第四章 气体动理论 习题课

合集下载

气体动理论习题课

气体动理论习题课

5 E氧 = ν RT 2
2 ε 转动 = ν RT 2
12/13
9 .某理想气体定压摩尔热容为 29.1J ⋅ mol −1 ⋅ K −1 。求它 某理想气体定压摩尔热容为 在温度为273 K时分子平均转动动能. = 1.38 × 10 −23 J ⋅ K −1 时分子平均转动动能. 在温度为 时分子平均转动动能 k
2/13
五、理想气体压强、温度的统计意义 理想气体压强、
2 P = nε k 3
εk
1 3 2 = m v = kT 2 2
p = nkT
六、三种速率
v =
2
3 kT = m
3 RT M
2kT 2 RT vp = = m M
v ≈ 1 . 60
kT = 1 . 60 m
RT M
3/13
七、理想气体自由度数目
i E = ν RT 2
pV氧 = ν 氧 RT
E氧 = ν 氧
5 RT 2
E氦 = ν 氦
3 RT 2
pV氦 = ν 氦 RT
2. 压强为 、体积为 的氢气(视为刚性分子理想气体)内能为: 压强为p、体积为V的氢气 视为刚性分子理想气体)内能为: 的氢气( (A)
5 PV 2 3 (B) PV 2
i C P = CV + R = R + R 2
2(C P − R ) CP i= = 2 − 1 = 5 R R
可见是双原子分子。 可见是双原子分子。只有两个转动自由度
2 ε r = kT = kT = 3.77 × 10 − 21 J 2
13/13
气体动理论习题课 一、 气体的物态参量及其单位
1 气体压强 2 体积 V : 3 温度 T :

华理工大学大学物理习题之气体动理论习题详解

华理工大学大学物理习题之气体动理论习题详解

华理工大学大学物理习题之气体动理论习题详解一、选择题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰;(C )201()2mv Nf v dv ∞⎰;(D )01()2mvf v dv ∞⎰。

答案:B解:根据速率分布函数()f v 的统计意义即可得出。

()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。

2.下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。

答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。

3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。

答案:Arms v =222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。

4.如下图所示,若在某个过程中,一定量的理想气体的热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ](A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。

大学物理课后答案第四章

大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。

2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。

3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。

4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。

5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。

6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。

二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。

2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。

以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。

重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。

大学物理课后习题(第四章)

大学物理课后习题(第四章)

