智能小车循迹、避障、红外遥控C语言代码(特制材料)
智能小车循迹、避障、红外遥控C语言代码

智能小车循迹、避障、红外遥控C语言代码//智能小车避障、循迹、红外遥控 C 语言代码// 实现功能有超声波避障,红外遥控智能小车,红外传感器实现小车自动循迹, 1602 显示小车的工作状态,另有三个独立按键分别控制三种状态的转换// 注:每个小车的引脚配置都不一样,要注意引脚的配置,但是我的代码注释比较多,看起来比较容易一点#include <> #include <> #include"" #include <> #define uchar unsigned char #define uint unsigned int uchar ENCHAR_PuZh1[8]=" uchar ENCHAR_PuZh2[8]=" uchar ENCHAR_PuZh3[8]=" uchar ENCHAR_PuZh4[8]=" uchar ENCHAR_PuZh5[8]=" run back stop left right "; ";//1602 显示数组H. H. H. uchar ENCHAR_PuZh6[8]=" xunji "; uchar ENCHAR_PuZh7[8]=" bizhang"; uchar ENCHAR_PuZh8[8]=" yaokong"; #define HW P2 #define PWM /****************************** P1 //红外传感器引脚配置P2k 口/* L298N 管脚定义*/ 超声波引脚控制******************************/ sbit ECHO=P3A2; sbit TRIG=P3A3;///// 红外控制引脚配置 sbit sbituchar KEY2=P3A7; KEY 仁 P3M;state_total=3,state_2=0;// 2 为红外遥控 ucharuchar time_1 uchar 局变量 // 超声波接收引脚定义 // 超声波发送引脚定义// 红外接收器数据线 // 独立按键控制总状态控制全局变量 state_1,DAT; // 红外扫描标志位time_1=0,time_2=0;// 定时器1 中断全局变量控制转弯延时计数也做延时一次time,timeH,timeL,state=0;// 超声波测量缓冲变量count=0;//1602 显示计数兼红外遥控按键state_total =2 兼循迹按键state_total= 0 自动避障 state_total=10 为自动循迹模块 1 为自动避障模块 time_ 2 控制 PWM 脉冲计数state 为超声波状态检测控制全uint /**************************/ unsigned char IRC0M[7]; // 红外接收头接收数据缓存unsigned char Number,distance[4],date_data[8]={0,0,0,0,0,0,0,0}; /********* voidvoid voidIRC0M[2 ]存放的为数据 // 红外接收缓存变量 **/ IRdelay(char x); //x* 红外头专用 delay run(); back();void stop(); void left_90(); void left_180(); void right_90(); void delay(uint dat); //void init_test();void delay_100ms(uint ms) ;void display(uchar temp); void bizhang_test(); void xunji_test(); void hongwai_test();void Delay10ms(void);void init_test()// 定时器 0{ 1 外部中断 // 超声波显示驱动 0 1 延时初始化 TMOD=0x11; TH1=0Xfe; TL1=0x0c; TF0=0; TF1=0; ET0=1; ET1=1; EA=1;// 设置定时器 0 1 // 装入初值定时一次为工作方式 1 16 位初值定时器2000hz// 定时器 // 定时器 // 允许定时器// 允许定时器 0 方式 1 计数溢出标志 1 方式 1 计数溢出标志 0 中断溢出 1 中断溢出//开总中断 if(state_total==1)// 为超声波模块时初始化 {TRIG=0; ECHO=0; EX0=0; IT0=1;}if(state_total==2)// 发射引脚低电平 // 接收引脚低电平 // 关闭外部中断// 由高电平变低电平,触发外部中断 0// 红外遥控初始化{ IT1=1; EX1=1;TRIG=1;}del ay(60);} void main(){ uint i; delay(50); init_test(); TR1=1; LCD1602_Init() ; delay(50); while(state_2==0)// 外部中断 1 为负跳变触发 // 允许外部中断 1 // 为高电平 I/O 口初始化// 等待硬件操作// 开启定时器 1{if(KEY1==0){Delay10ms(); // 消除抖动 if(KEY1==0) {state_total=0; // 总状态定义 0 为自动循迹模块 1 为自动避障模块2 为红外遥控while((i<30)&&(KEY1==0))// 检测按键是否松开{Delay10ms(); i++;}i=0;}}if(TRIG==0){while((i<30)&&(TRIG==0))// 