大学物理第四章《气体动理论》
大学物理气体动理论基础

玻尔兹曼方程
玻尔兹曼方程是描述气体分子动理学行为的偏微分方程,它基于分子混沌 近似。
玻尔兹曼方程描述了气体分子速度分布随时间的变化,以及分子与器壁碰 撞后速度的改变。
通过求解玻尔兹曼方程,可以得到气体分子的速度分布、分子碰撞频率、 分子平均自由程等物理量。
输运过程的近似处理
01
输运过程是指气体分子通过器壁的传递过程,包括 扩散、热传导和粘性流动等。
气体动理论在新能源、环保、生物医 学等领域的应用前景广阔,为解决实 际问题提供了重要的理论基础。
THANKS
感谢观看
热传导的应用
在能源、化工、航空航天等领域,利用热传导原 理实现热量传递和热能利用。
气体扩散
扩散现象
气体分子在浓度梯度作用下,通过随机运动传递物质的过程。
扩散定律
扩散通量与浓度梯度成正比,与气体分子的扩散系数有关。
扩散的应用
在环保、化工、生物医学等领域,利用扩散原理实现物质的分离 和传输。
气体粘性
02
在处理输运过程时,可以采用近似方法来简化问题 ,如扩散系数近似、粘性系数近似等。
03
通过这些近似处理,可以得到输运过程的宏观规律 ,如菲克定律、斯托克斯定律等。
04
气体动理论的应用
气体热传导
热传导现象
气体分子在热能作用下,通过碰撞传递能量的过 程。
热传导定律
热能传递速率与温度梯度成正比,与气体分子间 的相互作用力有关。
粘性现象
01
气体分子在相对运动中,由于碰撞产生的阻力。
牛顿粘性定律
02
粘性力与速度梯度成正比,与气体分子的碰撞频率和分子间的
相互作用力有关。
粘性的应用
03
大学物理 气体动理论

N A 6.0221367 10 mol
23
1
分子数密度 n :单位体积内的分子数。
分子质量为: m 1 mol气体的质量为:M=NA m
气体质量密度为: ρ=n m 气体质量为: m'=Nm
4-1 理想气体的微观模型与统计理论
2 2 mvix m N 2 Nm N vix I Ii vix x i 1 x i 1 N i 1 i 1 x Nm 2 vx x N N
y
- mv x mvx
A2 A
v
A
y
z x
7)A面受碰撞力为:
o
F I v Nm x
2 x
z
x
21
4-2 压强、温度与内能公式
4.2.2 温度公式 理想气体的压强公式可写为:
p nkT
n是单位体积中的分子数。 NA是1摩尔气体中 的分子数。 玻尔兹曼常数:
R k 1.38 10 23 J K 1 NA
一、分子的平均平动动能
4-2 压强、温度与内能公式
由p
2 nkT 和 p 3 n k 得分子平均平动动能 : 1 3 2 k mv k T T 2 2
麦克斯韦速率分布机
第四章 气体动理论
引言
热运动是气 体分子的主要运 动形式,对气体 性质和气体状态 变化起着决定性 的作用。 本章从微观分子的角度研究气体分子运动以及 大量气体分子热运动的宏观表现,指出气体的宏观 状态参量(如压强、温度、内能等)的意义。
2
目录
4-1 理想气体的微观模型与统计理论 4-2 压强、温度与内能公式 4-3 气体分子的速率分布统计规律
第四章气体动理论总结

第四章⽓体动理论总结第四章⽓体动理论单个分⼦的运动具有⽆序性布朗运动⼤量分⼦的运动具有规律性伽尔顿板热平衡定律(热⼒学第零定律)实验表明:若 A 与C 热平衡 B 与C 热平衡则 A 与B 热平衡意义:互为热平衡的物体必然存在⼀个相同的特征--- 它们的温度相同定义温度:处于同⼀热平衡态下的热⼒学系统所具有的共同的宏观性质,称为温度。
⼀切处于同⼀热平衡态的系统有相同的温度。
理想⽓体状态⽅程: 形式1:mol M PV =RT =νRTM形式2:222111T V p T V p =形式3: nkT P =n ----分⼦数密度(单位体积中的分⼦数) k = R/NA = 1.38*10 –23 J/K----玻⽿兹曼常数在通常的压强与温度下,各种实际⽓体都服从理想⽓体状态⽅程。
§4-2 ⽓体动理论的压强公式VNV N n ==d d 1)分⼦按位置的分布是均匀的2)分⼦各⽅向运动概率均等、速度各种平均值相等kj i iz iy ix iv v v v ++=分⼦运动速度单个分⼦碰撞器壁的作⽤⼒是不连续的、偶然的、不均匀的。
从总的效果上来看,⼀个持续的平均作⽤⼒。
2213212()323p nmvp n mv n ω===v----摩尔数R--普适⽓体恒量描述⽓体状态三个物理量: P,V T 压强公式122ω=mv理想⽓体的压强公式揭⽰了宏观量与微观量统计平均值之间的关系,说明压强具有统计意义;压强公式指出:有两个途径可以增加压强 1)增加分⼦数密度n 即增加碰壁的个数2)增加分⼦运动的平均平动能即增加每次碰壁的强度思考题:对于⼀定量的⽓体来说,当温度不变时,⽓体的压强随体积的减⼩⽽增⼤(玻意⽿定律);当体积不变时,压强随温度的升⾼⽽增⼤(查理定律)。
从宏观来看,这两种变化同样使压强增⼤,从微观(分⼦运动)来看,它们有什么区别?对⼀定量的⽓体,在温度不变时,体积减⼩使单位体积内的分⼦数增多,则单位时间内与器壁碰撞的分⼦数增多,器壁所受的平均冲⼒增⼤,因⽽压强增⼤。
大学物理气体动理论

