高中数学必修4示范课教案

合集下载

新课标-人教A版-高中数学必修4教案精选

新课标-人教A版-高中数学必修4教案精选
o

那么有( D A.
) . B. C. ( ) D.
例 2 用集合表示: (1)各象限的角组成的集合.
o
(2)终边落在
o o
轴右侧的角的集合.
解:(1) 第一象限角: {α|k360 π<α<k360 +90 ,k∈ Z} o o o o 第二象限角: {α|k360 +90 <α<k360 +180 ,k∈ Z} o o o o 第三象限角: {α|k360 +180 <α<k360 +270 ,k∈ Z} o o o 第四象限角:{α|k360 +270o<α<k360 +360 ,k∈Z} (2)在 ~ 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得
1
1.定义中说:角的始边与 x 轴的非负半轴重合,如果改为与 x 轴的正半轴重合行不行,为什么? 2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字? 3.是不是任意角都可以归结为是象限角,为什么? 处理:学生思考片刻后回答,教师适时予以纠正。 答:1.不行,始边包括端点(原点) ; 2.端点在原点上; 3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。 师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的 预习才是有效果的。 0 0 0 0 0 师生讨论:好,按照象限角定义,图中的 30 ,390 ,-330 角,都是第一象限角;300 ,-60 角,都是第四象限 0 角;585 角是第三象限角。 师:很好,不过老师还有几事不明,要请教大家: (1)锐角是第一象限角吗?第一象限角是锐角吗?为什么? 生:锐角是第一象限角,第一象限角不一定是锐角; 0 师: (2)锐角就是小于 90 的角吗? 0 生:小于 90 的角可能是零角或负角,故它不一定是锐角; 0 0 师: (3)锐角就是 0 ~90 的角吗? 0 0 0 0 0 0 生:锐角:{θ|0 <θ<90 };0 ~90 的角:{θ|0 ≤θ<90 }. 学生练习(口答) 已知角的顶点与坐标系原点重合,始边落在 x 轴的非负半轴上,作出下列各角,并指出 它们是哪个象限的角? 0 0 0 0 (1)420 ; (2)-75 ; (3)855 ; (4)-510 . 答: (1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 5.终边相同的角的表示法 师:观察下列角你有什么发现? 390 330 30 1470 1770 生:终边重合. 0 师:请同学们思考为什么?能否再举三个与 30 角同终边的角? 0 0 0 0 0 0 0 0 0 0 0 生:图中发现 390 ,-330 与 30 相差 360 的整数倍,例如,390 =360 +30 ,-330 =-360 +30 ;与 30 角同终边的 0 0 角还有 750 ,-690 等。 0 0 0 0 师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差 360 的整数倍。例如:750 =2×360 +30 ; 0 0 0 0 -690 =-2×360 +30 。那么除了这些角之外,与 30 角终边相同的角还有: 0 0 0 0 3×360 +30 -3×360 +30 0 0 0 0 4×360 +30 -4×360 +30 ……, ……, 0 0 0 由此,我们可以用 S={β|β=k×360 +30 ,k∈Z}来表示所有与 30 角终边相同的角的集合。 师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示? 0 生:S={β|β=α+k×360 ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 6.例题讲评 例 1 设 E {小于90 的角} F {锐角},G={第一象限的角} ,

高中数学必修4教案1.4.2正弦函数余弦函数的性质(教、学案)

高中数学必修4教案1.4.2正弦函数余弦函数的性质(教、学案)

§1.4.2正弦函数余弦函数的性质【教材分析】《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。

【教学目标】1. 会根据图象观察得出正弦函数、余弦函数的性质;会求含有x x cos ,sin 的三角式的性质;会应用正、余弦的值域来求函数)0(sin ≠+=a b x a y 和函数c x b x a y ++=cos cos 2)0(≠a 的值域2. 在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.3. 在解决问题的过程中,体验克服困难取得成功的喜悦.【教学重点难点】教学重点:正弦函数和余弦函数的性质。