检测按键是否松开{Delay10ms(); i++;}i=0;}if(KEY2==0){while((i<30)&&(KEY2==0))// 检测按键是否松开{Delay10ms(); i++; }i=0;// 检测按键 s1 是否按下//检测按键s2是否按下障模块Delay10ms(); // 消除抖动 if(TRIG==0) { state_total=1; 2 为红外遥控//总状态定义 0 为自动循迹模块 1 为自动避// 检测按键 s3 是否按下障模块Delay10ms(); // 消除抖动 if(KEY2==0) { state_total=2; 2 为红外遥控// 总状态定义 0 为自动循迹模块1 为自动避}}} init_test();delay(50); // 等待硬件操作50us TR1=0; // 关闭定时器 1 if(state_total==1) {//SPEED=90; bizhang_test();} if(state_total==0) {// SPEED=98; 电平// 自动循迹速度控制// 自动循迹速度控制高电平持续次数占空比为10 的低电平高电平持续次数占空比为40 的低xunji_test(); }if(state_total== 2){//SPEED=98; // 自动循迹速度控制高电平持续次数占空比为40 的低电平hongwai_test(); }void 断号init0_suspend(void)2 外部中断0 4 串口中断外部中断 1timeH=TH0;timeL=TL0;state=1;EX0=0;}void 断号0{if(state_total==1) { TH0=0X00;TL0=0x00;}if(state_total==0) { TH0=0Xec;TL0=0x78;time_1++;interrupt 0 //3 为定时器 1 的中断号 1 定时器0 的中// 记录高电平次数//// 标志状态为// 关闭外部中断1,表示已接收到返回信号//3 为定时器 1 的中断号2 外部中断0 4 串口中断time0_suspend0(void) interrupt 1外部中断 1// 自动避障初值装入// 装入初值// 自动循迹初值装入// 装入初值定时一次200hz// 控制转弯延时计数1 定时器0 的中}}void IR_IN(void){unsigned char j,k,N=0;EX1 = 0; IRdelay(5); if (TRIG==1) { EX1 =1; return;}//确认IR 信号出现//等IR 变为高电平,跳过 9ms 的前导低电平信号。
智能循迹小车电磁组C语言源代码(stc12c5a芯片)

智能循迹小车电磁组C语言源代码(stc12c5a芯片)#include#include#define FOSC 18432000L#define BAUD 9600#define ADC_POWER 0x80 //ADC power control bit 电源控制位#define ADC_FALG 0x10 //ADC complete flag 标志位#define ADC_START 0x08 //ADC start control bit 启动控制位#define ADC_SPEEDLL 0x00 //420 clocks#define ADC_SPEEDL 0x20 //280 clocks#define ADC_SPEEDH 0x40 //140 clocks#define ADC_SPEEDHH 0x60 //70 clockstypedef unsigned char BYTE;typedef unsigned int WORD;float bj1,bj2;int cg1,cg2,go;go=0x05; //电机驱动设为0101BYTE ch=0;void InitADC();void Delay(WORD n);void kongzhi();void PWM();void GetADCResult(BYTE ch);void main(){P0=0X00; //P0口的LED灯全亮InitADC(); //初始化ADIE=0xa0;PWM(); //调用PWM函数while(1){GetADCResult(ch); //读取AD值并赋值给变量kongzhi(); //调用控制函数}}void GetADCResult(BYTE ch) //读取AD的函数{ADC_CONTR &=!ADC_FALG;for(ch=0;ch<2;ch++){switch(ch){case 0: ADC_CONTR=0xe9; //定义P1.1为AD转换 1110 1001 _nop_();_nop_();_nop_();_nop_();while(!(ADC_CONTR&ADC_FALG));ADC_CONTR&=~ADC_FALG; //清除falg位cg1=ADC_RES; //把传到P1.1口的AD值(二进制)赋值给cg1 break;case 1: ADC_CONTR=0xea; //定义P1.2口为AD转换1110 1010_nop_();_nop_();_nop_();_nop_();while(!