第四章热学基础选择题4—1 有一截面均匀的封闭圆筒,中间被一光滑的活塞隔成两边,如果其中一边装有0.1kg某一温度的氢气,为了使活塞停在圆筒的正中央,则另一边应装入同一温度的氧气的质量为( C )(A)1kg16; (B) 0.8kg; (C) 1.6kg; (D) 3.2kg.4—2 根据气体动理论,理想气体的温度正比于( D )(A) 气体分子的平均速率; (B)气体分子的平均动能;(C) 气体分子的平均动量的大小; (D)气体分子的平均平动动能.4—3 在一固定的容器内,理想气体的温度提高为原来的两倍,那么( A )(A) 分子的平均平动动能和压强都提高为原来的两倍;(B) 分子的平均平动动能提高为原来的四倍,压强提高为原来的两倍;(C) 分子的平均平动动能提高为原来的两倍,压强提高为原来的四倍;(D) 分子的平均平动动能和压强都提高为原来的四倍.4—4 一瓶氦气和一瓶氮气的密度相同,分子的平均平动动能相同,且均处于平衡态,则它们( C )(A) 温度和压强都相同;(B) 温度和压强都不相同;(C) 温度相同,但氦气的压强大于氮气的压强;(D) 温度相同,但氦气的压强小于氮气的压强.4—5 下面说法中正确的是( D )(A) 在任何过程中,系统对外界做功不可能大于系统从外界吸收的热量;(B) 在任何过程中,系统内能的增量必定等于系统从外界吸收的热量;(C) 在任何过程中,系统内能的增量必定等于外界对系统所做的功;(D) 在任何过程中,系统从外界吸收的热量必定等于系统内能的增量与系统对外界做功之和.4—6 如图所示,一定量的理想气体,从状态A 沿着图中直线变到状态B ,且A AB B p V p V =,在此过程中: ( B )(A) 气体对外界做正功,向外界放出热量;(B) 气体对外界做正功,从外界吸收热量;(C) 气体对外界做负功,向外界放出热量;(D) 气体对外界做负功,从外界吸收热量.4—7 如图所示,一定量的理想气体从状态A 等压压缩到状态B ,再由状态B 等体升压到状态C .设2C B p p =、2A B V V =,则气体从状态A 到C 的过程中 ( B )(A) 气体向外界放出的热量等于气体对外界所做的功;(B) 气体向外界放出的热量等于外界对气体所做的功;(C) 气体从外界吸收的热量等于气体对外界所做的功;(D) 气体从外界吸收的热量等于外界对气体所做的功.4—8 摩尔定容热容为2.5R (R 为摩尔气体常量)的理想气体,由状态A 等压膨胀到状态B ,其对外界做的功与其从外界吸收的热量之比为 ( C )(A) 2:5; (B) 1:5; (C) 2:7; (D) 1:7.4—9 质量相同的同一种理想气体,从相同的状态出发,分别经历等压过程和绝热过程,使其体积增加一倍.气体温度的改变为 ( C )(A) 绝热过程中降低,等压过程中也降低;(B) 绝热过程中升高,等压过程中也升高;(C) 绝热过程中降低,等压过程中升高;(D) 绝热过程中升高,等压过程中降低.4—10 一理想气体的初始温度为T ,体积为V .由如下三个准静态过程构成一个循环过程.先从初始状态绝热膨胀到2V ,再经过等体过程回到温度T ,最后等温压缩到体积V .在此循环过程中,下述说法正确的是 ( A )(A) 气体向外界放出热量; (B) 气体对外界做正功;(C) 气体的内能增加; (D) 气体的内能减少.4—11 有人试图设计一台可逆卡诺热机,在一个循环中,可从400K 的高温热源吸收热量1800J ,向300K 的低温热源放出热量800J ,同时对外界作功1000J ,这样的设计是( B )(A) 可以的,符合热力学第一定律;(B) 可以的,符合热力学第二定律;(C) 不行的,卡诺循环所做的功不能大于向低温热源放出的热量;(D) 不行的,这个热机的效率超过理论最大值.4—12 对运转在1T 和2T 之间的卡诺热机,使高温热源的温度1T 升高T ∆,可使热机效率提高1η∆;使低温热源的温度2T 降低同样的值T ∆,可使循环效率提高2η∆.两者相比,有( B )(A) 12ηη∆>∆; (B) 12ηη∆<∆;(C) 12ηη∆=∆; (D) 无法确定哪个大.4—13 在o 327C 的高温热源和o27C 的低温热源间工作的热机,理论上的最大效率为( C )(A) 100%; (B) 92%; (C) 50%; (D) 25%.4—14 下述说法中正确的是 ( C )(A) 在有些情况下,热量可以自动地从低温物体传到高温物体;(B) 在任何情况下,热量都不可能从低温物体传到高温物体;(C) 热量不能自动地从低温物体传到高温物体;(D) 热量不能自动地从高温物体传到低温物体.4—15 热力学第二定律表明 ( D )(A) 热机可以不断地对外界做功而不从外界吸收热量;(B) 热机可以靠内能的不断减少而对外界做功;(C) 不可能存在这样的热机,在一个循环中,吸收的热量不等于对外界作的功;(D) 热机的效率必定小于100%.4—16 一个孤立系统,从平衡态A 经历一个不可逆过程变化到平衡态B ,孤立系统的熵增量B A S S S ∆=- 有 ( A )(A) 0S ∆>; (B) 0S ∆<; (C) 0S ∆=; (D) 0S ∆≥.