数控车床粗糙度计算公式
车削表面粗糙度的计算

车削表面粗糙度的计算说说表面粗糙度的计算,以及"镜面效果"-表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗)车削表面粗糙度=每转进给的平方*1000/刀尖R乘8以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。
但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点:1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。
建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然!3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。
要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。
而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。
车削粗糙度计算公式

车削粗糙度计算公式表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗)车削表面粗糙度=每转进给的平方*1000/刀尖R乘8(每转进给的平方/刀尖半径X125)以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。
但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点:1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。
建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然!3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。
要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。
而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。
铣平面表面粗糙度计算公式

铣平面表面粗糙度计算公式
铣削是一种常用的加工方式,在铣削过程中,表面粗糙度对零件的质量和性能有着重要影响。
因此,计算铣削后表面粗糙度是非常必要的。
铣削平面表面粗糙度的计算公式如下:
Ra = (0.8 + 7.5 / f) * (1.25 * (f * Ap)^0.25) 其中,Ra为铣削后的表面粗糙度,单位为μm;f为进给量,单位为mm/tooth;Ap为铣削深度,单位为mm。
该公式是基于国际标准ISO 16610-21与ASME B46.1的计算方法,能够比较准确地计算铣削后表面的粗糙度。
但需要注意的是,该公式仅适用于铣削平面表面。
对于其他形状的表面,需要使用相应的公式进行计算。
为了获得更好的表面质量,不仅需要选择合适的铣削参数,还需要选择合适的工具和切削液,并且保持刀具的锋利度。
同时,对于高要求的表面质量,还需要进行二次加工或采用其他的表面处理方法。
- 1 -。
粗糙度计算公式

粗糙度计算公式粗糙度是指表面不平整程度的度量,它是表面形貌的一个参数。
在工业制造和科学研究中,粗糙度的计算是非常重要的,因为它可以用来描述表面的质量和功能性能,如摩擦、接触、润滑、密封等。
本文将介绍粗糙度计算的基本公式,包括平均粗糙度、均方根粗糙度、最大峰高度和最大谷深度等。
一、平均粗糙度平均粗糙度是表面粗糙度的一个基本参数,它是指表面高度的平均值。
平均粗糙度的计算公式如下:Ra = 1/n ∑|Zi|其中,Ra为平均粗糙度,n为采样点数,Zi为第i个采样点的高度。
在实际测量中,一般采用激光干涉仪、扫描电子显微镜、原子力显微镜等仪器来测量表面高度,然后通过计算平均值得到平均粗糙度。
二、均方根粗糙度均方根粗糙度是表面粗糙度的另一个重要参数,它是指表面高度的均方根值。
均方根粗糙度的计算公式如下:Rq = √(1/n ∑(Zi- Z)^2)其中,Rq为均方根粗糙度,n为采样点数,Zi为第i个采样点的高度,Z为所有采样点的平均高度。
与平均粗糙度不同,均方根粗糙度更能反映表面高度的分布情况,因此在某些应用中更为重要。
三、最大峰高度和最大谷深度最大峰高度和最大谷深度是表面粗糙度的两个极值参数,它们分别表示表面上最高的凸起和最低的凹陷。
最大峰高度和最大谷深度的计算公式如下:Rp = max(Zi) - ZRv = Z - min(Zi)其中,Rp为最大峰高度,Rv为最大谷深度,Zi为所有采样点的高度,Z为所有采样点的平均高度。
在实际应用中,最大峰高度和最大谷深度常用于描述表面的极端情况,如表面缺陷、损伤等。
总之,粗糙度计算是表面质量评价的重要手段之一,它可以用来描述表面的几何形貌和功能性能。
不同的粗糙度参数对应不同的表面特征,因此在实际应用中需要根据具体情况选择合适的参数。
同时,粗糙度计算也需要结合实际测量技术和仪器,以获得准确的表面高度数据。
数控车床切削三要素对表面粗糙度的影响--说课稿

课题:切削三要素对表面粗糙度的影响(说课稿)教学内容:科学出版社《数控加工工艺基础》第二章第三节切削要素适用年级:数控专业二年级年级(下期)课型:新授课计划用时:90分钟总体设计思路:本次课将采用实验验证法,通过让学生在做中探索、分析、解决实际问题。
从而达到培养学生的分析问题,解决问题的能力,另一方面还能培养学生的安全意识,全程分理论和实作验证两部分进行。
》设计理念:以突出对学生学习方法和衍生实践技能的培养,体现“做中学、做中教”的职业教育特点,让学生养成动手动脑的习惯。
一、专业分析数控加工业是一个国家的基础行业,近些年来,世界制造加工业中心逐渐向中国转移,这使得我国的数控加工产业获得了飞速的发展,至此人才的需求急剧增加。
数控加工过程就是获得零件的形状,尺寸和表面质量,而这些东西就需要合理选择切削三要素来保证,其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响,在保证质量的前提下,获得高的生产率和低的加工成本对于一个企业来讲至关重要,所以说学生掌握了切削三要素的合理选择就掌握了在今后工作当中的主动性。
,二、教材分析:本课程是数控加工专业的核心课程之一,是一门综合性很强的课程,主要培养学生数控加工的能力,重视实践能力培养,突出职业技术教育特色,根据数控类专业毕业生从事职业的实际需求,合理确定学生应具备的能力结构与知识结构,加强实践性教育内容,以满足企业对技能型人才的需求。
从而为毕业后从事数控专业工作做好知识与能力的准备。
本节内容在教材中理论性太强,过于抽象学生不容易理解和掌握,因此在设计本节课时,我做了如下处理:基本理论讲解后让学生在实践验证中去理解合理选择三要素对工件粗糙度的影响。
【知识与能力目标】>知识目标:1、让学生正确理解切削三要素的概念及合理选用的原则。
2、让学生掌握切削用量计算公式能力目标:让学生能根据本节课所学内容,在实践加工过程中合理的选择三要素。
【情感、态度、价值观目标】培养学生具有良好的社会责任感与团队合作精神;具有良好的职业道德与操守。
车削粗糙度计算公式(Calculationformulaofturningroughness)