(ADC_CONTR&ADC_FALG));ADC_CONTR&=~ADC_FALG;cg2=ADC_RES; //把传到P1.2口的AD值(二进制)赋值给cg2 break;default: break;}}if(++ch>=2) ch=0;}void InitADC() //初始化AD函数{P1ASF=0XE7; // 1110 0111 //定义为AD转换的IO口P1M0=0xE7 ; // P1.7-P1.0:1110 0111P1M1=0xE7 ; // P1.7-P1.0:1110 0111ADC_RES=0;ADC_CONTR=0xe9;Delay(2);}void Delay(WORD n) //延时函数{WORD x;while(n--){x=5000;while(x--);}}void kongzhi(){bj1=((cg2*5/256)-(cg1*5/256)); //两个传感器所检测到的电压的差值bj2=((cg1*5/256)-(cg2*5/256));if((bj1<1)&&(bj2<1)) //全速{CCAP0H=0x08; //左轮CCAP1H=0x00; //右轮P3=go;}else if(bj1>4/3) //强左拐{CCAP0H=0x40; //左轮CCAP1H=0x00; //右轮P3=go;}else if(bj1>1&&bj1<4/3) //微左拐{CCAP0H=0x22; //左轮CCAP1H=0x00; //右轮P3=go;}else if(bj2>1&&bj2<4/3) //微右拐{CCAP0H=0x00; //左轮CCAP1H=0x18; //右轮P3=go;}else if(bj2>4/3) //强右拐{CCAP0H=0x00; //左轮CCAP1H=0x35; //右轮P3=go;}}void PWM(){CCON=0;CL=0;CH=0;CMOD=0X02;CCAP0H=CCAP0L=0X80;CCAPM0=0X42; //允许比较器功能、PWM脉宽输出CCAP1H=CCAP1L=0X80;PCA_PWM0=0x00; //组成9位P1.3PCA_PWM1=0x00; //组成9位P1.4CCAPM1=0X42;CR=1; //启动PCA计数器阵列}。
智能小车_走黑线_避障_物体跟随_红外遥控_C程序

bit flag_gensui=0;
bit flag_yaokong=0;
void delay(unsigned int n)
{
unsigned char i, j,k;
for(k=0;k<=n;k++)
{
_nop_();
_nop_();
i = 5;
j = 6 ;
do
{
while (--j);
} while (--i);
}
}
void beep(void)
{
unsigned char i;
for(i=0;i<3;i++)
{
BUZZ=~BUZZ;
delay(10);
}
BUZZ=1;
}
void gogogo(void)
{
IN1=1;
IN2=0;
IN3=1;
IN4=0;
}
/*遥控器按键设置*/
if(k5==0)
{
while(!k5);
flag_heixian=0;
flag_bizhang=0;
flag_gensui=0;
flag_yaokong=1;
}
}
void main(void)
{
flag_heixian=0;
flag_bizhang=0;
flag_gensui=0;
sbit d=P0^6;//对应D1D
sbit a=P0^5;//对应D2A
sbit c=P0^4;//对应D3C
/*按键功能定义*/
sbit k2=P3^0;//走黑线
基于51单片机的红外遥控智能小车源程序(C语言)

/*预处理命令*/#include<reg52.h> //包含单片机寄存器的头文件#include<intrins.h> //包含_nop_()函数定义的头文件#define uchar unsigned char#define uint unsigned int#define delayNOP(); {_nop_();_nop_();_nop_();_nop_();};sbit IRIN=P3^2; //红外接收器数据线sbit LCD_RS = P0^7;sbit LCD_RW = P0^6;sbit LCD_EN = P0^5;uchar begin[]={"My car!"};uchar cdis1[]={"jiansu!"};uchar cdis2[]={"qianjin!"};uchar cdis3[]={"jiasu!"};uchar cdis4[]={"zuozhuang!"};uchar cdis5[]={"STOP!"};uchar cdis6[]={"youzhuan!"};uchar cdis8[]={"daoche!"};sbit M1 = P1^0;sbit M2 = P1^1;sbit M3 = P1^2;sbit M4 = P1^3;sbit EN12 = P1^4;sbit EN34 = P1^5;uchar IRCOM[7];uchar m,n;uchar t=2;uchar g;uchar code digit[]={"0123456789"};uint v;uchar count;bit flag;void delayxms(uchar t);void delay(unsigned char x) ;void delay1(int ms);void motor();void lcd_display();/*检查LCD忙状态lcd_busy为1时,忙,等待。
无线遥控循迹避障小车代码

#include< reg51.h >#define uchar unsigned char#define uint unsigned int#define MOTOR_C P1 //P1口作为电机的控制口。
//#define SIGNAL P3 //P3口的低两位为循迹传感器输入口。
#define SHELVES 10 //速度总档数。
#define BACK 0xfa //后退。
#define FORWARD 0xf5 //前进。
#define WXYK P2 //无线遥控sbit senserr = P3^2; //(右)循迹。