计算题4—17 容器内装满质量为0.1kg 的氧气,其压强为61.01310Pa ⨯,温度为o 47C .因为漏气,经过若干时间后,压强变为原来的一半,温度降到o 27C .求:(1) 容器的容积;(2) 漏去了多少氧气.解 (1) 由状态方程m pV RT M=,可得气体的体积,即容器的容积为 333360.18.31(47273)m 8.2010m 3210 1.01310m V RT Mp -⨯⨯+===⨯⨯⨯⨯ (2) 压强变为12p p =,温度降为()227327K T =+时,由状态方程,可得剩余气体的质量为36311113210 1.013108.20102kg 0.0533kg 8.31(27273)Mp V m RT ⨯⨯⨯⨯⨯⨯===⨯+ 漏掉的气体质量为1(0.10.0533)kg 0.0467kg m m m -∆=-=-=4—18 如图所示,a 、c 间曲线是1000mol 氢气的等温线,其中压强51410Pa p =⨯, 521010Pa p =⨯.在点a ,氢气的体积31 2.5m V =,求:(1) 该等温线的温度;(2) 氢气在点b 和点d 的温度b T 和d T .解 (1) 由状态方程m pV RT M=,可得在等温线上,气体的温度为 52111010 2.5K 301K 10008.31p V M T m R ⨯⨯==⨯= (2) 气体由点c 等体增压至点b ,压强增大为原来的10 2.54=倍,由等体方程21b cp p T T =,可得气体在点b 的温度为212.5 2.5301K 753K b c c p T T T p ===⨯= 气体由点a 等体减压至点d ,压强减小为原来的410,由等体方程21a d p p T T =,可得气体在点d 的温度为1244301K 120K 1010d a a p T T T p ===⨯= 4—19 22.010kg -⨯氢气装在334.010m -⨯的容器内,求当容器的压强为53.9010Pa⨯时,氢气分子的平均平动动能.解 由状态方程m pV RT M=,可得气体的温度为 MpV T mR=气体分子的平均平动动能为 t 353222233332223210 3.9010 4.010 J 3.8910J 2210 6.02310a MpV MpV kT k mR mN ε----===⨯⨯⨯⨯⨯=⨯=⨯⨯⨯⨯4—20 在一个具有活塞的容器中盛有一定量的气体.如果压缩气体,并对它加热,使它的温度从o 27C 升到o177C ,体积减少一半.求:(1) 气体的压强是原来压强的多少倍;(2) 气体分子的平均平动动能是原来平均平动动能的多少倍.解 (1) 由状态方程m pV RT M=,可得压缩后与压缩前的压强之比为 21212132(273177)(27327)p VT p V T +===+ 即压强增加为原来的三倍.(2) 子的平均平动动能t 32kT ε=与温度成正比,因此,压缩后与压缩前的分子的平均平动动能之比为 t22t112731773 1.5273272T T εε+====+ 即增加为原来的1.5倍.4—21 容器中储有氦气,其压强为71.01310Pa ⨯,温度为o 0C .求:(1) 单位体积中分子数n ;(2) 气体的密度;(3) 分子的平均平动动能.解 (1) 由p nkT =,可得单位体积中的分子数为73273231.01310m 2.6910m 1.3810273p n kT ---⨯===⨯⨯⨯ (2) 气体的密度为2727334 1.6710 2.6910kg m 18.0kg m mn ρ---==⨯⨯⨯⨯⋅=⋅(3) 分子的平均平动动能为2321t 33 1.3810273J 5.6510J 22kT ε-==⨯⨯⨯=⨯4—22 如图所示,一系统从状态A 沿ABC 过程到达状态C ,从外界吸收了350J 的热量,同时对外界做功126J .(1) 如沿ADC 过程,对外界作功为42J ,求系统从外界吸收的热量;(2) 系统从状态C 沿图示曲线返回状态A ,外界对系统做功84J ,系统是吸热还是放热?数值是多少?解 由热力学第一定律,ΔQ E A =+,可得从状态A 到状态C ,系统内能的增量为Δ350J 126J 224J ABC ABC E Q A =-=-=(1) 沿ADC 过程从状态A 到状态C ,系统吸收的热量为Δ224J 42J 266J ADC ADC Q E A =+=+=(2) 从状态C 沿图示曲线所示过程返回状态A ,系统吸收的热量为Δ224J 84J 308J CA CA Q E A =+=--=-308J<0CA Q =-,说明系统向外界放热308J .4-23 如图所示,一定量的空气, 起始在状态A ,其压强为52.010Pa ⨯,体积为332.010m -⨯沿直线AB 变化到状态B 后,压强变为51.010Pa ⨯,体积变为333.010m -⨯.