教学难点:应用正、余弦的定义域、值域来求含有x x cos ,sin 的函数的值域【学情分析】知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。

心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。

但在处理问题时学生考虑问题不深入,往往会造成错误的结果。

【教学方法】1.学案导学:见后面的学案。

2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。

2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。

【课时安排】1课时【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

二、复 习导入、展示目标。

高中数学人教版必修4教案

高中数学人教版必修4教案

1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角 顶点AO答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n . 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.αα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,319π∴是第三象限角.(2) 631,656631ππππ-∴+-=- 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为Rlrad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

课题: 二倍角的正弦、余弦、正切公式教材:人教A版高中数学必修4§3.1.3第一课时一、教学目标1.知识目标:以两角和的正弦、余弦、正切公式为基础,推导二倍角的正弦、余弦、正切公式,掌握二倍角公式,运用二倍角公式解决有关问题。

2.能力目标:灵活运用二倍角公式,培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想,提高学生分析问题、解决问题的能力。

3.德育目标:激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识,培养学生的发散性思维、创新意识,提高数学素养。

二、教学重点与难点重点:掌握二倍角公式,灵活运用二倍角公式解决有关问题。

难点:二倍角公式的灵活运用,培养学生的转化、化归的数学思想。

三、教学方法与手段教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学并通过多媒体辅助教学。

四、教学过程二倍角的正弦、余弦、正切公式教案说明在教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学,逐步设疑、诱导、解疑,指导学生去“发现”。

整个教学过程的设计主要体现以下五点:第一、提出问题,纠正学生常犯直觉性错误,激发学生新的求知欲。

引导学生自主探究二倍角公式,让学生亲身经历公式的“发现”过程。

这样设计突出学生的主体地位,能够让学生明白知识的来龙去脉,加深对知识的理解,培养学生的探究意识和丰富的联想能力。

第二、在学生推导出二倍角公式后,立即让学生做些简单练习,目的是为了使学生更好的理解、运用和记忆二倍角公式,以及让学生感到找出C公式变形的必要性。

2第三、在解题教学过程中,启发学生先分析条件与求解目标之间的差异,然后选择适当的公式,明确解题思路,最后严格规范解答过程,培养逻辑思维能力。

通过一题多解训练学生发散性思维,培养学生创新意识,提高学生的数学素养。

第四、为巩固所学知识,本设计通过设置多重练习,让学生能更深刻的认识公式特点,感受公式的各种形式运用,提高灵活运用公式的能力。

高中数学人教新课标必修四B版教案高中数学必修4全部教案

高中数学人教新课标必修四B版教案高中数学必修4全部教案

人教B版数学必修4 第一章基本初等函数(Ⅱ)教学设计一、教材分析1、本单元教学内容的范围1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角本章知识结构如下:2、本单元教学内容在模块内容体系中的地位和作用(1)三角函数是一类十分重要的初等函数,它与本模块第三章“三角恒等变换”构成了高中“三角”知识的主体,是中学数学的重要内容之一,也是学习后继内容和高等数学的基础。

(2)三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。

(3)三角函数作为描述周期现象的重要数学模型,与其它学科如天文学、物理学等联系非常紧密。

因此三角函数的学习可以培养学生的数学应用能力。

(4)三角函数的基础知识,主要是平面几何中的相似形和圆。

研究三角函数的方法,主要是在必修1中建立的研究初等函数的方法。

因此,通过对三角函数的学习,可以初步地把“数”与“形”联系起来。

(5)通过对三角函数的学习,不仅能使学生获得新的知识和技能,而且可以培养学生的辨证唯物主义观点,提高分析问题和解决问题的能力。

3、本单元教学内容总体教学目标 (1)任意角的概念、弧度制了解任意角的概念.了解弧度制的概念,能进行弧度与角度的互化. (2)任意角的三角函数理解任意角的正弦、余弦、正切的定义;了解任意角的余切、正割、余割的定义;并会利用单位圆中的有向线段表示正弦、余弦和正切,并理解其原理。