sbit senserl = P3^3; //(左)循迹。
sbit hwr = P3^0; //(前)红外壁障传感器入口。
sbit hwl = P3^1; //(后)红外壁障传感器入口。
sbit PWM_R = P1^0; //右电机PWM输入口。
sbit PWM_L = P1^2; //左电机PWM输入口。
sbit PWM_HR = P1^1; //(后退)右电机。
sbit PWM_HL = P1^3; //(后退)左电机。
sbit wxr_a = P2^4; //无线遥控接收端D0sbit wxb_b = P2^5; //无线遥控接收端D1sbit wxl_c = P2^6; //无线遥控接收端D2sbit wxs_d = P2^7; //无线遥控接收端D3void timer0_init( void ); //定时器0初始化函数。
void timer1_init( void ); //定时器1初始化函数。
void right( void ); //前进右转弯函数。
void left( void ); //前进左转弯函数。
void forward( void ); //前进函数。
void hright(void); //后退右转函数。
void hleft(void); //后退左转函数。
智能红外循迹小车程序

#include<reg52.h>#define uint unsigned int#define uchar unsigned char#define ulong unsigned longsbit you_2=P2^0;//红外探测端口定义sbit you_1=P2^1;sbit zhong=P2^2;sbit zuo_1=P2^3;sbit zuo_2=P2^4;sbit CG=P0^1;sbit DC=P0^0;uchar code L_F[8]= {0x10,0x30,0x20,0x60,0x40,0xc0,0x80,0x90};//左电机正转uchar code L_B[8]= {0x90,0x80,0xc0,0x40,0x60,0x20,0x30,0x10};//左电机反转uchar code R_F[8]= {0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09};//右电机正转uchar code R_B[8]= {0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01};//右电机反转uchar code B_F[8]= {0x91,0x83,0xc2,0x46,0x64,0x2c,0x38,0x19};//左反右正uchar code F_B[8]= {0x19,0x38,0x2c,0x64,0x46,0xc2,0x83,0x91}; //左正右反uchar code duandian[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};//断电unsigned char code qianjin[]={0x11,0x33,0x22,0x66,0x44,0xcc,0x88,0x99};//前进unsigned char h[]={0x11,0x33,0x22,0x66,0x44,0xcc,0x88,0x99};//uchar i;void delay(uint z){uint k ;uint j;for(k=0; k<z; k++)for(j=0; j<110; j++);}void QJ(unsigned int i){for(i=0;i<8;i++){P1=h[i]=qianjin[i];delay(13);}}void DD(){P1=0x00;delay(300);}void wtj(){while(1){if(P2==0xff){DD();delay(1000);break;}else{QJ(8);}}}void YG_1(){unsigned char i;for(i=0;i<8;i++){P1=h[i]=F_B[i];delay(10);}}void ZG_1(){ unsigned char i;for(i=0;i<8;i++){P1=h[i]=B_F[i];delay(10);}}void byg(){while(1){if(P2==0xfb)break;else if(P2==0xf9)break;else if(P2==0xfd)break;/*if(P2^0==0)break;else if(P2^1==0)break;/*else if(P2^2==0)break;else if(P2^3==0)break;else if(P2^4==0)break;*/elseYG_1();}}void bzg(){while(1){if(P2==0xfb)break;else if(P2==0xf3)break;else if(P2==0xf7)break;/*if(P2^0==0)break;else if(P2^1==0)break;else if(P2^2==0)break;if(P2^3==0)break;else if(P2^4==0)break;*/elseZG_1();}}void YG_2(){//unsigned char i; //unsigned char g;if(P2==0xfa){//delay(4000); wtj();byg();/*for(g=0;g<40;g++){for(i=0;i<8;i++){P1=F_B[i];delay(20);}} */}else