大学物理思考题答案第四章

合集下载

大学物理课后习题答案第四章

大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。

大学物理第四章习题解答PPT演示课件

大学物理第四章习题解答PPT演示课件
注意:最高点处摆锤(刚体)的速度恰好为零 时, 完成一个圆周运动。(区别:3-30)
16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案

k
m1g x1
1.0 103 9.8 4.9 102
0.2
N m1
而 t 0 时, x0 1.0 102 m,v0 5.0 102 m s-1 ( 设向上为正)

k m
0.2 8 103
5,即T
2
1.26s
A
x02
(
v0
)2
(1.0 102 )2 (5.0 102 )2 5
(7)两列波叠加产生干涉现象必须满足的条件




[答案:频率相同,振动方向相同,在相遇点的位相差恒定。]
4.3 质量为10 103 kg 的小球与轻弹簧组成的系统,按
x 0.1cos(8t 2 ) (SI) 的规律作谐振动,求: 3
(1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与 势能相等?
习题 4.2(2) 图 [答案:b、f; a、e]
(3)一质点沿 x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周 期为 T,振幅为 A。
( a ) 若 t=0 时 质 点 过 x=0 处 且 朝 x 轴 正 方 向 运 动 , 则 振 动 方 程 为 x=___________________。
[答案: 2 s ] 3
(2)一水平弹簧简谐振子的振动曲线如题 4.2(2)图所示。振子在位移为零, 速度为-A、加速度为零和弹性力为零的状态,对应于曲线上的____________ 点。振子处在位移的绝对值为 A、速度为零、加速度为-2A 和弹性力为-KA 的 状态,则对应曲线上的____________点。
103
(
)2

华东理工大学大学物理第四章答案

华东理工大学大学物理第四章答案
2π = T ⇒T= 5 Δϕ′ ϕ1 − ϕ 0.5 t 1 − t 0.5 = = 2π 2π T
t(s)
5 Δϕ′ = π 12
−A
(2)
E=
1 1 1 2π 25 2 2 mv 2 m(ωA) 2 = × 1 × ( A) 2 = π A m = 2 2 2 T 72
-3
2、质量为 10×10 ㎏的小球与轻弹簧组成的系统,按 x = 0 . 1 cos ( 8 π t + 谐振动,式中t以秒计,x以米计,求: (1)振动的周期 T,振幅 A 和初位相φ; (2)t=1s 时刻的位相、速度; (3)最大的回复力; (4)振动的能量。 解:(1)与简谐振动标准运动方程 x = A cos(ωt + ϕ) 比较得
v 1 = −0.8π sin(8π + 2 π) = −2.175 m s 3
(3) Fmax = ma max = 10 × 10 −3 × Aω 2 = 10 × 10 −3 × 0.1 × (8π) 2 = 0.63N (4) E =
1 1 mA 2 ω 2 = × 10 × 10 −3 × (0.1) 2 × (8π) 2 = 3.2 × 10 −2 J 2 2
2 ∴A = x0 + 2 v0
ω
2
= A0
ω=
k m + m0
m0 k
(2)圆频率 ω′ =
k 不变 m + m0 k A0 m
m O A a
m0未落下前,m运动到O时速度为 v 0 = A 0 ω 0 =
当m0落在m上时系统速度变为 v ′ ,根据系统动量守恒 mv 0 = (m + m 0 ) v ′
(0.05) + (0.06)

大学物理第四章静电场课后习题概要

大学物理第四章静电场课后习题概要

b
p
o
x
l
dx
x
kxdx dE 4 0 x b 2 kxdx k bl l E ln 2 0 4 4 0 b l b 0 x b
l
1
1
方向沿x轴的负方向。
练习题4-7 图为两个分别带有电荷的同心球壳系统。 设半径为 R1 和R2 的球壳上分别带有电荷 Q1 和 Q2 ,求: (1)I、II 、III三个区域中的场强;(2)若 Q1 Q2 , 各区域的电场强度又为多少?画出此时的电场强度分 布曲线。 q内 2 解: s E dS 4r E 0
0 r R1
E1 0
Q1
R1
R1 r R2
r R2
当 Q1 Q2 时
40 r Q1 Q2 E3 40 r 2
2
E2
Q1
Q2
Ⅲ Ⅱ
O Ⅰ
R2
0 r R1
E1 0
R1 r R2
r R2
当 Q1 Q2 时
0 r R1
当 Q1 Q2 时
Q1
R1
R2
O Ⅰ Ⅱ Ⅲ
Q2
r
练习题4-12 同轴电缆是由两个很长且彼此绝缘的同 轴金属圆柱体构成,如图所示。设内圆柱体的电势 为U1,半径为R1;外圆柱体的电势为U2 ,外圆柱体 的内半径为R2,两圆柱体之间为空气。求两个圆柱 体的空隙中离轴为r处(R1 < r <R2)的电势。
定理可知球外空间的场强E外
(3)因为球表面的场强 E表 变小。
q 4 0 r
2
。由此可知,球
外空间的场强与气球吹大过程无关。

