圆锥曲线的参数方程练习题(带答案)

合集下载

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。

答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。

答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。

答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。

答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。

答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。

答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。

答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。

答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。

答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。

答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。

13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。

答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。

答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。

人教A版数学选修4第二讲二圆锥曲线的参数方程课时训练(含答案解析).docx

人教A版数学选修4第二讲二圆锥曲线的参数方程课时训练(含答案解析).docx

1.若曲线⎩⎪⎨⎪⎧ x =2pt y =2pt 2(t 为参数)上异于原点的不同两点M 1,M 2所对应的参数分别是t 1,t 2,则弦M 1M 2所在直线的斜率是( )A .t 1+t 2B .t 1-t 2C.1t 1+t 2D.1t 1-t 2答案:A 2.参数方程⎩⎪⎨⎪⎧ x =t +1t -1y =t -1t+1所表示的曲线是( ) A .双曲线B .椭圆C .抛物线D .圆 答案:A3.参数方程⎩⎪⎨⎪⎧ x =3t 2+4y =t 2-2所表示的曲线是( )A .双曲线的一支B .线段C .圆弧D .射线 答案:D4.若0<x <π,则函数y =2-cos x sin x的最大值是( ) A .3 B .2 C. 3 D .2- 3答案:C5.动点(3+2cos θ,cos 2θ)的轨迹的焦点坐标是( )A.⎝ ⎛⎭⎪⎫3,-12B.⎝ ⎛⎭⎪⎫3,12 C.⎝ ⎛⎭⎪⎫-3,12 D.⎝⎛⎭⎪⎫-3,-12 答案:A6.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧ x =4t 2y =4t(t 为参数)上,则|PF |=( )A .4B .5C .6D .7答案:A 7.双曲线⎩⎨⎧ x =23tan θy =32sec θ的焦点坐标是________,渐近线方程是________.答案:(0,±30) y =±62x 8.(2013·高考江西卷)设曲线C 的参数方程为⎩⎪⎨⎪⎧ x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:⎩⎪⎨⎪⎧ x =t ,y =t 2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=09.参数方程⎩⎪⎨⎪⎧ x =cos θ1+cos θy =sin θ1+cos θ化为普通方程是________. 答案:y 2=1-2x10.已知实数x ,y 满足3x 2+2y 2=6x ,求x +y 的最大值.解:由题意可知3x 2+2y 2=6x ,∴(x -1)2+2y 23=1, ∴参数方程为⎩⎪⎨⎪⎧ x =1+cos θy =32sin θ. 则x +y =1+cos θ+32sin θ =1+102sin(θ+φ),tan φ=23. ∴x +y 的最大值为1+102. 11.已知A 为抛物线y 2=2px (p >0)上的一个定点,BC 是垂直于x 轴的一条弦,直线AB交抛物线的对称轴于D 点,直线AC 交抛物线的对称轴于E 点,求证:抛物线的顶点平分线段DE . 证明:设抛物线上的点B 的坐标是(t 22p ,t ),则点C 的坐标是(t 22p,-t ),点A 的坐标是(a 22p,a ), 于是AB 的方程是y -a =t -a t 2-a 22p(x -a 22p), 即y -a =2p t +a (x -a 22p),AB 与x 轴的交点为D (-at 2p,0), 同理直线AC 的方程是y -a =2p a -t (x -a 22p), ∴点E 的坐标为(at 2p,0), ∴抛物线的顶点平分DE .12.在双曲线x 2-2y 2=8上求一点P ,使它到直线x -y -1=0的距离最小.解:设点P 的坐标是(22sec θ,2tan θ),其中θ∈[0,2π).点P 到直线的距离d =|22sec θ-2tan θ-1|2=12|2(2-sin θ)cos θ-1|. 令t =2-sin θcos θ,则sin θ+t cos θ=2, 于是2t 2+1≤1,解得t ≥1或t ≤-1.则2t -1≥1或2t -1≤-3.∴d 的最小值是12, 此时sin θ+cos θ=2,θ=π4, ∴P 的坐标为(4,2).。

圆锥曲线的参数方程(有答案)