理解同角三角函数的基本关系式: 22sin cos 1x x +=,sin tan cos xx x=;借助单位圆的直观性探索正弦、余弦、正切的诱导公式,能进行同角三角函数之间的变换,会求任意角的三角函数值,并记住某些特殊角的三角函数值。

高中数学必修四详细教案

高中数学必修四详细教案

高中数学必修四详细教案教学主题:平面向量的基本概念和运算教学目标:1. 掌握平面向量的基本概念和表示方法;2. 熟练掌握平面向量的加减法和数量积的运算方法;3. 能够运用平面向量进行简单的几何问题求解。

教学重点:1. 平面向量的基本概念;2. 平面向量的加减法;3. 平面向量的数量积。

教学难点:1. 理解平面向量的概念和表示方法;2. 掌握平面向量的加减法和数量积的运算方法。

教学准备:1. 教材《高中数学必修四》;2. 手写板或投影仪;3. 练习题册。

教学步骤:一、导入(5分钟)1. 引入平面向量的概念,引出本节课的主题;2. 复习前几节课内容,为本节课的学习做铺垫。

二、讲解(30分钟)1. 讲解平面向量的定义和表示方法;2. 分别介绍平面向量的加法、减法和数量积的定义和运算规则;3. 通过实例演示不同类型的向量运算,让学生理解运算方法。

三、练习(15分钟)1. 给学生分发练习题册,让他们进行练习;2. 在学生练习的同时,巡视课堂,帮助学生解决问题。

四、讲评(10分钟)1. 收集学生的练习题,讲解解题方法;2. 解答学生提出的问题,澄清疑惑。

五、拓展(10分钟)1. 给学生提供更复杂的问题,让他们尝试运用向量解决几何问题;2. 鼓励学生进行探索和讨论,提高他们的解决问题的能力。

六、总结(5分钟)1. 总结本节课的学习内容,强调重点难点;2. 鼓励学生在课后多加练习,加深对平面向量的理解。

七、作业布置1. 布置练习题册相关内容的作业,要求学生在下节课前完成。

教学反思:通过本节课的教学,学生对平面向量及其运算方法有了初步的了解和掌握,但在实际运用中还存在一定困难。

在未来的教学中,需要更多的实例演练和综合应用,让学生更好地掌握知识。

新课程高中数学必修4教案

新课程高中数学必修4教案

新课程高中数学必修4教案
教案范本
第一课时
主题:集合与命题
教学目标:学生将能够理解集合的概念,掌握集合的运算及性质,了解命题的基本结构和逻辑运算。

教学内容:
1. 集合的基本概念和表示方法
2. 集合的运算:并集、交集、差集、补集
3. 集合的性质:幂集、空集、全集
4. 命题及逻辑运算:与、或、非、等价、蕴含
教学活动:
1. 引导学生思考日常生活中的集合问题,如班级里喜欢看电影的同学的集合是什么等
2. 讲解集合的基本概念和运算,并进行相关例题讲解
3. 设计讨论题,让学生解答关于集合的问题,巩固学习成果
4. 引导学生掌握命题的基本结构和逻辑运算,进行适当的练习
作业安排:
1. 完成课后习题,复习集合的概念和运算
2. 思考并总结日常生活中的命题,写出具体例子
评价标准:
1. 熟练掌握集合的基本概念和运算
2. 能够准确运用命题的逻辑运算,理解命题间的关系
拓展延伸:
学生可以通过实际场景中的案例,更好地理解集合和命题的应用,同时可以深入学习集合的进阶内容和更复杂的逻辑运算。

