(查理定律)。

从宏观来看,这两种变化同样使压强增⼤,从微观(分⼦运动)来看,它们有什么区别?对⼀定量的⽓体,在温度不变时,体积减⼩使单位体积内的分⼦数增多,则单位时间内与器壁碰撞的分⼦数增多,器壁所受的平均冲⼒增⼤,因⽽压强增⼤。

大学物理气体动理论

大学物理气体动理论

气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和

第4章气体动理论基础学习知识

第4章气体动理论基础学习知识

第4章⽓体动理论基础学习知识第4章⽓体动理论基础4-1为什么说系统分⼦数太少时,不能谈论压强与温度?答:对少数⼏个分⼦⽽⾔不能构成热⼒学系统,分⼦间确实频繁碰撞,分⼦速率不满⾜统计规律,⽆论是从压强和温度的定义上来讲,还是从压强与温度公式的推导来看,都不满⾜谈论压强和温度的条件。

4-2已知温度为27℃的⽓体作⽤于器壁上的压强为pa 105,求此⽓体内单位体积⾥的分⼦数。

解:由 nkT P =,有 2523510415.23001038.1101?===-kT P n ]m [3-4-3⼀个温度为17℃、容积33m 102.11-?的真空系统已抽到其真空度为pa 1033.13-?。

为了提⾼其真空度,将它放在300℃的烘箱内烘烤,使吸附于器壁的⽓体分⼦也释放出来。

烘烤后容器内压强为pa 33.1,问器壁原来吸附了多少个分⼦?解:(1)当17=t ℃K 290=: 172331032.32901038.11033.1?===--kT P n ]m [3- 143171072.31052.111032.3?===-nV N(1)当300=t ℃K 573=: 2010682.1'''?==kT P n ]m [3- 1810884.1''?==V n N181088.1'?=-=?N N N4-4 ⽐较平衡态下分⼦的平均平动动能、平均动能、平均能量哪个最⼤?哪个最⼩?答:平均动能=平均平动动能+平均转动动能>平均平动动能平均能量=平均动能+平均势能>平均动能4-5 指出下列各式的物理意义:(1)kT 23; (2) kT i 2;(3) RT 23;(4) RT i2。

答:(1)kT 23:分⼦平均平动动能;(2)kT i2:分⼦平均动能; (3) RT 23:mol 1单原⼦理想⽓体内能;(4) RT i2:mol 1多原⼦理想⽓体内能。

4-6当氮⽓(2N )温度为0℃时,求:215.6510J -?213.7710J -?31.41710J ?(1)氮⽓分⼦的平均平动动能和平均转动动能;(2)7g 氮⽓⽓体的内能。

第4部分 气体动理论02

第4部分 气体动理论02

第4部分 气体动理论1.理想气体能达到平衡态的原因是[ ](A) 各处温度相同 (B) 各处压强相同(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 2. 如果氢气和氦气的温度相同, 物质的量也相同, 则这两种气体的[ ](A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D)势能相等3. 在标准状态下, 体积比为2121=V V 的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为[ ] (A)21 (B)35 (C)65 (D)103 4. 压强为p 、体积为V 的氢气(视为理想气体)的内能为[ ](A)pV 25 (B) pV 23 (C) pV 21(D) pV 5.温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系[ ](A) k ε和k ε相同 (B) k ε相等而k ε不相等(C) k ε相等而k ε不相等 (D) k ε和k ε都不相等6.两瓶不同种类的气体,分子平均平动动能相等,但气体密度不同,则[ ] (A) 温度和压强都相同 (B) 温度相同,压强不等 (C) 温度和压强都不同 (D) 温度相同,内能也一定相等7.容器中储有1mol 理想气体,温度t =27℃,则分子平均平动动能的总和为[ ] (A) 3403 J (B) 3739.5 J (C) 2493 J (D) 6232.5 J8.在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ](A) 速率为v 时的分子数 (B) 分子数随速率v 的变化(C) 速率为v 的分子数占总分子数的百分比(D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比O19.如图所示,在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为[ ](A) ⎰21d )(v vv v f (B) ⎰21d )(v v v v Nf (C)⎰21d )(v vv v v f (D)⎰21d )(v vv v f10.f (v )是理想气体分子在平衡状态下的速率分布函数, 物理式⎰21d )(v vv v Nf 的物理意义是[ ](A) 速率在v 1 ~ v 2区间内的分子数(B) 速率在v 1 ~ v 2区间内的分子数占总分子数的百分比 (C) 速率在v 1 ~ v 2之间的分子的平均速率(D) 速率在v 1 ~ v 2区间内的分子的方均根速率二、填空题1.容器中储有氧气,温度t =27℃,则氧分子的平均平动动能=平ω__________,平均转动动能=转ω___________,平均动能=动ω___________。