if(P2==0xf2){//delay(4000); wtj();byg();/*for(g=0;g<40;g++){for(i=0;i<8;i++){P1=F_B[i];delay(20);}}*/}else if(P2==0xf6){//delay(4000);byg();/*for(g=0;g<40;g++){for(i=0;i<8;i++){P1=F_B[i];delay(20);}}*/}else if(P2==0xf4){//delay(4000); wtj();byg();/*for(g=0;g<40;g++){for(i=0;i<8;i++){P1=F_B[i];delay(20);}}*/}else ;}void ZG_2(){//unsigned char i; //unsigned char g;if(P2==0xeb){//delay(4000); wtj();bzg();/*for(g=0;g<40;g++){for(i=0;i<8;i++){P1=B_F[i];delay(20);}}*/else if(P2==0xe9){//delay(4000); wtj();bzg();/*for(g=0;g<40;g++) {for(i=0;i<8;i++){P1=B_F[i];delay(20);}}*/}else if(P2==0xed){//delay(4000); wtj();bzg();/*for(g=0;g<40;g++) {for(i=0;i<8;i++){P1=B_F[i];delay(20);}}*/}else if(P2==0xe5){//delay(4000); wtj();bzg();/*for(g=0;g<40;g++) {for(i=0;i<8;i++){P1=B_F[i];delay(20);}}*/}else ;}void ZG(){unsigned char i;for(i=0;i<8;i++){P1=h[i]=R_F[i];delay(11);}}void YG(){unsigned char i;for(i=0;i<8;i++){P1=h[i]=L_F[i];delay(11);}}/*void HT(){unsigned char i;for(i=0;i<8;i++){P1=houtui[i];delay(55);}}*/void zd(){while(1){if(P2==0xe0)QJ(8);else if(P2==0xff){while(1){DD();}}else{QJ(80);if(P2==0xff){while(1){DD();}}else{DC=0;break;break;}}}}void zd1(){while(1){if(P2==0xe0)QJ(8);else if(P2==0xff){while(1){DD();}}else{QJ(80);if(P2==0xff)while(1){DD();}}else{DC=0;break;}}}}void hy(){unsigned char i;for(i=0;i<8;i++){P1=h[i];delay(10);}}void main(){DC=1;while(1){QJ(8);if(P2!=0xff){delay(9000);break;}}while(1){DC=1;if(CG==1){delay(9000);DC=1;while(1){switch(P2){case 0xfb:QJ(8);break;//11011case 0xf1:QJ(8);break;//10001case 0xf3:QJ(8);break;//10011case 0xf7:ZG();break;//10111case 0xe7:ZG_1();break;//00111case 0xef:ZG_1();break;//01111case 0xe3:ZG_1();break; //00011case 0xe1:ZG_1();break; //00001case 0xf9:QJ(8);break;//11001case 0xfd:YG();break;//11101case 0xfc:YG_1();break;//11100case 0xfe:YG_1();break;//11110case 0xf8:YG_1();break; //11000case 0xf0:YG_1();break;//10000case 0xfa://11010QJ(16);// delay(4000);YG_2();//f7 break;case 0xf2://10010QJ(16);// delay(4000);YG_2();break;case 0xf6://10110QJ(16);// delay(4000);YG_2();break;case 0xf4://10100QJ(16);// delay(4000);YG_2();break;case 0xeb://01011QJ(16);//delay(4000);ZG_2();//fd break;case 0xe9://01001QJ(16);//delay(4000);ZG_2();break;case 0xed://01101QJ(16);//delay(4000);ZG_2();break;case 0xe5://00101QJ(16);//delay(4000);ZG_2();break;case 0xe0:zd1();break;//00000case 0xff:hy();break;//11111default:QJ(8); break;}}}else{switch(P2){case 0xfb:QJ(8);break;//11011 case 