气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和
大学普通物理学经典课件——气体动理论

出现的可能性大小 .
归一化条件
i
i
Ni iN
1
§7.2 平衡态 理想气体状态方程 一 气体的物态参量及其单位(宏观量)
1 气体压强 p :作用于容器壁上
单位面积的正压力(力学描述).
p,V ,T
单位: 1Pa 1N m2
标准大气压:45纬度海平面处, 0 C 时的大气压.
1atm 1.013 105 Pa
~ 107 m; z ~ 1010次 / s
对于由大 量分子组成的 热力学系统从 微观上加以研 究时,必须用 统计的方法 .
小球在伽 尔顿板中的分 布规律 .
............ ........... ............ ........... ............ ........... ............
2mvix
两次碰撞间隔时间
2x vix
单位时间碰撞次数 vix 2x
单个分子单位时间施于器壁的冲量 mvi2x x
y
A2o
z
- mmvvvxx
x
单个分子单位时间 施于器壁的冲量
A1 y
mvi2x x
大量分子总效应
zx
单位时间 N 个粒子
对器壁总冲量
mvi2x ix
m x
i
vi2x
Nm vi2x x iN
pV m RT M
例1 在水面下深为50.0m的湖底处(温度为4.0 ℃ ), 有一个体积为1.0×10-5m3的空气泡升到湖面上来,若 湖面的温度为17℃,求气泡到达湖面的体积(取大气 压p0=1.013×105Pa)。
§7.3 理想气体压强公式 一 理想气体的微观模型
1)分子本身的线度比起分子之间的距离小 了很多,以至于可以忽略不计(可视为质点)
大学物理《气体动理论(5学时)》课件

特
(1)单一性(各处都有自己的P、V、T );
p,V ,T
征 (2)状态性质稳定性(与时间无关);
(3)热动平衡(不同与静力平衡)。 ( p ,V ,T )
p
否则为非平衡态系统。
oV
6/63
【A3.1.2】系统 平衡态 态参量
1 压强 p : 力学描述
单位: 1 Pa 1 N m2
标准大气压: 45纬度海平面处, 0C 时的 大气压. 1atm 1.01105 Pa
掌 握 麦 克 斯 韦 速 率 分 布律及三种统计速率 了解波尔兹曼分布
氢气分子
vrms 1.93103 m s1
氧气分子
vrms 483m s1
22/63
【A3.11.1】麦克斯韦速率分布律
1 兰媚尔实验 实验装置
接抽气泵
2
l v vl
A
Hg
金属蒸汽 狭 缝
23/63
BC D
显 示
热学研究两种方法
研究对象 物理量 出发点
方法
优点 缺点 二者关系
宏观理论
(热力学)
热现象
宏观量 观察和实验
总结归纳 逻辑推理 普遍, 可靠 不深刻
微观理论
(统计物理学) 热现象
微观量 微观粒子
统计平均方法 力学规律 揭露本质
无法自我验证
热力学验证统计物理学, 统计物理学揭示热力学 本质
1/63
统计规律
(v)dv
3kT
N
N
m
v2 vrms
3kT m
3RT 1.73 kT
m
或
kt
1 2
mv2
3 2
kT ,
v2 3kT / m
大学物理 气体动理论