圆锥曲线的参数方程(有答案)
[思路点拨]由条件可知,A,B两点坐标已知,点C在椭圆上,故可设出点P坐标的椭圆参数方程形式,由三角形重心坐标公式求解.
[解]由题意知A(6,0)、B(0,3).由于动点C在椭圆上运动,故可设动点C的坐标为(6cosθ,3sinθ),点G的坐标设为(x,y),由三角形重心的坐标公式可得
即 消去参数θ得到 +(y-1)2=1.
姓 名
年级
性 别
学 校
学 科
教师
上课日期
上课时间
课题
24圆锥曲线的参数方程
一、椭圆的参数方程
(1)中心在原点,焦点在x轴上的椭圆 + =1的参数方程是 (φ是参数),规定参数φ的取值范围是__[0,2π)_____.
(2)中心在(h,k)的椭圆普通方程为 + =1,则其参数方程为 (φ是参数).
题型一、椭圆的参数方程的应用:求最值
3.已知椭圆的参数方程 (t为参数),点M在椭圆上,对应参数t= ,点O为原点,则直线OM的斜率为()A. B.- C.2 D.-2
解析:点M的坐标为(1,2 ),∴kOM=2 .答案:C
4.实数x,y满足3x2+4y2=12,则2x+ y的最大值是________.
解析:因为实数x,y满足3x2+4y2=12,所以设x=2cosα,y= sinα,则
(2)设点P是(1)中所得椭圆上的动点,求线段F1P的中点的轨迹方程.
解:(1)由椭圆上点A到F1,F2的距离之和是4,得2a=4,即a=2.
又点A(1, )1,
所以椭圆C的方程为 + =1,焦点坐标为F1(-1,0),F2(1,0).
(2)设椭圆C上的动点P的坐标为(2cosθ, sinθ),线段F1P的中点坐标为(x,y),则
1.如果双曲线 (θ为参数)上一点P到它的右焦点的距离是8,那么P到它的左焦点距离是________.

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

圆锥曲线的参数方程课时作业8

圆锥曲线的参数方程课时作业8

(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.下列可以作为直线2x -y +1=0的参数方程的是( ) A.⎩⎨⎧x =1+t ,y =3+t (t 为参数) B.⎩⎨⎧ x =1-t ,y =5-2t(t 为参数) C.⎩⎨⎧x =-t ,y =1-2t (t 为参数) D.⎩⎪⎨⎪⎧x =2+255t ,y =5+55t(t 为参数)【解析】 题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为2x -y +3=0,故选C.【答案】 C2.(2013·许昌模拟)极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-ty =2+t (t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ, 即x 2+y 2=x ,即(x -12)2+y 2=14, ∴ρ=cos θ所表示的图形是圆.由⎩⎨⎧x =-1-t y =2+t (t 为参数)消参得:x +y =1,表示直线. 【答案】 D3.原点到直线⎩⎪⎨⎪⎧x =3+4t y =-32+3t (t 为参数)的距离为( )A .1B .2C .3D .4【解析】 消去t ,得3x -4y -15=0, ∴原点到直线3x -4y -15=0的距离 d =|3×0-4×0-15|32+(-4)2=3.【答案】 C4.直线⎩⎪⎨⎪⎧x =1+12t y =-33+32t ,(t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)【解析】 将x =1+t 2,y =-33+32t 代入圆方程, 得(1+t 2)2+(-33+32t )2=16, ∴t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4, ∴x =1+12×4=3,y =-33+32×4=-3, 故AB 中点M 的坐标为(3,-3). 【答案】 D二、填空题(每小题5分,共10分)5.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 直线l :⎩⎨⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3. 【答案】 36.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数,0≤θ≤π2)和⎩⎪⎨⎪⎧x =1-22t ,y =-22t(t 为参数),则曲线C 1与C 2的交点坐标为________.【解析】 曲线C 1和C 2的普通方程分别为⎩⎨⎧ x 2+y 2=5x -y =1(0≤x ≤5,0≤y ≤5)①②联立①②解得⎩⎨⎧x =2,y =1.∴C 1与C 2的交点坐标为(2,1). 【答案】 (2,1)三、解答题(每小题10分,共30分)7.化直线l 的参数方程⎩⎨⎧x =-3+ty =1+3t ,(t 为参数)为普通方程,并求倾斜角,说明|t |的几何意义.【解】 由⎩⎨⎧x =-3+t ,y =1+3t 消去参数t ,得直线l 的普通方程为3x -y +33+1=0. 故k =3=tan α,即α=π3.因此直线l 的倾斜角为π3.又⎩⎨⎧x +3=t ,y -1=3t .得(x +3)2+(y -1)2=4t 2, ∴|t |=(x +3)2+(y -1)22.故|t |是t 对应点M 到定点M 0(-3,1)的向量M 0M →的模的一半.8.已知曲线C 的极坐标方程是ρ=4cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t +1,y =22t ,(t 为参数)求直线l 与曲线C 相交所成的弦的弦长.【解】 由ρ=4cos θ,得ρ2=4ρcos θ. ∴直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.直线l 的参数方程⎩⎪⎨⎪⎧x =22t +1,y =22t .(t 为参数)化为普通方程为x -y -1=0. 曲线C 的圆心(2,0)到直线l 的距离为12=22, 所以直线l 与曲线C 相交所成的弦的弦长为24-12=14.9.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧ x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎨⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.【解】 因为直线l 的参数方程为⎩⎨⎧x =t +1,y =2t (t 为参数),由x =t +1,得t=x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎨⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),(12,-1).教师备选10.(2012·沈阳模拟)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+22ty =22t ,(t 为参数),曲线C 的极坐标方程是ρ=sin θ1-sin 2θ,以极点为原点,极轴为x 轴正方向建立直角坐标系,点M (-1,0),直线l 与曲线C 交于A 、B 两点.(1)求直线l 的极坐标方程与曲线C 的普通方程;(2)线段MA ,MB 长度分别记为|MA |,|MB |,求|MA |·|MB |的值.【解】(1)直线l :⎩⎪⎨⎪⎧x =-1+22ty =22t,(t 为参数)的直角坐标方程为x -y +1=0,所以极坐标方程为2ρcos(θ+π4)=-1,曲线C :ρ=sin θ1-sin 2θ即(ρcos θ)2=ρsin θ, 所以曲线的普通方程为y =x 2. (2)将⎩⎪⎨⎪⎧x =-1+22t y =22t,(t 为参数)代入y =x 2得t 2-32t +2=0, ∴t 1t 2=2,∴|MA |·|MB |=|t 1t 2|=2。