0xf1:QJ(8);break;//10001case 0xf3:QJ(8);break;//10011 case 0xf7:ZG();break;//10111 case 0xe7:ZG_1();break;//00111 case 0xef:ZG_1();break;//01111 case 0xe3:ZG_1();break; //00011 case 0xe1:ZG_1();break; //00001case 0xf9:QJ(8);break;//11001 case 0xfd:YG();break;//11101 case 0xfc:YG_1();break;//11100 case 0xfe:YG_1();break;//11110 case 0xf8:YG_1();break; //11000 case 0xf0:YG_1();break;//10000case 0xfa://11010QJ(16);// delay(4000);YG_2();//f7 break;case 0xf2://10010QJ(16);// delay(4000);YG_2();break;case 0xf6://10110QJ(16);// delay(4000);YG_2();break;case 0xf4://10100QJ(16);// delay(4000);YG_2();break;case 0xeb://01011QJ(16);//delay(4000);ZG_2();//fd break;case 0xe9://01001QJ(16);//delay(4000);ZG_2();break;case 0xed://01101QJ(16);//delay(4000);ZG_2();break;case 0xe5://00101QJ(16);//delay(4000);ZG_2();break;case 0xe0:zd();break;//00000case 0xff:hy();break;//11111default:QJ(8); break;}}}}。
智能小车C语言程序

智能小车C语言程序智能小车黑线循迹C语言程序#include#include#define uchar unsigned char#define uint unsigned intsbit LeftIR=P1^6; //左边红外接收sbit RightIR=P1^7; //右边红外接收sbit ENA=P1^2; // L298的Enable Asbit IN1=P1^0; // L298的Input 1sbit IN2=P1^1; // L298的Input 2sbit ENB=P1^5; // L298的Enable Bsbit IN3=P1^3; // L298的Input 3sbit IN4=P1^4; // L298的Input 4uchar t=0; //中断计数器uchar motor_1=0,motor_2=0; //电机1,2速度值uchar tmp1,tmp2; // 电机当前速度值uchar aa; //定时器1中断计数bit flag=0; //标志位void motor(uchar index, char speed){if(speed>=-100 && speed<=100){if(index==1) // 电机1的处理{motor_1=abs(speed); // 取速度的绝对值if(speed<0) // 速度值为负则反转{IN1=0;IN2=1;}else // 不为负数则正转{IN1=1;IN2=0;}}if(index==2) // 电机1的处理{motor_2=abs(speed); // 取速度的绝对值if(speed<0) // 速度值为负则反转{IN3=0;IN4=1;}else // 不为负数则正转{IN3=1;IN4=0;}}}}void init(){TMOD=0x12; // 设定T0的工作模式为2TH0=0x9B; // 装入定时器的初值TL0=0x9B;TH1=(65536-50000)/256; //设置初值定时50msTL1=(65536-50000)%6;EA=1; // 开中断ET0=1; // 定时器0允许中断ET1=1; //定时器1允许中断TR0=0; // 关闭定时器0TR1=0; // 关闭定时器0ENA=0; //关闭电机1ENB=0; //关闭电机2}void main(){int irDetectLeft,irDetectRight;init();while(1)// 电机实际控制演示{irDetectRight = RightIR;//右边接收irDetectLeft = LeftIR;//左边接收if((irDetectLeft==0)&&(irDetectRight==0))//向前进{motor(1,100);motor(2,100);}if((irDetectLeft==0)&&(irDetectRight==1))//右转{motor(1,-100);motor(2,100);}if((irDetectLeft==1)&&(irDetectRight==0))//左转{motor(1,100);motor(2,-100);}if((irDetectLeft==1)&&(irDetectRight==1)&&(flag==0)) //第一次探测定时器1开始计时{motor(1,100);motor(2,100);TR1=1;}if((irDetectLeft==1)&&(irDetectRight==1)&&(flag==1))//第二次探测时小车停{TR0=0;ENA=0;ENB=0;}}}void timer0() interrupt 1 // T0中断服务程序{if(t==0) // 1个PWM周期完成后才会接受新数值{tmp1=motor_1;tmp2=motor_2;}if(t ENA=1;elseENA=0; // 产生电机1的PWM信号if(t ENB=1;elseENB=0; // 产生电机2的PWM信号t++;if(t>=100)t=0; // 1个PWM信号由100次中断产生}void timer1() interrupt 3{TH1=(65536-50000)/256;TL1=(65536-50000)%6;aa++;if(aa==40) //定时2s后小车开始运动TR0=1;if(aa==60) //定时3s后置标志位{aa=0;flag=1;}}。