求此过程中气体对外界所做的功.解 在此过程中气体作正功,大小为图示直线AB 下的面积()()()()5533121 2.010 1.010 3.010 2.010J 150J 2A B B A A p p V V -=+-=⨯+⨯⨯-⨯= 4—24 在标准状态下,1mol 的氧气经过一等体过程,到达末状态.从外界吸收的热量为336J .求气体到达末状态的温度和压强.设氧气的摩尔定容热容,m 52V C R =. 解 初始为标准状态,50 1.01310Pa p =⨯,230 2.2410m V -=⨯,0273K T =.气体经过等体过程吸受的热量等于内能的增量,,m V Q E C T =∆=∆.由此可得1mol 氧气经过等体过程后温度变化为,m 336 K 16.1K 2.58.31V Q T C ∆===⨯ 气体到达末状态时的温度为 0273K 16.1K 289K T T T =+∆=+=由等体方程,00p pT T =,可得气体到达末状态时的压强为5500 1.01310289 Pa 1.0710Pa 273p p T T ⨯==⨯=⨯ 4—25 在标准状态下,0.032kg 的氧气经过一等温过程,到达末状态.从外界吸收的热量为336J .求气体到达末状态的压强和体积.解 0.032kg 的氧气是1mol .标准状态为50 1.01310Pa p =⨯,230 2.2410m V -=⨯, 0273K T =.气体经过等温过程,吸受的热量等于其对外界所作的功:000000lnln V p Q A p V p V V p === 由此可得 520000336ln ln 0.1481.01310 2.2410V p Q V p p V -====⨯⨯⨯ 气体到达末状态的压强和体积分别为0.14850.14840 1.01310 Pa 8.710Pa p p e e --==⨯⨯=⨯0.14820.1483230 2.2410 m 2.6010m V V e e ----==⨯⨯=⨯4—26 1mol 的氦气,从温度为o 27C 、体积为232.010m -⨯,等温膨胀到体积为234.010m -⨯后,再等体冷却到o 27C -,设氦气的摩尔定容热容,m 32V C R =,请作出P V -图,并计算这一过程中,氦气从外界吸收的热量和对外界做的功.解 过程的P V -图如图所示.在等温过程AB 中,气体吸受的热量等于对外所做的功,为()232ln 4.010 8.3127327lnJ 1.7310 J 2.010BAB AB A AV Q A RT V --==⨯=⨯+⨯=⨯⨯ 在等体过程BC 中,气体做功为零,即0BC A =,吸受的热量为(),m 38.31(2727) J 673 J 2BC V C B m Q C T T M -=-=⨯⨯+=- 在整个过程ABC 中,气体吸受的热量和所作的功分别为()31.730.67 J 1.0610 J AB BC Q Q Q =+=-=⨯31.7310 J AB A A ==⨯4—27 将1mol 理想气体等压加热,使其温度升高72K ,气体从外界吸收的热量为31.610 J ⨯.求:(1) 气体对外界所做的功;(2) 气体内能的增量;(3) 比热容比.解 (1) 在此等压过程中气体对外界所做的功为8.3172 J 598 J A R T =∆=⨯=(2) 在此等压过程中气体内能的增量为33(1.610598)J 1.0010J E Q A ∆=-=⨯-=⨯(3) 气体的摩尔定压热容和定容热容分别为31111,m 1.6010J mol K 22.2J mol K 72p Q C T ----⨯==⋅⋅=⋅⋅∆ ()1111,m ,m 22.28.31J mol K 13.9J mol K V p C C R ----=-=-⋅⋅=⋅⋅比热容比为,m,m 22.2 1.6013.9p V C C γ=== 4—28 1mol 理想气体盛于气缸中,压强为51.01310Pa ⨯,体积为231.010m -⨯.先将此气体在等压下加热,使体积增大一倍.然后在等体下加热,使压强增大一倍.最后绝热膨胀使温度降为初始温度.请将全过程在p V -图中画出,并求在全过程中内能的增量和对外所做的功.设气体的摩尔定压热容,m 52p C R =. 解 过程的P V -图如图所示.