三、 温 度
决定一个系统是否与其它系统达到热平衡的宏观性质。
处于热平衡的多个系统具有相同的温度
具有相同温度的几个系统放在一起必然处于热平衡。
温度测量
酒精或水银
A
B
A 和 B 热平衡,TA = TB
热胀冷缩特性,标准 状态下,冰水混合, B 上留一刻痕, 水沸 腾,又一刻痕,之间 百等份,就是摄氏温 标(Co)。
生碰撞的�数目为:Ni = nivix dt d A 速度为 vi 分子在 dt 时间对 dA 的冲量为:
�
x
vxi
dA
vidt
nivixdAdt ⋅ (2mvix )
∑ 所有分子在
dt
时间内对
dA 产生的总冲量为:dI = 1 2
i
2mni
v
2
ix
dAdt
∑ ∑ 气体对器壁的宏观压强为:
p=
mni
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N NA
N A = 6.023 × 1023 / mol
N为气体分子总数 阿伏伽德罗常量
µN
R
pV = RT = N T
µNA
NA
令
k
≡
R NA
=
1.38 × 10−23
J
K
玻耳兹曼常数
pV = NkT
p = N kT = nkT V
n:气体分子数密度
2
三、气体分子的平均总动能
设分子有: 平动自由度 t 转动自由度 r
分子平均总动能:
1 εk = (t + r) 2 kT
单原子分子 刚性双原子分子
3
大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
它是否是一个平衡态?为什么?答:这不是一个热力学平衡态。
平衡态是指热力学系统在不受外界影响的条件下,系统的宏观性质不随时间变化的状态。
所谓的没有外界影响,指外界对系统既不做功又不传热。
两端分别与冰水混和物和沸水接触的铜棒,在和沸水接触的一端,铜棒不断吸收热量,而在和冰水混合物接触的一端,铜棒不断的释放热量。
铜棒和外界以传热的方式进行能量交换,因而它不是一个热力学平衡态。
4-2 在一个容积为310dm 的容器中贮有氢气,当温度为7C 时,压强为50atm 。
由于容器漏气,当温度升为17C ,压强仍为50atm ,求漏掉氢气的质量。
解:设7C 时的参量为111,,T n P ;17C 时的参量为222,,T n P 因21P P =,由理想气体的状态方程nkT P =得2211kT n kT n =代入K T K T 290,28021==得036.11221==T T n n再由111kT n P =,得 32723511110311.12801038.110013.150--⨯=⨯⨯⨯⨯=m kT P n 同理可得 327210265.1-⨯=m n将氢分子质量2H m 与n 相乘,可得不同温度下容器内氢气的密度3272711353.41066.1210311.12--⋅≈⨯⨯⨯⨯==m kg m n H ρ3272722200.41066.1210265.12--⋅≈⨯⨯⨯⨯==m kg m n H ρ漏掉氢气的质量()23120.153110 1.5310m V kg ρρ--∆=-=⨯⨯=⨯4-3 如图所示,两个相同的容器装着氢 气,以一光滑水平玻璃管相连,管中用一滴水 银做活塞,当左边容器的温度为0C ,而右边 容器的温度为20C 时,水银滴刚好在管中央维持平衡。
试问: 题4-3图 (1)当右边容器的温度由0C 升到10C 时,水银是否会移动?怎样移动? (2)如果左边温度升到10C ,而右边升到30C ,水银滴是否会移动? (3)如果要使水银滴在温度变化时不移动,则左右两边容器的温度变化应遵从什么规律?解:(1)可假设水银柱不移动,这样左边容器从C 0升到C 10时,压强会增大,所以水银将向右侧移动。
(2)同样假设水银滴不移动,左右两侧体积不变。
以0p 表示左右两侧未升温前的压强,1p 表示升温后左侧压强,2p 表示升温后右侧压强,则0127310273p p +=022027330273p p ++= 可以看出 21p p >水银滴左侧的压强大于右侧的压强,水银滴将向右侧移动。
(3)依条件27301p T p =左 29320273002p p T p =+=右 由21p p = 293273=右左T T 4-4 对一定量的气体来说,当温度不变时,气体压强随体积的减小而增大;当体积不变时,压强随温度的升高而增大。
从宏观来看,这两种变化同样使压强增大,从微观来看它们有何区别?解:从分子运动论的观点来看,气体作用在器壁上的压强决定于单位体积内的分子数和每个分子的平均平动动能的乘积,或者说,是大量气体分子与器壁频繁进行动量交换的结果。
用公式表示就是221()32p n m =v 当温度不变时,每个分子的平均平动动能没有发生改变,但体积的减少会使单位体积内的分子数增加,即分子数密度n 增大。
或者说,气体分子与器壁进行的动量交换更加频繁,这样就使容器气体压强增大。
当体积不变时,随着温度的升高,每个分子的平均平动动能增加,即气体分子每次碰撞时与器壁交换的动量数值增加。