高中数学必修4弧度值教案

高中数学必修4弧度值教案

高中数学必修4弧度值教案
课题:弧度值
目标:学生能够掌握弧度值的概念,能够转换角度和弧度的关系
教学重点:弧度的定义,角度和弧度的转换
教学难点:角度和弧度的转换
教学准备:教材、黑板、粉笔、教学PPT
教学步骤:
一、导入(5分钟)
老师通过引导学生回顾之前学过的角度的概念,让学生思考什么是角度,并与圆相关联。

二、讲解(15分钟)
1. 弧度的定义:引导学生思考圆周角的度量方式,并介绍弧度的定义为圆周的长度等于半径的角。

2. 角度和弧度的关系:通过示意图和实际问题,让学生理解角度与弧度的转换关系。

三、练习(25分钟)
1. 让学生完成几道简单的练习题,巩固弧度的概念及与角度的转换。

2. 让学生通过实际问题应用角度和弧度的计算方法。

四、总结(5分钟)
老师带领学生总结本节课学到的知识点,并强调弧度值在数学中的重要性。

五、作业布置(5分钟)
布置作业,巩固学生对弧度值的理解和运用。

板书设计:
1. 弧度的定义:圆周的长度等于半径的角
2. 角度和弧度的关系:1弧度=180°
3. 角度和弧度的转换公式:θ(弧度)=θ(角度) × π/180
反思:
通过本节课的教学,学生对弧度值的概念有了更深入的认识,能够灵活运用角度和弧度的转换公式进行计算。

同时,本节课难度适中,但为了更好地巩固和理解弧度值的知识,可以设计更多场景化的问题,提高学生的实际运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4示范课教案
课题:1.4.2(2)正弦、余弦函数的性质(二) 教学目的:
知识目标:要求学生能理解三角函数的奇、偶性和单调性;
能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。

德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的
意志, 实事求是的科学学习态度和勇于创新的精神。

教学重点:正、余弦函数的奇、偶性和单调性;
教学难点:正、余弦函数奇、偶性和单调性的理解与应用
授课类型:新授课
教学模式:启发、诱导发现教学.
教学过程:
一、复习引入:
二、讲解新课:
1. 奇偶性
请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?
(1)余弦函数的图形
当自变量取一对相反数时,函数y 取同一值。

例如:
f (-3π)=21,f (3π)=21 ,即f (-3π)=f (3
π);…… 由于cos(-x)=cosx ∴f (-x)= f (x).
以上情况反映在图象上就是:如果点(x,y )是函数y=cosx 的图象上的任一点,那么,与它关于y 轴的对称点(-x,y)也在函数y=cosx 的图象上,这时,我们说函数y=cosx 是偶函数。

定义:一般地,如果对于函数f (x)的定义域内任意一个x ,都有f (-x)= f (x),那么函数f (x)就叫做偶函数。

例如:函数f (x)=x 2+1, f (x)=x 4
-2等都是偶函数。

(2)正弦函数的图形
观察函数y=sinx 的图象,当自变量取一对相反数时,它们对应的函数值有什么关系? 这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。

也就是说,如果点(x,y )是函数y=sinx 的图象上任一点,那么与它关于原点对称的点(-x,-y )也在函数y=sinx 的图象上,这时,我们说函数y=sinx 是奇函数。

定义:一般地,如果对于函数f (x)的定义域内任意一个x ,都有 f(-x)=-f(x) ,那么函数f (x)就叫做奇函数。

例如:函数y=x, y=x
1 都是奇函数。

如果函数f (x)是奇函数或偶函数,那么我们就说函数f (x)具有奇偶性。

注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:
(1)其定义域关于原点对称;
(2)f (-x)= f (x)或f (-x)=- f (x)必有一成立。

因此,判断某一函数的奇偶性时。

首先看其定义域是否关于原点对称,若对称,再计算f (-x),看是等于f (x)还是等于- f (x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