上海交大版物理第四章答案

上海交大版物理第四章答案

)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。

在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。

解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。

4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。

已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。

求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。

解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。

4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。

解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ ,∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。

4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。

大学物理课后习题答案(第四章) 北京邮电大学出版社

大学物理课后习题答案(第四章) 北京邮电大学出版社



k 0.2 2 5,即T 1.26s 3 m 8 10
2 A x0 (

v0

)2
2 2
5.0 10 2 2 (1.0 10 ) ( ) 5 2 10 2 m v 5.0 10 2 5 tan 0 0 1, 即 0 2 x 0 1.0 10 5 4 5 x 2 10 2 cos(5t )m 4 ∴
A 3.2 10 3 rad l
∴ 故其角振幅
2 A x0 (
小球的振动方程为
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m ,位相与第一振动的
给小球一水平向右的冲量 Ft 1.0 10 kg m s ,取打击时刻为计时起点 (t 0) ,求 振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有
4 1
v0 x 0
F t mv 0

v
F t 1.0 10 0.01 m 1.0 10 3
A mg 2 m 2 2 gh 2 x ( ) ( ) ( ) k (m M )
2 0 2
v0
mg 2kh 1 k (m M ) g
2kh ( M m) g (第三象限),所以振动方程为 (3) mg 2kh k 2kh x 1 cos t arctan k (m M ) g ( M m) g mM 3 4-10 有一单摆,摆长 l 1.0m ,摆球质量 m 10 10 kg ,当摆球处在平衡位置时,若 tan 0
(2)

Ek E p
时,有
E 2E p

大学物理第四章习题解

大学物理第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。

解:被动轮边缘上一点的线速度为 πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω 主动轮的角速度为2011πrad/s 540π2==∆-=t ωωα 在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈) 4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。

解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=t ωωα t =0到t =100s 时间内飞轮所转过的角度为 rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ 4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。

解:转动惯性大小,刚体的形状、质量分布及转轴的位置。

4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。

解:由分离质点的转动惯量的定义得 221i i i r m J ∆=∑=22)3(2b m mb +=211mb = 4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。

解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=t ωωα 制动力矩的大小为 m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 动量守恒定律与能量守恒定律4-1 用锤压钉,很难把钉子压入木块,如果用锤击钉,钉子就很容易进入木块。

这是为什么?答:要将钉子压入木块中,受到木块的阻力是很大的,仅靠锤压钉子上面的重量远远不够,只有挥动锤子,使锤子在极短的时间内速度从很大突然变为零,在这过程中可获得较大的冲量,即:0F t mv =-又因为t 很短,所以可获得很大的冲力,这样才足以克服木块的阻力,将钉子打进木块中去。

4-2 一人躺在地上,身上压一块重石板,另一人用重锤猛击石板,但见石板碎裂,而下面的人毫无损伤。

何故?答:石板受击所受到的冲量很大,亦即)(v m d p d dt F ==很大。

但是,由于石板的质量m 很大,所以,石板的速度变化并不大。

又因为用重锤猛击石板时,冲击力F 很大,此力作用于石板,易击碎石板;但是,由于石板的面积很大,故作用于人体单位面积上的力并不大,所以下面的人毫无损伤。

4-3 两个质量相同的物体从同一高度自由下落,与水平地面相碰,一个反弹回去,另一个却贴在地上,问哪一个物体给地面的冲击较大?答:贴地:00)(0mv mv t F =--=∆反弹:)()(00v v m mv mv t F +=--=∆'F F >'∴,则反弹回去的物体对地面冲击大。