因为末状态D 与初状态A 的温度相同,所以,从状态A 到状态D 的全过程中的内能增量为零:0E ∆=由热力学第一定律,ΔQ E A =+,由于0E ∆=,因此,全过中程气体吸受的热量等于对外界所做的功:()(),m ,m p B A V C B A Q C T T C T T ==-+-而,m ,m 5322V p C C R R R R =-=-= pV RT =于是()()5322B B A AC C B B A Q p V p V p V p V ==-+- 由于2B B A A p V p V =,24C C B B A A p V p V p V ==,因此5331111 1.01310 3.010 J 1.6710 J 22A A A Q p V -===⨯⨯⨯⨯=⨯ 4—29 1mol 的氮气,温度为o 27C ,压强为51.01310Pa ⨯.将气体绝热压缩,使其体积变为原来的15.求: (1) 压缩后的压强和温度;(2) 在压缩过程中气体所做的功( 1.4)γ=.解 (1) 在绝热过程中,pV γ为常数.压缩后的压强为 5 1.4500 1.013105Pa 9.6410Pa V p p V γ⎛⎫==⨯⨯=⨯ ⎪⎝⎭在绝热过程中,1V T γ-亦为常数.压缩后的温度为1(1.41)00(27273)5K 571K V T T V γ--⎛⎫==+⨯= ⎪⎝⎭(2) 将 1.4γ=代入,m ,mV V C RC γ+=,可得,m 52V C R =.在绝热压缩过程中,气体对外界所做的功,等于内能的减少:3055()8.31[571(27273)]J 5.6310J 22A E R T T =-∆=--=-⨯⨯-+=-⨯ 负号说明,在绝热压缩过程中,是外界对气体做功.4—30 一卡诺热机低温热源温度为o 7C ,效率为40%,若要把它的效率提高到50%,高温热源的温度应提高多少开?解 在效率为40%和50%的两种情况下,低温热源温度2T 相同.由211T T η=-,两种情况下的效率分别可表为 21122140%150%1T T T T T ηη==-==-+∆由此可得,高温热源的温度应提高 22112737K 93.3K 0.500.6033T T T +⎛⎫∆=-=== ⎪⎝⎭4—31 一卡诺热机,高温热源的温度为400K ,每一个循环从高温热源吸收75 J 热量,并向低温热源放出60 J 热量.求:(1) 低温热源温度;(2) 循环效率.解 (1) 对卡诺循环,有2211Q T T Q =,由此可得低温热源的温度为 221160400 K 320 K 75Q T T Q ==⨯=(2) 热机的循环效率为21601120%75Q Q η=-=-= 4—32 一卡诺机,在温度o 127C 和o 27C 两个热源间运转. (1)若一个正循环,从o 127C 热源吸收1200 J 热量,求向o 27C 的热源放出的热量;(2)若此循环逆向工作,从o 27C 的热源吸收1200 J 热量,求向o 127C 的热源放出的热量.解 (1) 对卡诺热机,2211Q T T Q =,由此可得,一个正循环向低温热源放出的热量为 2211272731200 J 900 J 127273T Q Q T +==⨯=+ (2) 对卡诺制冷机,有2211Q T Q T '=',由此可得,一个逆循环向高温热源放出的热量为 112241200 J 1600 J 3T Q Q T ''==⨯= 4—33 理想气体做卡诺循环,高温热源的热力学温度是低温热源热力学温度的n 倍,求在一个循环中,气体从高温热源吸收的热量有多少比例传给了低温热源.解 对卡诺热机,2211Q T T Q =,将12T n T =代入,可得 211Q Q n= 气体从高温热源吸收的热量有1n传给了低温热源. 4-34 质量为m ,摩尔质量为M 的理想气体,其摩尔定容热容为,m V C .在可逆的等体过程中温度从1T 升高到2T ,试证明在这一过程中气体的熵增量为2,m 1ln V T m S C M T ∆= 证 在气体的初态和末态间作可逆的等体曲线.气体沿此曲线,在温度升高d T 的元过程中,吸热为,m d d V m Q C T M=,熵增为,m d d d V Q m T S C T M T== 温度从1T 升高到2T ,气体的熵增量为 22112,m ,m 1d d ln S T V V S T T m T m S S C C M T M T ∆===⎰⎰ 4-35 质量为m ,摩尔质量为M 的理想气体,在可逆的等压过程中,温度从1T 升高到2T ,求在这一过程中,气体的熵增量.已知气体的摩尔定压热容为,m p C .解 在气体的初态和末态间作可逆的等压曲线.气体沿此曲线,在温度升高d T 的元过程中,吸热为,m d d p m Q C T M=,熵增为 ,m d d d p Q m T S C T M T== 温度从1T 升高到2T ,气体的熵增为22112,m ,m 1d d ln S T p p S T T m T m S S C C M T M T ∆===⎰⎰。