所以也会使气体压强增大。
从微观上看,它们的图像是不一样的。
4-5 每秒钟有231.010⨯个氢分子(质量为273.310kg -⨯)以311.010m s -⨯⋅的速度沿着与器壁法线成45角的方向撞在面积为422.010m -⨯的器壁上,求氢分子作用在器壁上的压强。
解:如图所示与器壁碰撞后,每一个分 子的动量改变为 2c o s 45m v 每秒总的动量改变为 2c o s 45nm v 压强2cos 45nm p A=v题4-5图2327342 1.010 3.310 1.01022.010--⨯⨯⨯⨯⨯⨯=⨯32.310Pa =⨯4-6 道耳顿(Dalton’s Law)定律指出,当不起化学作用的气体在一容器中混合时,在给定温度下每一成分气体所作用的压强和该气体单独充满整个容器时的压强相同;并且总压强等于各成分气体的分压强之和。
试根据气体动理论并利用式(4.5)导出道耳顿定律。
解:气体动理论给出的压强公式为221212()3323p nm n m n ε===v v设几种气体混合贮在同一容器中,单位体积内所含各种气体的分子数分别为12,,n n ,则单位体积内混合气体的总分子数为12n n n =++又混合气体的温度相同,根据能量均分定理,不同成份的气体分子平均动能相等,即 1232kT εεε====混合气体的压强为 122()3p n n ε=++11222233n n εε=++12p p =++其中 kT n kT n n p1111233232===ε kT n kT n n p 2222233232===ε12,,p p 即每一成分气体单独充满整个容器时的压强,并且总压强等于各成分气体的压强之和,这就是道耳顿分压定律。
4-7 (1)具有活塞的容器中盛有一定量的气体,如果压缩气体并对其进行加热,使它的温度27C 升到177C ,体积减小一半,求气体压强变化多少? (2)此时气体分子的平均平动动能变化多少?分子的方均根速率变化多少?解:(1)由理想气体状态方程111222T V p T V p =1221V V =127327300T K =+= 2273177450T K =+=有 1112211233004502p p T T V V p p =⨯⋅=⋅⋅= (2)由题意 1123kT =ε 2223kT =ε 1112125.1300450εεεε=⨯==T T 温度为1T 时,方均根速率为1=温度为2T 时,方均根速率为2=所以1.22=== 4-8 (1)试计算在什么温度时氢分子的方均根速率等于从地球表面逃逸的速率。
对氧分子作同样的计算。
(2)试问在月球表面上,计算结果是否相同,假设月球表面的重力加速度为0.16g 。
(3)在地球的上层大气中,温度约为1000K 左右。
你认为该处是否有很多氢气?有很多氧气?解:(1)第二宇宙速率131211.211.210km s m s --=⋅=⨯⋅v。
分子的方均根速率=23210H M kg -=⨯。
2=v 。
22323242210(11.210) 1.010338.31H H M T K R -⨯==⨯⨯=⨯⨯v 氧分子摩尔质量为 233210O M k g-=⨯ 有 223232523210(11.210) 1.610338.31O O M T K R -⨯==⨯⨯=⨯⨯v(2)月球表面逃逸速率1s -==⋅v 312.3810m s -=⨯⋅有 23322210(2.3810) 4.51038.31H T K -⨯=⨯⨯=⨯⨯ 233233210(2.3810)7.21038.31O T K -⨯=⨯⨯=⨯⨯(3)地球大气层中,不会有很多氢气,会有较多氧气。
4-9 水蒸气分解为同温度的氢气和氧气,即2221H O H +O 2→,当不计振动自由度时,求此过程中内能增加的百分比。
解:设初始水蒸气的分子总数为0N 。
由2221H O H +O 2→分解后将有0N 个2H 分子和2N 个2O 分子。
刚性双原子分子可用三个平动自由度(3=t ),和两个转动自由度(2=r )完整的描述其运动,刚性三原子分子则需要用三个平动自由度(3=t )和三个转动自由度(3=r )描述其运动。
由能量均分原理知一个分子的平均能量为kT r t )(21+=ε温度为T 时水蒸气的总能量为kT N kT N E 0003)33(21=+= 若分解为氢气和氧气后,气体温度值为T ,这时气体总能量为氢分子能量和氧分子能量之和,用E '表示有kT N kT N kT N E 000415)23(212)23(21=+++=' 能量增加的百分比为%25413341500000==-=-'kT N kTN kT N E E E4-10 一个能量为1210eV 的宇宙射线粒子,射入氖管中,氖管中0.01mol ,如果宇宙射线粒子的能量全部被氖气分子所吸收而变成热运动能量,氖气温度能升高几度?解:0.01mol 氖气共有A N 01.0个原子,其中A N 为阿伏加德罗常数。