2018-2019高三数学选修4-4圆锥曲线的参数方程((后附解析版)

2018-2019高三数学选修4-4圆锥曲线的参数方程((后附解析版)

圆锥曲线的参数方程同步检测1. 圆锥曲线2x t y 2t⎧=⎨=⎩ (t 为参数)的焦点坐标是( )A.(1,1)B.(1,2)C.(1,0)D.(2,0)2.参数方程242x y cos πθ⎧=⎪⎨⎛⎫=-⎪ ⎪⎝⎭⎩(θ 为参数,02πθ≤≤)所表示的曲线是( ) A.椭圆的一部分 B.双曲线的一部分C.抛物线的一部分,且过点112⎛⎫- ⎪⎝⎭,D.抛物线的一部分,且过点112⎛⎫ ⎪⎝⎭,3.与参数方程为x y ⎧=⎪⎨=⎪⎩t 是参数)等价的普通方程为( )A.2214y x += B.()221014y x x +=≤≤C.()221024y x y +=≤≤ D.()22101,024y x x y +=≤≤≤≤4. 参数方程()cos sin 2211sin ? 2x y θθθ⎧=+⎪⎪⎨⎪=+⎪⎩, (0≤θ<2π)表示( )A.双曲线的一支,这支过点112⎛⎫⎪⎝⎭, B.抛物线的一部分,这部分过点112⎛⎫ ⎪⎝⎭,C.双曲线的一支,这支过点112⎛⎫- ⎪⎝⎭,D.抛物线的一部分,这部分过点112⎛⎫- ⎪⎝⎭,5. 已知某条曲线的参数方程为112112x a a y a a ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩(其中a 是参数),则该曲线是( )A.线段 B 圆C.圆的一部分D.双曲线6.已知两曲线参数方程分别sin x y θθ⎧=⎪⎨=⎪⎩,(θ为参数,0θπ≤< )和254x ty t⎧=⎪⎨⎪=⎩ (t 为参数),它们的交点坐标为7. 在直角坐标系中,曲线C 1的参数方程为12x cos y sin αα⎧⎨⎩==+ (α为参数),在极坐标系中,C 2的方程为ρ(3cosθ-4sinθ)=6,则C 1与C 2的交点个数为____. 8. 已知椭圆的参数方程2?4?x cost y sint=⎧⎨=⎩(t 为参数)点M 、N 在椭圆上,对应参数分别为π3,π6,则直线MN 的斜率为9. 在平面直角坐标系xOy 中,若直线l:x t,y t a =⎧⎨=-⎩ (t 为参数)过椭圆C:x 3cos φ,y 2sin φ=⎧⎨=⎩(φ为参数)的右顶点,则常数a 的值为10. 在直角坐标系xOy 中,曲线1C的参数方程为x αy sin α⎧=⎪⎨=⎪⎩,(α 为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为πρsin θ4⎛⎫+= ⎪⎝⎭.设P 为曲线1C 上的动点,则P 到2C 上点的距离的最小值为_______11. 已知两曲线参数方程分别为()0sin x y θθπθ⎧=⎪≤<⎨=⎪⎩和()254R x t t y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________.12. 已知在直角坐标系x y O 中,圆锥曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),定点()3,0-A ,21,F F 是圆锥曲线C 的左、右焦点.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求经过点1F 且平行于直线2AF 的直线l 的极坐标方程;(2)设(1)中直线l 与圆锥曲线C 交于N M ,两点,求N F M F 11⋅.13. 在直角坐标系x y O 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线1C 的极坐标方程为()sin cos 1ρθθ+=,曲线2C 的参数方程为2cos sin x y θθ=⎧⎨=⎩.(1)求曲线1C 的直角坐标方程与曲线2C 的普通方程;(2)试判断曲线1C 与2C 是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.14. 已知曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C '. (1)求曲线C '的普通方程;(2)若点A 在曲线C '上,点B (3,0),当点A 在曲线C '上运动时,求AB 中点P 的轨迹方程.15. 已知直线L 的参数方程为1212x ty t =+⎧⎪⎨=-⎪⎩,曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩,设直线L 与曲线C 交于两点,A B(1)求AB ;(2)设P 为曲线C 上的一点,当ABP ∆的面积取最大值时,求点P 的坐标.16. 在直角坐标系x y O 中,曲线1C的参数方程为21x y ⎧=⎪⎨=-+⎪⎩(t 为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为ρ=.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.已知曲线12(1)化12C C ,的方程为普通方程; (2)若1C 上的点对应的参数为,Q 为2C 上的动点,求PQ 中点M 到直线(t 为参数)距离的最小值.18. 