气体分子动理论习题解PPT课件

气体分子动理论习题解PPT课件

1 mv2 3 kT,可得
2
2
N 1 mv2 3 NkT
2
2

N
1 2
mv2
3 2
RTN
/(Nd m)
3 (M 2
/
M mol )RT
3 2
(RT
/
M mol )V
7.31106
E
1 2
(M
/
M mol )iRT
(V
/
M mol )
1 2
iRT
4.16104
J
(v2 )1/2
(v
2 2
)1/
2
(v21)1/2
(1) 气体分子的平动动能总和. (2) 混合气体的压强. (普适气体常量R=8.31 J·mol-1·K-1 )
3 kT 8.281021 J
2
Ek
N
( N1
N2)
3 kT 2
4.14105 J
p nkT 2.76 105 Pa
第6页/共10页
17.一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 = 6.21×10-21
[B]
8.速率分布函数f(v)的物理意义为:
(A) 具有速率v的分子占总分子数的百分比.
(B) 速率分布在v附近的单位速率间隔中的分子数占总分子数的百分比.
(C) 具有速率v的分子数.
(D) 速率分布在v附近的单位速率间隔中的分子数.
[B ]
9.设某种气体的分子速率分布函数为f(v),则速率在v 1─v 2区间内的分子的平均速
4.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,
而且它们都处于平衡状态,则它们
(A) 温度相同、压强相同.

气体动理论习题课

气体动理论习题课


v Z
1 2n

KT 2P
二、问题讨论
1、某刚性双原子理想气体,温度为T,在平衡状态 下,下列各式的意义. 3 kT —分子的平均平动动能 2 2 kT —分子的转动动能 2 5 kT —分子的平均总动能 2 5 RT —摩尔气体分子的内能 2 m 5 RT —m千克气体的内能 M 2
玻耳兹曼分布律
n n0 e

P
kT
P P0 e

M m gz RT
能量均分定理: 处于温度为T的平衡态的气体中,每一个分子的 每一个自由度的平均能量都是kT/2。
kT i 每一个分子的总的平均总能量为: ( t r 2 s ) kT 2 2
理想气体的内能: U m

由于 M H 2 M He ,且
Mv T iR
2
2
M 2
iH 2 i He ∴ THe TH 2
3、 (1)两不同种类的气体分子平均平动动能相等,
但气体的密度不等,那么它们的压强是否相等。
讨论:
因为
k1 k 2 ,则
T1= T2
1 2 及
n
P nkT
气体动理论习题课
一、基本内容
定性: 在不受外界影响下,无物质、能量交换 摄氏温标 平衡态 定量:第零定律→温度→温标 平衡态下的理想气体
经验温标
(三要素)
开氏温标 华氏温标 兰氏温标
理想气体温标
宏观:PV
M RT 热力学温标 Mm 1、分子本身线度比起分子间距小得多而可忽略不计
2、除碰撞一瞬间外,分子间互作用力可忽略不计。 分子在两次碰撞之间作自由的匀速直线运动 3、处于平衡态的理想气体,分子之间及分子与 器壁间的碰撞是完全弹性碰撞 4、分子的运动遵从经典力学的规律 2 理想气体压强公式 P n k nkT 3 3 k kT 理想气体温度公式 2

大学物理热学习题课

大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:

Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)

气体动理论---习题及答案解析

气体动理论---习题及答案解析

气体动理论练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。

A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。

3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。

二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。

2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。

练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是( )A. p1>p2;B. p1<p2;C. p1=p2;D. 不能确定。

2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n,单位体积内的气体分子的总平动动能为E kV⁄,单位体积内的气体质量为ρ,分别有如下关系( )A. n不同,E kV⁄不同,ρ不同;B. n不同,E kV⁄不同,ρ相同;C. n相同,E kV⁄相同,ρ不同;D. n相同,E kV⁄相同,ρ相同。