4-4 两个物体分别系在跨过一个定滑轮的轻绳两端。

若把两物体和绳视为一个系统,哪些力是外力?哪些力是内力?答:取系统21,m m 和绳,内力:2211,;,T T T T ''外力:g m g m 21,,绳与滑轮摩擦力f ,滑轮对绳支持力N 。

4-5 在系统的动量变化中内力起什么作用?有人说:因为内力不改变系统的动量,所以不论系统内各质点有无内力作用,只要外力相同,则各质点的运动情况就相同。

这话对吗?答:这话是错的。

由质点系动量定理21t ex t F dt p =⎰可知,在系统动量变化中,外力改变系统的动量,内力不改变系统的动量;但内力改变各质点的动量,所以各质点的运动情况就不相同。

4-6 我国东汉史学者王充在其所著《论衡》一书中记有:“古之多力者,身能负荷千钧,手能决角伸钩,使之自举,不能离地。

”说的是古代大力士自己不能把自己举离地面。

这个说法正确吗?为什么?答:正确。

取人和地球为一系统,重力是内力,不能改变系统的动量,所以自己不能举起自己。

4-7 人从大船上容易跳上岸,而从小船上不容易跳上岸,这是为什么? 答:水平无外力,动量守恒,小船:0=''+v m mv ,v m m v '-='∴,t v s ∆'='大船:0=+MV mv ,v Mm V -=∴,t V S ∆=; V v >' ,S s >'∴;则小船后退较远,相当从远处跳,跳到水里。

4-8 一人在帆船上用鼓风机正对帆鼓风,试图使帆船前进,但他发现,船非但不前进,反而缓慢后退,这是为什么?答:鼓风机喷出气体对帆作用力1F ,与气体对鼓风机作用力1F ' ,是一对平衡力,作用船上,F F F ='=11。

鼓风机对气体的作用力,船应不动,但气体吹到帆上时,帆左边流速大,压强小1P ;帆右边流速小,压强大2P ,12PP >∴,帆的面积相同,12F F >∴,船缓慢后退。

流体力学公式,伯努力方程:222221112121v gy P v gy P ρρρρ++=++ 表明,压强大,速度小;压强小,速度大。

4-9 质点系的动量守恒,是否意味着该系统中一部分质点的速率变大时,另一部分质点的速率一定会变小?答:由质点系动量守恒定律当0ex F =时,i i im v =∑恒矢量可知,质点系各质点动量的矢量和保持不变。

而不是一部分质点的速率变大,另一部分质点的速率一定会变小。

4-10 在大气中,打开充气气球下方的塞子,让空气从球中冲出,气球可在大气中上升。

如果在真空中打开气球下方的塞子,气球也会上升吗?说明其道理。

答:取气球和气球內的空气为一系统,当气球内的空气冲出气球时,如果冲力大于地球的引力,动量守恒,则气球能上升;这与在真空与否无关。

4-11 在光滑的水平平面上放一长为L 、质量为M 的小车,车的一端站有质量为m 的人,开始时人和车都是静止的。

若人以相对地面的速率v 从车的一端走到另一端,在此过程中人和小车相对地面各移动了多少距离?答:取人和车为一系统,取地面为参考系,水平方向不受力,动量守恒。

00mv Mv +=式中:v 是人对地的速率,0v 是车对地的速率。

由速度变换 0v v v '=+由于是一维运动,则 0v v v '=+所以 000mv mv Mv '++=车对地移动的距离 10m s v t L m M==-+ 人对地移动的距离 2M s vt L m M ==+ 4-12 物体A 被放在斜面B 上,如把A 与B 看成一个系统,问在下列何种情形下,系统的水平方向分动量是守恒的?答: 取A 、B 为一系统,取地面为参考系,则(1) 动量不守恒;(2) 动量守恒;(3) 动量守恒;(4) 动量不守恒。