大学物理《气体动理论(5学时)》课件



(1)单一性(各处都有自己的P、V、T );
p,V ,T
征 (2)状态性质稳定性(与时间无关);
(3)热动平衡(不同与静力平衡)。 ( p ,V ,T )
p
否则为非平衡态系统。
oV
6/63
【A3.1.2】系统 平衡态 态参量
1 压强 p : 力学描述
单位: 1 Pa 1 N m2
标准大气压: 45纬度海平面处, 0C 时的 大气压. 1atm 1.01105 Pa
掌 握 麦 克 斯 韦 速 率 分 布律及三种统计速率 了解波尔兹曼分布
氢气分子
vrms 1.93103 m s1
氧气分子
vrms 483m s1
22/63
【A3.11.1】麦克斯韦速率分布律
1 兰媚尔实验 实验装置
接抽气泵
2
l v vl
A
Hg
金属蒸汽 狭 缝
23/63
BC D
显 示
热学研究两种方法
研究对象 物理量 出发点
方法
优点 缺点 二者关系
宏观理论
(热力学)
热现象
宏观量 观察和实验
总结归纳 逻辑推理 普遍, 可靠 不深刻
微观理论
(统计物理学) 热现象
微观量 微观粒子
统计平均方法 力学规律 揭露本质
无法自我验证
热力学验证统计物理学, 统计物理学揭示热力学 本质
1/63
统计规律
(v)dv
3kT
N
N
m
v2 vrms
3kT m
3RT 1.73 kT
m

kt
1 2
mv2
3 2
kT ,
v2 3kT / m

大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。

2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。

3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。

4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。

5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。

6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。

二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。

2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。

以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。

重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。

第四章 气体动理论


§4-1
分子动理论的基本观点
一、物质微观结构的物理图象 1、物质是由大量的微观粒子——原子或分子组 成的; 2、分子在作永不停息的无规则运动; 3、分子之间有相互作用力。 综上所述,一切宏观物体(不论它是气体、 液体、还是固体)都是由大量的原子或分子组 成的;所有分子都在不停的、无规则运动中; 分子之间有相互作用力。这就是关于物质微观 结构的三个基本观点。
(s t )
C2 引力: f1 t , C2、t均 0 r 斥力: f C 1 , C 、s均 0 2 1 s r t:4 ~ 7 s : 9 ~ 13
2、图线
(f—r图线)
三、分子间的势能曲线(Ep—r图线)
1、分子间的势能: dE p fdr
C1 C2 E p fdr ( s t )dr r r C1 C2 s 1 t 1 ( s 1)r (t 1)r
N pV RT NA
p nkT
温度 T 的物理意义
1 2 3 平 m v kT 2 2
1) 温度是分子平均平动动能的量度 平 T (反映热运动的剧烈程度).
2)温度是大量分子的集体表现,个别分子无意义.
3)在同一温度下,各种气体分子平均平动动能均 相等。 注意 热运动与宏观运动的区别:温度所反 映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有 分子的一种有规则运动的表现.
由于热力学方法的局限性,我们对平衡态下系统内 部的情况不了解,从而对温度和理想 气体的理解 也很肤浅,对气体的压强更是一无所知,因此,为 了全面了解平衡态下的基本热学信息,我们必须用 分子物理学的方法从微观本质上加以认识。
• 气体动理论是统计物理学的基础; • 气体动理论是从微观的观点来研究气体的热学 性质; • 解释气体的温度、压强、热容、内能等的微观 本质; • 建立统计的概念。