2.单调性
从y =sin x ,x ∈[-
23,2ππ]的图象上可看出: 当x ∈[-2π,2
π]时,曲线逐渐上升,sin x 的值由-1增大到1. 当x ∈[2
π,23π]时,曲线逐渐下降,sin x 的值由1减小到-1. 结合上述周期性可知: 正弦函数在每一个闭区间[-
2π+2k π,2
π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.
3.有关对称轴
观察正、余弦函数的图形,可知
y=sinx 的对称轴为x=2π
π+k k ∈Z
y=cosx 的对称轴为x=πk k ∈Z
(1)写出函数x y 2sin 3=的对称轴;
(2))4sin(π
+=x y 的一条对称轴是( C )
(A) x 轴, (B) y 轴, (C) 直线4π=
x , (D) 直线4π-=x 4.例题讲解
例1 判断下列函数的奇偶性 (1)1sin cos ();1sin cos x x f x x x
+-=++ (2)f(x)=sin 4x-cos 4x+cos2x;
(3)()lg(sin f x x =
(4)2
|2|)1lg()(2---=x x x f (5)⎪⎩⎪⎨⎧>+-<+=)0(
)0( )(22x x x x x x x f ; 例2 (1)函数f (x )=sin x 图象的对称轴是 ;对称中心是 .
(2)
函数()cos f x x x =+图象的对称轴是 ;对称中心是 . 例3 已知f(x)=ax+bsin 3x+1(a 、b 为常数),且f(5)=7,求f(-5).
例4 已知121sin ()log .1sin x f x x
-=+已知
(1) 求f(x)的定义域和值域;
(2) 判断它的奇偶性、周期性;
(3) 判断f(x)的单调性.
例5 (1)θ是三角形的一个内角,且关于x 的函数f(x)=sain(x+θ)+cos(x-θ)是偶函数,求
θ的值.
(2)若函数f(x)=sin2x+bcos2x 的图象关于直线8x π=-
对称,求b 的值. 例6 已知24()log (sin
sin )(0,1)22a x x f x a a =->≠,试确定函数的奇偶性、单调性. 1. 有关奇偶性
(1)|sin |||sin )(x x x f +=
(2)x
x x x x cos sin 1cos sin 1)(++-+= 有关单调性
(1)利用公式2sin 2cos 2sin sin β
αβ
αβα-+=-,求证x x f sin )(=在]2
,2[ππ-上是增函数;
(2)不通过求值,指出下列各式大于0还是小于0; ①)10
sin()18sin(ππ---; ②)4
17cos()523cos(ππ--- (3)比较3sin ,2sin ,1sin 大小;)2sin(1sin )3sin(-<<-ππ
(4)求函数)43sin(2π+
=x y 的单调递增区间;
三、巩固与练习
练习讲评
(1)化简:4cos 2sin 22+-
(2)已知非零常数b a ,满足158tan 5sin 5cos 5cos 5sin
ππππ
π=-+b a b a ,求a b 的值; (3)已知35sin 10cos 8,5cos 10sin 8=+=+βαβα
求值:(1))sin(βα+;(2))3sin(
απ+
解:
(1)4cos 2sin 22+- 2cos 3|2cos |32cos 3)2sin 1(32sin 212sin 22222-===-=-+-=
(2)
33tan )5
158cos()5158sin(5sin 158sin 5cos 158cos 5sin 158cos 5cos 158sin 158cos 15
8sin 5sin 5cos 5cos 5sin ==--=+-=⇒=-+πππππππππππππππππππb a b a b a (3)两式平方相加得⇒=++100)sin(160164βα5
2)sin(=+βα; αβα
βcos 835sin 10sin 85cos 10-=-= 两式平方相加得ααcos 380sin 80164100--= 即5
2)3sin(,52cos 23sin 21=+∴=+απαα 四、小 结:本节课学习了以下内容:
1.
2.
3.
五、课后作业:见教材
六、板书设计:
七、教学反思。

相关文档
最新文档