3. 有容积不同的A、B两个容器,A中装有刚体单原子分子理想气体,B中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A和E B的关系( )A. E A<E B;B. E A>E B;C. E A=E B;D.不能确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 所谓自由度,是指确定物体在空间的位置所需的独立坐标数。一个单原于分子有3个 自由度.一个刚性双原子分子有5个自由度,其中3个是平动自由度,2个是转动自由度。一 个刚性多原子分子有6个自由度,其中3个是平动,3个是转动。对于非刚性的双原子相多原 子分子,由于分子内部原子间的相对振动,还有振动自由度。
µ2
(3) Nf (v)dv 平衡态下速率在 v—v+dv 区间内的分子数
∫ (4) v2 f (v)dv v1
平衡态下速率在 v1—v2 区间内的分子数占总分子数的比率
例 2: 在体积为 V 的容器中装有几种不同种类的气体,各种气体的质量分别为 ml、m2、……, 摩尔质量分别为 Ml、M2、……,试从气体分子运动论出发,写出混合气体在温度为 T 时的压 强。
势能以及分子之间相互作用的势能。对于理想气体.由于忽赂分子间的相互作用,所
以系统的内能只是分子各种形式的动能和分子内原于间的振动势能的总和。于是质量为 m,
摩尔质量为 M 的理想气体系统的内能为: E = N ε = i NkT = i m RT 。可见对于一定量的
2
2M
某种理想气体.其内能只由温度决定,是温度的单值函数。
2
2
式中 s 是分子的振动自由度数,前面的因子 2 是考虑在分子内部原于的微振动可近似看作简
谐振动,而谐振动在一个周期内的平均动能和平均势能相等,因此,对于每一个振动自由度,
分子还具有 1 kT 的平均势能。 2
6.理想气体的内能
从微观角度看,系统的内能包括系统内所有分子各种形式的动能、分子内原于间的振动
(1)气体的定向运动机械能将转化成什么形式的能量? (2)气体分子速率平方平均值的增量是多少? 解:(1)气体定向运动的机械能将转化为气体的内能。
(2)设气体的质量为 m.则气体内能的增量为 ∆E = 1 mv2 2
但理想气体的内能只决定于温度,有 ∆E = i m R∆T , 2M
因此温度增量为: ∆T = Mv2 。 Ri
体中氦气和氧气的内能之比为( )
A.1:2 B.5:6 C.3:10 D.6:5
4.现有体积、压强、摩尔数相同的氧气和二氧化碳气体(均可视为理想气体),这两种气体
的( )
A.定体摩尔热容相同
B.摩尔内能相同
C.分子热运动的平均平动动能相同 D.最可几速率相同
5.麦克斯韦速率分布曲线如图所示,已知图中 b 点所对应的是 v ,则均根速率在图中对应的位
(3)按麦克斯韦速率分布律,处在 0 → ∞ 整个速率区间的分子数当然等于分子总数 N,
∫ ∫ 因此 N dNv = ∞ f (v)dv = 1,这就是速率分布函数的归一化条件。
0N
0
(4)速率分布曲线的几何意义 (5)三仲速率
①最可几(最概然)速率
2kT 2RT
vp =
= m
M
平均速率
v=8kT =解: Nhomakorabea由
p
=
2 3
nεt
,n=n1+n2+……, εt
=
3 2
kT

可得
∑ ∑ p =
i
nikT =
i
mi N AkT Mi V

∑ pV = mi RT ,
i Mi
这就是混合气体在温度为 T 时的压强。
例 3:一容器内贮有一定质量的某种双原于理想气体。设容器以速度 v 运动.今使容器突然 停止,试问:
置应在( ) A.a 点 B.a 点左边 C.a 点和 b 点之间
D.b 点右边 二、计算题 1.有一水银气压计,当水银柱为0.76m高时,管顶离水银柱液面0.12m,管的截面积为2.0× 10-4m2,当有少量氦(He)混入水银管内顶部,水银柱高下降为0.6m,此时温度为 27℃,试计算有多少质量氦气在管顶(He 的摩尔质量为 0.004kg·mol-1)?
7.麦克斯韦气体分子速率分布律 当气体处于平衡态时,分布在任一速率区间 v~v+dv 内的分子数占总分子数的比率为
3
dNv
=