第四章气体动理论

特点或假设: 特点或假设: 1 d ——分子线度 分子线度
r
d
d →0
分子可看成质点
2 除碰撞的瞬间外,分子间及分子与器壁间无作用力 除碰撞的瞬间外, * 高度变化不大,分子受的重力忽略不计 高度变化不大,
f →0
3 分子间及分子与器壁间的碰撞为完全弹性碰撞 理想气体的无引力的弹性质点模型: 理想气体的无引力的弹性质点模型:
例2]
氧气的温度是300K,求(1)氧分子的 ε t ;(2)氧分子的方均 , 氧气的温度是 ) ( ) 根速率;( ) 根速率 (3)以此方均根速率运动的氧分子的动量 v 2 ;(4)设 ( ) m 在边长为0.1m的立方容器中 以 2 的立方容器中,以 在边长为 的立方容器中 v 运动的一个氧分子在两个相对 的器壁之间往返作弹性碰撞,试求器壁所受到的平均作用力 器壁 的器壁之间往返作弹性碰撞 试求器壁所受到的平均作用力;(5)器壁 试求器壁所受到的平均作用力 的单位面积上所受一个氧分子的平均作用力是多少,( 需要有多少 的单位面积上所受一个氧分子的平均作用力是多少 6)需要有多少 个以方均根速率运动的分子才能在器壁上产生1个大气压的压强 个以方均根速率运动的分子才能在器壁上产生 个大气压的压强,(7) 个大气压的压强 将上面所求的分子数与同一大小的容器中的氧气在300K和1个 大 和 个 将上面所求的分子数与同一大小的容器中的氧气在 气压下实际所含的分子数作一比较. 气压下实际所含的分子数作一比较
9
2. 压强公式的推导
ur vi
N个同类分子组成的 个同类分子组成的 气体,分子质量为m 气体,分子质量为
10
dI p 气体的压强: 气体的压强: = dAdt
v p = nm 3 2 p = nε t 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 单原子理想气体分子气体 例如:He、Ne、Ar等,其模型可用一个质点来描述。 z 平动自由度 t 3 P (x , y, z ) 转动自由度 r 0 o y i t r 30 3 总自由度 2. 双原子理想气体分子气体 例如:H2、O2、N2等,其模型可用两个刚性或非刚性质 点组模型来描述。
内能——气体所有分子的总能量与分子间的相互作用 势能之和。 2). 理想气体的内能 由理想气体的微观模型可知,理想气体分子间没有相互 作用势能,故其内能为所有理想气体分子的总能量之和。 如果理想气体分子的(能量)自由度为i=t+r+2v,则 每个分子的平均总能量为
i kT 2
36
4-2 压强、温度与内能公式
7
目录
4-1 理想气体的微观模型与统计理论 4-2 压强、温度与内能公式 4-3 气体分子的速率分布统计规律
8
4-1 理想气体的微观模型与统计理论
