智能循迹小车详细制作过程

合集下载

智能循迹小车设计与实现

智能循迹小车设计与实现

智能循迹小车设计与实现摘要:智能循迹小车是一种能够根据预设的路径自动行驶的装置。

本文主要介绍了智能循迹小车的设计与实现过程,包括硬件设计、软件编程以及测试和优化等内容。

通过使用光电传感器和电机驱动模块,实现了小车的自动行驶功能。

实验结果表明,智能循迹小车能够准确地沿着指定的路径行驶。

关键词:智能循迹小车,光电传感器,电机驱动模块1.引言智能循迹小车是一种基于传感器和控制模块的自动驾驶装置。

它能够通过感知周围环境并根据预先设定的路径进行行驶。

智能循迹小车在工业生产、仓储管理和物流配送等领域具有广泛的应用前景。

本文主要介绍了智能循迹小车的设计与实现过程。

2.硬件设计主控模块采用单片机作为核心处理器,并配备了存储器、通信接口和控制信号输出等功能。

传感器模块主要由光电传感器组成,用于感知小车当前位置和行驶方向。

执行器模块由电机驱动模块组成,用于控制小车的移动。

3.软件编程传感器数据采集模块负责读取光电传感器的输出信号,并进行信号处理和滤波。

路径规划模块通过分析传感器数据,确定小车当前位置和行驶方向,并根据预设的路径规划算法,确定下一步行驶方向。

运动控制模块通过调节电机驱动模块的输入信号,控制小车的运动。

4.测试与优化为了验证智能循迹小车的性能,我们进行了一系列的测试和优化。

首先,我们对传感器进行了校准,以确保其输出信号的准确性。

然后,我们在实际场景中对小车进行了测试,包括行驶精度、速度和稳定性等方面的测试。

根据测试结果,我们对软件进行了调优,并对硬件进行了优化,以提高智能循迹小车的性能。

5.结论本文介绍了智能循迹小车的设计与实现过程。

通过使用光电传感器和电机驱动模块,我们实现了小车的自动行驶功能。

实验表明,智能循迹小车能够准确地沿着指定的路径行驶。

未来,我们将进一步改进小车的设计和算法,以提高其性能和适应性。

1 智能寻迹小车设计与制作指南20120306

1 智能寻迹小车设计与制作指南20120306
修改设计数据 库名称
更改设计数据 库建立路径
图 1-6 设计数据库的建立
勾选可显示全部 支持的文件类型
图 1-7 选择文件类型对话框
加 载 PCB 元 件封 装库可 以 在 浏览 器的 组 合框 中 , 选 择库 【 Libraries】。 可 用 鼠标 左键 单 击 【Add/Remove】按钮,将出现如图 1-8 所示的关于引入库文件的对话框。
图 1-4 元器件清单 该项目中,整机中所需的电子元器件见图 1-4 所列。下图 1-5 是主要的元件实物与封装规格。
8
LM393 实物
4
3 1
2 5
6
LM393 元件符号
7
LM393 封装 DIP-8
光敏电阻 CSD5
光敏电阻元件符号
光敏电阻封装
电阻实物
电阻元件符号
电阻封装 AXIAL0.3
三极管 8550
或者直接单击主工具栏上的
按钮,屏幕上出现如图 1-16 所示的对话框。 PCB 设计时一般要添
加通用封装库 C:\Program Files\Design Explorer 99 SE\Library\Pcb\Generic Footprints\Advpcb.ddb\PCB
Footprints.lib。
学习指南
1.1 主要元器件及其封装
整机电原理图如图 1-3 所示,LM393 随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧 压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向 上,整个过程是一个闭环控制,因此能快速灵敏地控制。
图 1-3 智能寻迹小车电原理图
图 1-18 创建 PCB 封装库文件鼠标右键操作

循迹小车制作过程

循迹小车制作过程

电子与信息工程系电子实训课题: 基于STC89C52RC和TCRT5000光电传感器的自动循迹小车设计专业:班级:学号:姓名:指导老师:完成日期:目录目录 0摘要: (1)1.任务及要求 (2)1.1任务 (2)2.系统设计方案 (2)2.1小车循迹原理 (2)2.2控制系统总体设计 (2)3.系统方案 (3)3.1 寻迹传感器模块 (3)3.1.1光电传感器TCRT5000简介 (3)3.1.2比较器LM324简介 (3)3.1.3具体电路 (4)3.1.4传感器安装 (4)3.2控制器模块 (5)3.3电源模块 (6)3.4电机及驱动模块 (6)3.4.1电机 (6)3.4.2驱动 (7)4.软件设计 (8)4.1 PWM控制 (8)4.2 总体软件流程图 (8)4.3小车循迹流程图 (9)4.4中断程序流程图 (10)4.5单片机测序 (11)5.参考资料 (15)摘要本设计是基于STC89C52单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。