将圆221x y +=每一点的,横坐标保持不变,纵坐标变为原来的2倍,得到曲线C . (1)写出C 的参数方程;(2)设直线l :220x y +-=与C的交点为12,p p ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求线段12P P 的中点且与l 垂直的直线的极坐标方程.3sin y t ⎨=+⎩3sin y θ⎨=⎩P 2t π=332:2x tC y t=+⎧⎨=-+⎩11sin y t ⎨=+⎩23sin y θ⎨=⎩(1)化1C ,2C 的方程为普通方程,并说明它们分别表示什么曲线; (2)过曲线2C 的左顶点且倾斜角为4π的直线l 交曲线1C 于,A B 两点,求AB20. 已知在直角坐标系xOy 中,圆锥曲线C 的参数方程为4cos 4sin x y θθ⎧⎨⎩==(θ为参数),直线l 经过定点P (2,3),倾斜角为3π.21. 已知圆锥曲线为参数)和定点F 1,F 2是圆锥曲线的左右焦点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的参数方程练习题
1、若点()3,P m 在以点F 为焦点的抛物线24{
4x t y t == (t 为参数)上,则PF 等于
( )
A.2
B.3
C.4
D.5
答案:C
解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4.
故选C.
2、参数方程sin cos ,
{1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( )
A.圆的一部分
B.抛物线的一部分
C.双曲线的一部分
D.椭圆的一部分
答案:B
解析:参数方程sin cos ,
{1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤,
表示抛物线的一部分.
3、椭圆5cos ,{3sin x y ϕϕ
== (ϕ为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)±
答案:B
解析:椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的普通方程为22
1259
x y +=,故4c ==. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.
4、已知过曲线3cos ,{
4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4
π,则P 点的坐标是( ) A.(3,4) B.1212,55⎛⎫- ⎪⎝⎭
C.2⎛ ⎝
D.1212,55⎛⎫ ⎪⎝⎭ 答案:D
解析:直线PO 的方程是y x =,又点P 为曲线3cos ,
{4sin x y θθ==上一点,故
3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4
π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125
x y ==. 5、已知O 为原点,P
为椭圆4cos ,{
x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3
π,则点P 坐标为( ) A.()2,3 B.()4,3
C.(
D.(
,55
答案:D
解析:椭圆4cos ,
{x y αα== (α为参数)化为普通方程,得22
11612x y +=.由题意可得直线OP
的方程为y = (0x >).
由22(0),
{11612y x x y =>+=
解得x y ==. ∴点P
的坐标为.故选D. 6、参数方程cos 2sin x y θθ=⎧⎨=⎩
(θ为参数)化为普通方程为( ) A.22
14y x += B.2212y x += C.2214x y += D.2
212x y +=
答案:A 解析:易知,2y cos x sin θθ==,∴2
214y x +=,故选A. 7、方程cos cos x a y b θθ=⎧⎨=⎩
(θ为参数,0ab ≠)表示的曲线是( ) A.圆 B.椭圆 C.双曲线 D.双曲线的一部分 答案:D
解析:由xcos a θ=,∴a cos x
θ=,代入y bcos θ=,得xy ab =,又由y bcos θ=知,||,y b b ∈-⎡⎤⎣⎦,∴曲线应为双曲线的一部分.
8、若曲线2sin cos 1
x y θθ⎧=⎨=-⎩ (θ为参数)与直线x m =相交于不同两点,则m 的取值范围是( )
A.R
B.()0,+∞
C.()0,1
D.[)0,1
答案:D
解析:将曲线2sin cos 1
x y θθ⎧=⎨=-⎩化为普通方程得()()()21101y x x +=--≤≤.它是抛物线的一部分,如图所示,由数形结合知01m ≤<.
8、过椭圆5cos ,{3sin x y ϕϕ== (为参数)的右焦点,斜率为12
的直线方程为__________ 答案:x-2y-4=0
解析:椭圆的普通方程为
22
1
259
x y
+=,故5,3,
a b
==
所以4
c==,故右焦
点的坐标为(4,0),又直线的斜率为1
2
,故直线的方程为
1
(4)
2
y x
=-,即
240
x y
--=.
9、已知实数0
p>,曲线
2
1
2
:{
2
x pt
C
y pt
=
=
(t为参数)上的点(2,)
A m,曲线
2
6cos :{2
6sin
p
x
C
y
θθ
=+ = (θ为参数)的圆心为点B,A,B两点间的距离等于圆
2
C的半径,
则p=__________.答案:8
解析:曲线
2
1
2
:{
2
x pt
C
y pt
=
=
(t为参数)化为普通方程为22
y px
=,代入2
x=