关于气体最早的两条定律:
玻意尔-马略特定律 查理定律
P、V、T三者的关系:
PV C
P C T
PV RT
R为气体常数,数值为:8.31J/mol· K
y
A'
o
- mv x mv x
v
vy
A
y
z x
o
v vx
17
z
x
vz
4-2 压强、温度与内能公式
单个分子对器壁碰撞特性 : 偶然性 、不连续性。
大量分子对器壁碰撞的总效果 : 恒定的、持 续的力的作用 .
热动平衡的统计规律 ( 平衡态 )
dN N 1)分子按位置的分布是均匀的 n dV V
6
引言
三、统计规律性 气体系统中分子数目巨大,实际上无法建立如此 多的方程和相应的初始条件,即使能建立也不能 求解。因此从牛顿定律出发无法求解气体系统的 宏观规律。 对于单个分子,其运动是无规的、随机的,但 对大量的分子却满足统计规律性。 所以,求解气体系统的规律需要运用力学规律 和统计平均方法。
1 2 v v v v 3
2 x 2 y 2 z
13
4-1 理想气体的微观模型与统计理论 4-2 压强、温度与内能公式 4-3 气体分子的速率分布统计规律
14
4-2 压强、温度与内能公式
在中世纪,气体压强的产 生对科学家是一个谜。直 到1738年,瑞士物理学家丹 尼尔· 伯努利,从物质分子 结构观点以及分子的热运 动出发,通过研究气体分 子对容器壁的作用,解释 了气体压强产生的原因, 进而解释了更多的气体宏 观物理量的存在原因。 那么,分子的热运动与压强、温度等气体宏观物 理量之间究竟有着怎样的联系呢?
28
4-2 压强、温度与内能公式
练习 一瓶氦气和一瓶氮气密度相同,分子平均平动动 能相同,而且它们都处于平衡状态,则它们 (A)温度相同、压强相同。 (B)温度、压强都不同。
(C)温度相同,但氦气的压强大于氮气的压强.
(D)温度相同,但氦气的压强小于氮气的压强.
N k 解 p nkT kT T V m p( N 2 ) p(He) m( N 2 ) m(He)
热运动有什么特 点啊?
3
引言 猜猜烟雾会怎 么变化?
这个完全没有规 律啊!
4
引言 猜猜是正面还 是反面?
5
引言
一、气体动理论的研究方法 从微观物质结构和分子热运动出发运用力学规 律和统计平均方法,解释气体的宏观现象和规 律,并建立宏观量与微观量之间的关系。 二、气体动理论的基本观点 1. 2. 3. 4. 5. 气体是由大量分子(或原子)组成。 分子在不停地作无规则的热运动。 分子间有相互作用。 分子可视为弹性的小球。 分子的运动服从牛顿力学。
23
4-2 压强、温度与内能公式
(3)气体压强由微观气体分子的热运动决定;
(4)压强是直接测量的宏观量,压强公式反映了气 体宏观热学性质的微观本质。
24
4-2 压强、温度与内能公式
二、温度公式 由理想气体状态方程
PV
M