小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

小车系统以 STC89S52 单片机为系统控制处理器;采用TCRT5000光电传感器获取赛道的信息,并通过驱动控制电路来对小车的方向和速度进行控制。

此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

1.任务及要求1.1任务设计一个基于直流电机的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。

系统方案方框图如图1-1所示。

图1-1 系统方案方框图2.系统设计方案2.1小车循迹原理这里的循迹是指小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。

通常采取的方法是红外探测法。

红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。

自动循迹小车(附有程序)

自动循迹小车(附有程序)

大学生电子设计竞赛自动循迹小车目录摘要 (1)1.方案论证 (2)1.1方案描述 (2)1.2单片机方案的比较与论证 (2)1.3编码器选择与论证 (2)1.4 LDC1000与LDC1314选择与论证 (3)1.5 OLED显示方案 (3)1.6蜂鸣器发声方案 (3)2.理论分析与计算 (3)2.1速度增量式PID计算 (3)2.2舵机位置式PID算法 (3)3.电路与程序设计 (4)3.1系统组成 (4)3.2系统流程图 (5)4.测试方案与测试结果 (5)4.1测试方案 (5)4.1.1舵机测试方案 (6)4.1.2电机测试方案 (6)4.2系统测试结果分析 (6)5.结论 (6)6.参考文献 (7)摘要本循迹小车以单片机XS128为控制核心,主要由LDC1314感应模块、稳压模块、液晶显示模块、驱动控制模块、蜂鸣器模块、编码器、舵机以及小车组成。

跑道的标识为一根直径0.6~0.9mm的细铁丝,小车在规定的平面跑道自动按顺时针方向循迹前进。

在任意直线段铁丝上放置4个直径约19mm的镀镍钢芯硬币(第五套人民币的1角硬币),硬币边缘紧贴铁丝。

实验结果表明,在直线区任意指定一起点(终点),小车都能够依据跑道上设置的铁丝标识,能够自动绕跑道跑完一圈,而且时间不超过10分钟,小车运行时始终保持轨迹铁丝位于小车垂直投影之下,小车路过硬币时能够发现并发出声音提示,显示屏上能够实时显示小车行驶的距离和运行时间。

关键词:自动循迹 LDC1314 实时显示自动循迹小车1.方案论证1.1方案描述自动循迹小车依据电磁感应原理,由单片机XS128控制,控制系统是由XS128控制模块、LDC1314感应模块、稳压模块、液晶显示模块、驱动控制模块、蜂鸣器模块、编码器、舵机以及电动小车组成的闭环控制系统。

LDC1314感应模块采集小车在跑道上位置与角度信息,利用XS128单片机处理位置与角度数据后调节舵机打角并通过PID精确算法调整后轮速度。

循迹避障智能小车设计

循迹避障智能小车设计

循迹避障智能小车设计一、硬件设计1、车体结构智能小车的车体结构通常采用四轮驱动或两轮驱动的方式。

四轮驱动能够提供更好的稳定性和动力,但结构相对复杂;两轮驱动则较为简单,但在稳定性方面可能稍逊一筹。

在选择车体结构时,需要根据实际应用场景和需求进行权衡。

为了保证小车的灵活性和适应性,车架材料一般选择轻质且坚固的铝合金或塑料。

同时,合理设计车轮的布局和尺寸,以确保小车能够在不同的地形上顺利行驶。

2、传感器模块(1)循迹传感器循迹传感器是实现小车循迹功能的关键部件。

常见的循迹传感器有光电传感器和红外传感器。

光电传感器通过检测反射光的强度来判断黑线的位置;红外传感器则利用红外线的反射特性来实现循迹。

在实际应用中,可以根据小车的运行速度和精度要求选择合适的传感器。

为了提高循迹的准确性,通常会在小车的底部安装多个传感器,形成传感器阵列。

通过对传感器信号的综合处理,可以更加精确地判断小车的位置和行驶方向。

(2)避障传感器避障传感器主要用于检测小车前方的障碍物。

常用的避障传感器有超声波传感器、激光传感器和红外测距传感器。

超声波传感器通过发射和接收超声波来测量距离;激光传感器则利用激光的反射来计算距离;红外测距传感器则是根据红外线的传播时间来确定距离。

在选择避障传感器时,需要考虑其测量范围、精度、响应速度等因素。

一般来说,超声波传感器测量范围较大,但精度相对较低;激光传感器精度高,但成本较高;红外测距传感器则介于两者之间。

3、控制模块控制模块是智能小车的核心部分,负责处理传感器数据、控制电机驱动和实现各种逻辑功能。

常见的控制模块有单片机(如 Arduino、STM32 等)和微控制器(如 PIC、AVR 等)。

单片机具有开发简单、资源丰富等优点,适合初学者使用;微控制器则在性能和稳定性方面表现更优,适用于对系统要求较高的场合。

在实际设计中,可以根据需求和个人技术水平选择合适的控制模块。

4、电机驱动模块电机驱动模块用于控制小车的电机运转,实现前进、后退、转弯等动作。

自动循迹智能小车制作(飞思卡尔智能车制作)