自动追光自动避障智能小车的源代码

}
//*********从左向右检测,检测10cm之内的障碍物*************//
void barrier_detection(void)
{
uchar i;
barrier_flag=0;
detector=4;
time_0_count=0;//定时器0工作在15cm障碍物检测
_nop_();
clk=1;
D1=1; //设定通道初始化
_nop_();
_nop_();
_nop_();
clk=0;
_nop_();
_nop_();
_nop_();
clk=1;
D1=1; //设定通道初始化.第3个下降沿
_nop_();
_nop_();
_nop_();
clk=0; //AD转化的初始化完成。
while(detector)
{
EX0 = 0;//关外部中断
IE0 = 0; //清除外部中断0标志位
TR0 = 0;//关闭定时器0
TH0=0xfc;
TL0=0x18;
leftTX=1;
MiddleTX=1;
rightTX=1;
switch(detector)
{
case 4: leftControl=1;MiddleControl=0;rightControl=0;
uchar number1=0; //用于计数500ms,太阳能板对光一次
uchar detector_busy = 0; //超声波正在检测标志位
uchar barrier_flag = 0; //低三位用于表示是否有障碍物;第三位表示左侧探测器探测结果,第二位表示中间探测器探测结果,最低位表示右侧探测器探测结果;1-有,0-无
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//智能小车避障、循迹、红外遥控C语言代码//实现功能有超声波避障,红外遥控智能小车,红外传感器实现小车自动循迹,1602显示小车的工作状态,另有三个独立按键分别控制三种状态的转换//注:每个小车的引脚配置都不一样,要注意引脚的配置,但是我的代码注释比较多,看起来比较容易一点#include <reg52.h>#include <math.h>#include"lcd.h"#include <intrins.h>#define uchar unsigned char#define uint unsigned intuchar ENCHAR_PuZh1[8]=" run ";//1602显示数组uchar ENCHAR_PuZh2[8]=" back ";uchar ENCHAR_PuZh3[8]=" stop ";uchar ENCHAR_PuZh4[8]=" left ";uchar ENCHAR_PuZh5[8]=" right ";uchar ENCHAR_PuZh6[8]=" xunji ";uchar ENCHAR_PuZh7[8]=" bizhang";uchar ENCHAR_PuZh8[8]=" yaokong";#define HW P2 //红外传感器引脚配置P2k口#define PWM P1 /* L298N管脚定义*//******************************超声波引脚控制******************************/sbit ECHO=P3^2; //超声波接收引脚定义兼红外遥控按键state_total =2 sbit TRIG=P3^3; //超声波发送引脚定义/////红外控制引脚配置sbit KEY2=P3^7; //红外接收器数据线兼循迹按键state_total= 0sbit KEY1=P3^4; //独立按键p3.4控制自动避障state_total=1uchar state_total=3,state_2=0;//总状态控制全局变量0为自动循迹模块1为自动避障模块2为红外遥控uchar state_1,DAT; //红外扫描标志位uchar time_1=0,time_2=0;//定时器1中断全局变量time_ 2控制PWM脉冲计数time_1控制转弯延时计数也做延时一次0.005suchar time,timeH,timeL,state=0;//超声波测量缓冲变量state为超声波状态检测控制全局变量uint count=0; //1602显示计数/**************************/unsigned char IRCOM[7]; //红外接收头接收数据缓存IRCOM[2]存放的为数据unsigned char Number,distance[4],date_data[8]={0,0,0,0,0,0,0,0}; //红外接收缓存变量/***********/void IRdelay(char x); //x*0.14MS 红外头专用delayvoid run();void back();void stop();void left_90();void left_180();void