m=±
则点(2,
A±.曲线
2
6cos
:{2
6sin
p
x
C
y
θ
θ
=+
=
的圆心为(,0)
2
p
,半径为6.
10、设点O为坐标原点,直线l
:
4,
{
2
x
y t
=+
=
(参数t R
∈)与曲线
2
4,
:{
4
x u
C
y u
=
=
(参数u R
∈)交于A、B两点.
(1)求直线l与曲线C的普通方程;
(2)求证:OA OB
⊥.
答案:1.直线l:4
y x
=-.曲线C:24
y x
=.
2.证明:设
1122
(,),(,),
A x y
B x y

24
{
4
y x
y x
=
=-
消去y,得212160
x x
-+=.∴
1212
12,16,
x x x x
+==
∴12121212
121212
(4)(4)4()16
1
OA OB
y y x x x x x x
k k
x x x x x x
---+
⋅====-.
∴OA OB
⊥.
11、在直角坐标系 xOy 中,直线l 的方程为40x y -+=,曲线 C
的参数方程为,
{sin ,x y θθ== (θ为参数).
1.已知在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,
以 x 轴正半轴为极轴)中,点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭
,判断点P 与直线l 的位置关系; 2.设点 Q 是曲线 C 上的一个动点,求它到直线l 的距离的最小值.
答案:1. 点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭
,则直角坐标为(0,4), 把()0,4P 代入直线l 的方程40x y -+=, 因为0?4? 4? 0-+=,所以点P 在直线l 上.
2.因为点 Q 是曲线 C 上的一个动点,则点 Q
的坐标可设为),sin Q αα. 点 Q 到直线l 的距离为
2cos 4d πα⎛⎫++ ⎪=
=6πα⎛⎫=++ ⎪⎝
⎭所以当cos 16πα⎛⎫+=- ⎪⎝
⎭时,d
.。

相关文档
最新文档