4-13 一物体在粗糙斜面上滑下,试分析在此过程中哪些力做正功,哪些力做负功,哪些力不做功。

答:重力做正功,摩擦力做负功,支持力不做功。

4-14 合外力对物体所做的功等于物体动能的增量,其中一个分力做的功,能否大于物体动能的增量?答:可以。

如4-13思考题,重力做的功大于物体动能的增量。

4-15质点的动量和动能是否与(惯性)参考系的选取有关?功是否与参考系有关?质点的动量定理和动能定理是否与参考系有关?请举例说明。

答:动量和动能与惯性参考系的选取有关,功与惯性参考系选取有关,动量定理和动能定理与惯性参考系选取无关。

例如,一个是静止参考系()S oxy ,另一个是沿x 方向作匀速直线运动的参考系()S o x y '''',则质点相对这两个参考系有:速度变换 v v u '=+其中:v 绝对速度,v '相对速度,u 牵连速度。

动量 p mv mv mu '==+ p mv ''=所以 p p '≠ 动量与惯性参考系有关.动能 ()222211112222K E mv m v u mv mv u mu '''==+=++ 212K E mv ''= 所以 K KE E '≠ 动能与惯性参考系有关。

力F F '= , 时间 dt dt '= ,坐标变换 dr dr udt '=+功 ()A Fdr F dr udt F dr u F dt ''''''==+=+⎰⎰⎰⎰A F dr '''=⎰所以 A A '≠ 功与惯性参考系有关。

动量定理 000()()I Fdt F dt p mv mv m v u m v u mv mv ''''''====-=+-+=-⎰⎰ 0I F dt p mv mv ''''''===-⎰ 所以,动量定理与贯性参考系无关。

动能定理 22011()22K A Fdr F dr udt F dr u F dt E mv mv '''''''==+=+==-⎰⎰⎰⎰ 222220001111()()()2222m v u m v u mv mv u mv mv ''''''=+-+=-+- 2201122mv mv u F dt ''''=-+⎰由于两边都有: u F dt ''⎰ , 所以约去以后,与下式相同形式。

2201122K A F dt E mv mv ''''''===-⎰ 所以,动能定理与惯性参考系无关。

4-16有两个相同的物体,处于同一位置,其中一个水平抛出,另一个沿斜面无摩擦地自由滑下,问哪一个物体先到达地面?到达地面时两者速率如何? 答:物体A 、B 从同一高度开始运动,A 物体平抛,B 物体沿斜面无摩擦地自由滑下,则A、B 两物体落地的速度分别为A v =B v =所以 A B v v >A、B 两物体到达地面的时间分别为因为 212A h gt = 所以 A t =21sin sin 2B h s g t θθ== 1sin B h t θ== sin 1θ< B A t t ∴> 所以,A 物体先到达地面。

4-17 回答下列问题:(1)重力势能是怎样认识的?又是怎样计算的?重力势能的量值是绝对的吗?(2)引力势能是怎样认识的?又是怎样计算的?引力势能的量值是绝对的吗?(3)重力是引力的一个特例。

你能从引力势能公式推算出重力势能的公式吗?(4)物体在高空中时,势能到底是正值呢还是负值?答:(1)重力势能是由重力作功得出的,()()()bay b ab b a p pb pa a y A mg dr mg j dxi dy j mgy mgy E E E ==-+=--=-=--⎰⎰它的量值是相对的,与势能零点的选取有关。

当取a 点为势能零点时,0pa E =,则b pb a yE mg dr mgdy mgy =-=-=⎰⎰(2)引力势能是由引力作功得出的,2[()]()ba r ab p pb pa b ar mM mM mM A Gdr G G E E E r r r =-=----=-=--⎰ 它的量值是绝对的。

当取b r →∞时,0pb E =,则2pa r mM mM E Gdr G r r∞=-=-⎰ (3)取无穷远为势能零点,引力势能为:r Mm GE p -= 取地球中心为势能零点,且2ER M G g =,引力势能为:)(h R mg E E p += 取地面为势能零点,引力势能为:mgh E p =。

(4)可正、可负。

与势能零点的选取有关。

4-18 在弹性限度内,如果将弹簧的伸长量增加到原来的两倍,那么弹性势能是否也增加为原来的两倍?答:错。

当212x x =时,弹性势能为22222111111(2)44222p p E kx k x k x E ==== 所以,应是4倍。

4-19 如题图所示,行星绕日运行时,从近日点P 向远日点A 运行的过程中,太阳对它的引力做正功还是做负功?从远日点A 向近日点P 运动的过程中,太阳对它的引力做正功还是做负功?由这个功来判断行星的动能以及行星和太阳系统的引力势能在这两个阶段运动中各是增加还是减少。

相关文档
最新文档