right_90();void delay(uint dat); //void init_test();void delay_100ms(uint ms) ;void display(uchar temp); //超声波显示驱动void bizhang_test();void xunji_test();void hongwai_test();void Delay10ms(void);void init_test()//定时器0 1 外部中断0 1 延时初始化{TMOD=0x11; //设置定时器0 1 工作方式1 16位初值定时器TH1=0Xfe; //装入初值定时一次为0.0005s 2000hzTL1=0x0c;TF0=0; //定时器0方式1计数溢出标志TF1=0; //定时器1方式1计数溢出标志ET0=1; //允许定时器0中断溢出ET1=1; //允许定时器1中断溢出EA=1; //开总中断if(state_total==1)//为超声波模块时初始化{TRIG=0; //发射引脚低电平ECHO=0; // 接收引脚低电平EX0=0; //关闭外部中断IT0=1; //由高电平变低电平,触发外部中断0}if(state_total==2) //红外遥控初始化{ IT1=1; //外部中断1为负跳变触发EX1=1; //允许外部中断1TRIG=1; // 3.3为高电平I/O口初始化}delay(60); //等待硬件操作}void main(){ uint i;delay(50);init_test();TR1=1; //开启定时器1LCD1602_Init() ;delay(50);while(state_2==0){if(KEY1==0) //检测按键s1是否按下{Delay10ms(); //消除抖动if(KEY1==0){state_total=0; //总状态定义0为自动循迹模块1为自动避障模块2为红外遥控while((i<30)&&(KEY1==0)) //检测按键是否松开{Delay10ms();i++;}i=0;}}if(TRIG==0) //检测按键s2是否按下{Delay10ms(); //消除抖动if(TRIG==0){state_total=1; //总状态定义0为自动循迹模块1为自动避障模块2为红外遥控while((i<30)&&(TRIG==0)) //检测按键是否松开{Delay10ms();i++;}i=0;}}if(KEY2==0) //检测按键s3是否按下{Delay10ms(); //消除抖动if(KEY2==0){state_total=2; //总状态定义0为自动循迹模块1为自动避障模块2为红外遥控while((i<30)&&(KEY2==0)) //检测按键是否松开{Delay10ms();i++;}i=0;}}}init_test();delay(50); //等待硬件操作50usTR1=0; //关闭定时器1if(state_total==1){//SPEED=90; //自动循迹速度控制高电平持续次数占空比为10的低电平bizhang_test();}if(state_total==0){// SPEED=98; //自动循迹速度控制高电平持续次数占空比为40的低电平xunji_test();}if(state_total==2){//SPEED=98; //自动循迹速度控制高电平持续次数占空比为40的低电平hongwai_test();}}void init0_suspend(void) interrupt 0 //3 为定时器1的中断号 1 定时器0的中断号0 外部中断1 2 外部中断0 4 串口中断{timeH=TH0; //记录高电平次数timeL=TL0; //state=1; //标志状态为1,表示已接收到返回信号EX0=0; //关闭外部中断0}void time0_suspend0(void) interrupt 1 //3 为定时器1的中断号 1 定时器0的中断号0 外部中断1 2 外部中断0 4 串口中断{if(state_total==1) // 自动避障初值装入{ TH0=0X00; //装入初值TL0=0x00;}if(state_total==0) //自动循迹初值装入{ TH0=0Xec; //装入初值定时一次0.005s 200hz TL0=0x78;time_1++; //控制转弯延时计数}}void IR_IN(void) interrupt 2{unsigned char j,k,N=0;EX1 = 0;IRdelay(5);if (TRIG==1){ EX1 =1;return;}//确认IR信号出现while (!TRIG) //等IR变为高电平,跳过9ms的前导低电平信号。
{IRdelay(1);}for (j=0;j<4;j++) //收集四组数据{for (k=0;k<8;k++) //每组数据有8位{while (TRIG) //等IR 变为低电平,跳过4.5ms的前导高电平信号。
{IRdelay(1);}while (!TRIG) //等IR 变为高电平{IRdelay(1);}while (TRIG) //计算IR高电平时长{IRdelay(1);N++;if(N>=30){EX1=1;return;} //0.14ms计数过长自动离开。
} //高电平计数完毕IRCOM[j]=IRCOM[j] >> 1; //数据最高位补“0”if (N>=8) {IRCOM[j] = IRCOM[j] | 0x80;} //数据最高位补“1”N=0;}//end for k}//end for jif(IRCOM[2]!=~IRCOM[3]) //判断数据码与数据反码是否正确真确返回。