⎛ ⎜
m
⎞ ⎟
2
e

mv
2
2kT
v
2
dv
N
⎝ 2πkT ⎠
3
其中
( ) f
v
=

⎛ ⎜
m
⎞ ⎟
2
e

mv
2
2
kT
v
2
叫做分子速率分布函数.表示处于速率 v 附
⎝ 2πkT ⎠
4. 通过建立理想气体的刚性分子模型,理解气体分子平均能量按自由度均分定理,并 会用于计算理想气体的内能。
5. 了解麦克斯韦速率分布律及分布函数和速率分布曲线的物理意义,了解气体分子热 运动的三种统计速率。
6. 了解玻耳兹曼能量分布律及其统计意义。 Ⅱ 内容提要 1. 理想气体
理想气体是一个理想模型,它是对实际气体的一种近似的概括,压强越低,这种概括的 精确度就越高。我们可以从不同角度对理想气体模型作出定义。
8 RT
RT
≈ 1.6
πm π M
M
方均根速率 vrms =
v2 =
3kT =
m
3RT µ
Ⅲ 例题
例 1:速率分布函数 f(v)的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,
N 为系统总分子数)。
(1) 1 kT 平衡态时每个自由度上的平均动能 2
M
(2)
i RT
质量为 M 的理想气体的内能
(2)定律中所说的速率间隔 v~v+dv 中实际包含许多不同的速率,具有这些速率约分子 数的统计平均值为 dNv。但不能问速率恰好为某一确定值 v 的分子效是多少,因为这 种情况等于说 dv=0,但由于气体总分子数 N(尽管很大)并不是无穷大,则与 dv=0 对应的分 子数 dNv 可能为零,所以这个问题是没有意义的。
3. 该定理不仅适用于分子的平动,也适用于分子的转动和振动。
按能量均分定理,对于一个刚性分子(不计振动).平均总能量为 ε= t + r kT = i kT ,
2
2
式中 t、r 分别是分子平动自由度和转动自由度,i 是刚性分子的自由度数。
对于一个非刚性分子,即考虑分子振动时,平均总能量为 ε = i kT = t + r + 2s kT ,
由理想气体状态方程和压强公式可以得到: εt
=
3 2
kT
,这个公式把温度这个宏观量与
分子的平动动能这个微观量的统计平均值联系起来,它也具有统计意义。可以说,温度是气 体分子无规则热运动剧烈程度的标志,但只是对系统而百,温度才有意义,对一个分子,只 有动能,无所谓温度。
由该公式可得到气体分子的方均根速率
2. 试计算理想气体分子热运动速率的大小介于 v p − v p ⋅100−1 与 v p + v p ⋅100−1 之间的分子 数占总分子数的百分比.
3. 容器中储有氧气,其压强为p=0.1 MPa(即1atm)温度为27℃,求 (1)单位体积中的分子;(2)氧分子的质量;(3)气体密度r ;(4)分子间的平均距离;(5)平 均速率;(6)方均根速率;(7)分子的平均动能。 4. 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密 度之比;(2)氧分子和氢分子的平均速率之比。
(2)在不存在外力或外力作用可以忽略的情况下、一个均匀系统在达到平衡态时,它 内部的各种宏观性质处处一样。在外力的作用不可忽略的情况下 (例如处在重力场中的大 气).一个系统达到平衡态时,它内部的某些宏观性质就不是均匀的(例如在地面上不同高度 处大气的压强和密度不同)。
(3)平衡是相对的。这有两方面的含义,一是指平衡态是一个理想的概念.是在一定 条件下对实际情况的抽象与概括,因为一个系统不可能完全不受外界影响.其宏观性质 也不可能绝对不变,只是在某些问题中可以忽略这些影响或变化,而近似当作平衡态来处理。 二是指当一个系统处于平衡态时,组成系统的分子仍在不停地运动着,只是分子运动的平均 效果不随时间改变,这种微观运动平均效果的不变性即表现为系统宏观性质不变。因此把这 种热力学中的平衡叫热动平衡。
热力学系统在不受外界影响的条件下,其所有宏观性质都不随时间变化的状态.称为平 衡态。这里所说的不受外界影响,是指外界对系统不做功也不传热.但是不要求系统不受外 力作用.只要外力不做功,对系统的热力学状态就没有影响。要强调以下几点:
(1)不受外界影响和系统的所有宏观性质不随时间变化,这是判别一个系统是否处于 平衡态的两个重要依据,二者缺一不可。如果第一个条件不满足,即使系统处于所有宏 观性质不随时间变化的稳定状态,也不是平衡态。反之,即使系统不受外界影响,但第二个 条件不满足,也不是平衡态。
近单位速率区间内的分子数占总分子数的比率。
(1)麦克斯韦速率分布律是个统计规律。只对由大量分子构成的气体这一宏观系统成 立。式中 dNv/N 是一个统计平均值,从统计观点来说,它是指处于平衡态下的气体中速率 在 v~v+dv 速率间隔中的分子数平均占多大比率。但是.由于分子运动的无规则性,在速率 间隔 v~v+dv 中的分子数是不断交化的。在某一瞬间、在这一速率间隔中的实际分子数的比 率可能与按此定律算出的 dNv/N 值有差别,即出现某瞬时值偏离平均值的涨落现象。
3.理想气体压强公式
从理想气体的微观模型出发,并假定单个分子的运动遵守牛顿运动定律,大量分子的无
规则运动还同时满足统计规律,推导出压强公式:
p
=
1 3
mnv2

( ) p
=
2 3
n
1 2
mv2
=
2 3
nεt
相关文档
最新文档