自动循迹智能小车制作(飞思卡尔智能车制作)

自动循迹智能小车制作目录摘要................................................................. 错误!未定义书签。

1 设计要求 (3)2 方案的选择与比较 (3)2.1 主控芯片选择 (3)2.2 电源的选择 (3)2.3 寻迹方案 (4)2.3 电机驱动方案 (4)3 最终方案 (5)4各功能模块的实现 (6)4.1 微控制器模块的设计 (6)4.2电源模块原理图 (6)4.3 TCRT5000红外检测模块 (6)4.4 系统PCB图 (7)4.5 系统程序流程图 (8)5 性能测试 (9)6 性能评价及总结 (10)7 附录 (11)附录1:元件清单 (11)附录2 系统原理图 (12)附录3系统程序 (13)8参考文献 (19)1 设计要求设计一自动寻迹小车,其实现功能如下:1.使其能够检测到轨迹的路线,并按照预订轨迹运行;2.要求在小车冲出预定路线后能够自动回到预定轨迹上;3.小车能够按多种不同的轨迹运行。

2 方案的选择与比较2.1 主控芯片选择方案1:采用51系列单片机,该系列单片机结构简单,但是能实现很多功能。

与其它单片机相比较价格便宜。

端口电流较大,可以达到20mA,驱动能力强。

方案2:采用msp430系列单片机,该系列单片机片上资源丰富,功能强大,但是端口灌电流和拉电流较小,驱动能力不强。

它主要运用在需要低功耗的地方。

本系统主要是进行寻迹运行的检测以及电机的控制,经过对比分析,我们选用AT89S52单片机作为主控芯片来驱动电机,进而控制电机转速。

2.2 电源的选择方案1:采用9V蓄电池为直流电机供电,将9V电压降压、稳压后给单片机系统和其他芯片供电。

蓄电池具有较强的电流驱动能力以及稳定的电压输出性能。

虽然蓄电池的体积过于庞大,在小型电动车上使用极为不方便。

方案2:采用9V南孚干电池直接个电机驱动芯片L298N供电,并将9V经过7805稳压及电容滤波后给单片机供电。

智能循迹小车设计与制作

智能循迹小车设计与制作
方案三:采用FPGA(现场可编辑门列阵)作为系统控制器。FPGA可以实现各种复杂的逻辑功能,规模大,集成度高,体积小,稳定性好,并且可利用EDA软件进行仿真和调试。FPGA采用并行工作方式,提高了系统的处理速度,常用于大规模实时性要求较高的系统。
方案比较:由三种方案可以看出,以Atmega 128L核心可以方便地实现对各个部分的控制和外接,而AT89S52而需要外扩大量的I/O口才能满足需要,而FPGA的高速处理能力得不到充分发挥且价格较贵,所以我们选择方案一。
3、将各元件布好局,再按要求将元件一一连接起来
4、按照各个模块的分布进行命名




1、注意一一对应。
7、智能循迹小车印制电路板的制作
航空职业技术学院
智能循迹小车印制电路板的制作工作卡
编号
7
所属项目
智能循迹小车
计划工时
2课时
共3页
学员
琚俊杰
班级
电子0903
所用器材和工具设备
序号
名 称
型号(规格)
数量
8550
插件
1
3
自锁开关
6脚
插件
1
4
单排插座
8脚
插件
1
5
单排插座
4脚
插件
1
6
单排插座
2脚
插件
1
7
排阻
10K
插件
1
8
电解电容
10UF/25V
插件
1
9
电解电容
100UF/25V
插件
2
10
瓷片电容
15P
插件
2
11
瓷片电容
104