RT
设分子的质量为m,分子数为N,则
气体质量: 摩尔质量:
M Nm
N Am
平动
3 3 3
转动
0 2 3
总和
3 5 6
34
4-2 压强、温度与内能公式
2. 能量均分定理 气体处于平衡态时,分子任何一个自由度的平
1 kT,这就是能量按自由度 均能量都相等,均为 2
均分定理 。 分子的平均能量
i k kT 2
35
4-2 压强、温度与内能公式
3. 理想气体内能
1). 内能
2)分子各方向运动概率均等
分子运动速度
vi vix i viy j viz k
18
4-2 压强、温度与内能公式
分子运动速度
vi vix i viy j viz k
各方向运动概率均等
vx v y vz 0
2 vx
x方向速度平方的平均值
刚性 平动自由度 转动自由度
t 3 r 3
非刚性
t 3 r 3
33
4-2 压强、温度与内能公式
刚性 非刚性
v 3n 6 振动自由度 v 0 i t r 6 i t r v 3n 总自由度
几种不同刚性分子的自由度 自由度(i) 气体分子 代表分子
单原子 双原子 多原子 He O2 CH4
32
x
4-2 压强、温度与内能公式
刚性 平动自由度 转动自由度 振动自由度 总自由度
t 3 r 2
非刚性
t 3 r 2
o o
z z
yy
v 0 i t r 5
v 1 x x i t r v 6
3. 多原子理想气体分子气体
例如:CO2、H2O、CH4等,其模型可用多个刚性或 非刚性质点组来描述。
p mn
根据统计规律
分子平均平动动能
N
2 mnvx
v2 x
1 2 v 3
1 2 k mv 2
2 p n k 3
22
4-2 压强、温度与内能公式
压强的统计意义
统计关系式 宏观可测量量
2 p n k 3
微观量的统计平均值
(1)气体分子数密度越大,压强越大;
(2)分子热运动的平均平动动能越大,压强越大。
30
4-2 压强、温度与内能公式
三、内能公式 1. 自由度
力学系统的独立坐标个数称为物体运动的自由 度。
自由度数目
i t r v
平 动 转 动
振 动
31
4-2 压强、温度与内能公式
一般地,如果一个分子由n个原子构成,则该分子最多具 有3n个自由度,其中3个是平动自由度,3个是转动自由 度,其余3n-6个是振动自由度。
二、气体分子运动的统计理论 对于由大量分子组成的热力学系统从微观上加 以研究时,必须用统计的方法 。
小球在伽尔顿板 中的分布规律 。
11
4-1 理想气体的微观模型与统计理论
伽尔顿实验中单个小球落入某个竖槽有一定的 可能性,这种可能性的大小称为概率P:
事件X出现的次数N i P 试验总次数N
不同事件发生的概率 Pi之和应该等于1
29
4-2 ห้องสมุดไป่ตู้强、温度与内能公式
例 理想气体体积为 V ,压强为 p ,温度为 T , 一个分子 的质量为 m ,k 为玻尔兹曼常量,R 为摩 尔气体常量,则该理想气体的分子数为: (A) pV m
(C) pV ( RT ) 解
(B) pV
(kT )
(D) pV (m T )
p nkT
pV N nV kT
一个分子的能量为: kT
1 mol气体分子的能量为:
E0
i i N A kT RT 2 2
i 2
质量为M 的理想气体的内能(平均总能量)为:
M i E RT 2
1 理想气体 2 平衡态
对单原子分子
E
1mol气体 的内能
i E RT 2
对双原子刚性分子 对双原子非刚性分子
3 RT 2 5 E RT 2 7 E RT 2
9
4-1 理想气体的微观模型与统计理论
一、理想气体的微观模型 1)分子可视为质点; 线度d~10-10m,间距r~10-9m, d<<r; 2)除碰撞瞬间, 分子间无相互作用力; 3)弹性质点(碰撞均为完全弹性碰撞); 4)分子的运动遵从经典力学的规律 。
10
4-1 理想气体的微观模型与统计理论
23 N 6 . 022 10 NA为阿伏加德罗常数, A
Nm N R P RT T VN A m V NA
25
4-2 压强、温度与内能公式
N R P T nkT V NA
其中n为分子数密度
N n V
k为玻尔兹曼(Boltzmann)常数
R k NA
8 .31 23 1 . 38 10 J /k 23 6 .022 10
压强公式的另一形式
P nkT
P T
26
4-2 压强、温度与内能公式
比较两种 压强公式
1 2 2 P nm v n k 3 3

P nkT
2 n k nkT 3
3 1 k kT m v 2 2 2
这就是理想气体分子平均平动动能与温度的关系—— 温度公式
27
4-2 压强、温度与内能公式
麦克斯韦速率分布机
第四章 气体动理论
引言
热运动是 气体分子的主 要运动形式, 对气体性质和 气体状态变化 起着决定性的 作用。 本章将从微观的角度研究气体分子运动以及大 量气体分子热运动的宏观表现,从而指出气体的宏 观状态参量(如压强、温度、内能等)的科学含义。
相关文档
最新文档