智能_循迹小车详细制作过程

智能_循迹小车详细制作过程
2.2具体方案....................................................................................3
2.2.1道路识别模块..................................................................3
三、光电管与摄像头结合寻线:兼顾了光电寻线的抗干扰能力强和摄像头寻线前瞻性远、信息量大的特点。
难点:光电管与摄像头之间的配合,两者切换的条件。
2.2具体方案
2.2.1道路识别模块
使用了CMOS摄像头和单排七对红外发射接受二极管。根据比赛环境的不同
可灵活选择各个方案。
在光电管与摄像头结合寻线模式里,使用光电管检测的信息作为整幅图像处理的第一行,在采集的图像干扰过多或信息量过少时切换到光电管循线的模式。
6.2调试过程.................................................................................24
6.3主要技术参数说明.................................................................25第七章结论..........................................................................................27附录A参考书目.......................................................................................I
4.1整体介绍....................................................................................9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(穿山乙工作室)三天三十元做出智能车
基本设计思路:
1.基本车架(两个电机一体轮子+一
个万向轮)
2.单片机主控模块
3.电机驱动模块(内置5V电源输出)
4.黑白线循迹模块
0.准备所需基本元器件
1).基本二驱车体一台。

(本课以穿山乙推出的基本车体为
例讲解)
2).5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红
色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40
个。

3).5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一
个;双孔接线柱三个、10u电解电容2个、排针12个、9110
驱动芯片2个。

4).5x7cm洞洞板、LM324比较器芯片各一个;红外对管三
对、4.7K电阻3个、330电阻三个、红色3mmLED三个。

一、组装车体
(图中显示的很清晰吧,照着上螺丝就行了)
二、制作单片机控制模块
材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。

电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。

我们也有焊接好的实物图供你参考。

(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。

我实物图中就没焊复位)
三、制作电机驱动模块
材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。

电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。

因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。

这里用了一个7805稳压芯片将+9V电压稳出+5V电压。

+9V
这是工作室做的电源+驱动模块,仅作参考
四、制作循迹模块
材料:5x7cm洞洞板、LM324比较器芯片各一个;红外对管三对、4.7K电阻3个、330电阻三个、红色3mmLED三个。

LM324电压比较器工作原理:
该芯片内部有四组比较器,原理就是反相输入端Vi—与同相输入端Vi+的电压进行比较,若Vi+大于Vi—则比较器的输出端OUT输出高电平+5V;若Vi+小于Vi—则比较器的输出端OUT输出低电平0V;
TCRT5000红外对管工作原理:
工作时由蓝色发射管发射红外线,红外线由遮挡物反射回来被接收管接收。

接收反射光线后的接收管呈导通状态,与一电阻串联即可构成一个由发射管控制的分压电路,由此可实现对遮挡物反射光线强度的检测。

我们经常利用这一特性去实现黑白颜色识别。

在小车行驶过程中发射管不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。

如图12轨迹识别电路所示,发射管(1、2端)与阻值为330欧姆的电阻串联发射红外线。

接收管(3、4)与阻值为47K欧姆的电阻串联。

在没有接收到反射光线时接收管截止呈高阻态,TX输出高电平。

当接收管接收到反射光线时,接收管被导通,并且电阻远小于47K,TX输出低电平。

五、组装连接各模块
供电分配:
单片机主控模块5V
电机驱动模块7V-12V
黑白线循迹模块5V
电机驱动输入端分别接单片机的P0.0、P0.1、P0.2、P0.3
(这里建议大家把电机驱动输入端接到单片机的P0上,因为P0口我们外接有上拉电阻,其他IO口虽然集成上拉电阻但驱动能力太弱,很不稳定。

如果你把驱动输入端接到P0口仍不太受控,可以尝试将上拉电阻改为1K或更小的。


循迹模块输出端分别接单片机的P1.0、P1.1、P1.2
注:分别对应右边的光电管输出端(从循迹板对应的右边光电管信号输出端接至单片机P1.0)、左边的光电管输出端(从循迹板对应的左边光电管信号输出端接至单片机P1.1)、前边的光电管输出端(从循迹板对应的前边光电管信号输出端接至单片机P1.2)
六、各种路线分析
七、小车运动状态设计
八、简单的三路循迹算法设计
源程序请到论坛智能车讨论区下载。

该算法仅供参考,(软件需要配合硬件不同的接法)具体程序代码应由实际情况调试得出!!!
源程序请到穿山乙工作室下载
链接地址:
/bbs/forum.php?mod=viewthread&tid=806&extra=page%3D1
左电机 P0.2 P0.3 LA LB 0 0 不转 0 1 前转 1 0 后转 1 1 不转 右电机 P0.0 P0.1 RA RB 0 0 不转 0 1 前转 1 0 后转 1 1 不转 单片机------电机驱动模块------小车 P0.2 P0.3 P0.0 P0.1
1 0 1 前进 1
0 1 0 后退 1
0 0 1 左转弯 0
1 1 0 右转弯。

相关文档
最新文档