车削粗糙度计算公式(Calculation formula of turning roughness)The surface roughness is now attracted the attention of the industry, the forum also often asked about how to improve the surface roughness of the post. Today about the turning on surface roughness. The picture above is turning surface roughness calculation method of cutting parameters, only need to be calculated in the highest possible surface roughness (the following statement all with low roughness is fine, high roughness is thick)Turning surface roughness = square *1000/ for each turn feed, tool R by 8 (square / nose radius X125 per turn)The above calculation is theoretically possible to achieve the most bad effect, in fact due to the quality of the tools, the rigidity of the machine tool precision, cutting fluid, cutting temperature, cutting speed, material hardness and other reasons, will increase or decrease the roughness, if you use the calculated calculation above the roughness can meet to achieve the effect of change of cutting parameters. But the feed is generally closely related to the cutting depth, the general feed is cut between the depth of 10%~20%, the effect of cutting is the best cutting depth, because the width and thickness of the chip is the most proportionI explain in detail below a key parameters of the formula above about the effect of roughness, if there is not please advice:1: feed - the greater the feed, the greater the roughness, the greater the feed, the higher the processing efficiency, the smaller the tool wear, so the feed is generally final, accordingto the required roughness of the final set of feed2: tool point R - the greater the tool R, the lower the roughness, but the cutting force will continue to increase, rigid requirements of the machine tool higher, the higher the rigidity of the material itself. The following 6150 suggestions do not use more than R0.8 lathe tool cutting steel and aluminum alloy, do not use R0.4 above the tip, otherwise the car out of roundness, straightness tolerances and so on can't guarantee, even can reduce the roughness in vain!3: when cutting, to calculate the equipment power, as to how to calculate the power needed for cutting (motor KW 80% as the limit), the next said. Note, now most of the CNC lathe is the use of variable frequency motor, the characteristics of variable frequency motor speed higher torque is greater, the lower the speed of torque is small, so the calculation power is please variable-frequency motor KW except for 2 more insurance. While the speed level and cutting line speed are closely related, but the traditional car is in constant speed / torque motor on mechanical transmission to change the speed of the effect, so any time is "100% maximum torque output, this motor than good. But of course, if your spindle is driven by expensive constant torque servo motors, that's the perfect choiceThat was a bit of a mess, now for example to calculate the surface roughness: Turning 45 steel, the cutting speed of 150 meters, 3mm depth of cut, feed 0.15, R tip R0.4, this is my very commonly used in light cutting parameters, basically not finish requirements very high workpiece knife divided into coarse andfine cutting directly car surface, calculation of surface roughness is equal to 0.15*0.15/0.4/8*1000= (7 micron roughness units).If there is a requirement to finish to 0.8, as follows: the tool cutting parameters unchanged still above 0.4 blade, cutting parameters feed 0.05, depending on the depth of cut off and slot cutting tool, usually if given the depth of cut, only in a very narrow range (which is not said that the depth of cut and feed very well), when the cutting depth within a certain range will have the best effect of the chip discharge! Of course you don't mind taking a side of the car side ditch cuttings subgroove words is another matter! Lol: I'm about 10 times as deep as the feed, which is 0.5mm, which is 0.05*0.05/0.4/8*1000=0.78 microns, or 0.8 roughness.As for the representation of the roughness of RY is the largest roughness measurement, RA arithmetic is meter method surface roughness of the workpiece on average, while RZ is the 10 point average, generally the same workpiece with RA calculation of roughness is the lowest, while the RY is definitely the biggest,If you use RY formula, you can achieve a lower number than RA requirements, basically out of the car, you can achieve the tagging requirements of the RA. In addition, theoretically, a tool with a trim edge may reduce roughness by half, and if the top 0.8 of the workpiece is polished, the blade with a light trimmed blade has a minimum roughness of 0.4These are the book extracts of theoretical knowledge, integrated personal experience, the book, the following to talkabout some of my personal feelings of the theory, these books I have not seen:1: the lathe can reach the minimum roughness, the primary reason is that the precision of the spindle, in accordance with the method of calculating the maximum roughness, if you beat the precision lathe spindle is 0.002mm, which is 2 microns beating, that is theoretically impossible to process the roughness will be less than 0.002 mm roughness (RY2.0) of the workpiece, but this is the maximum possible value, the average is 50%, the surface roughness of 1 can be processed! Combined with the RA algorithm, generally do not reach more than 50% of the RY value, become RA0.5, and then calculate the role of light trimming reduced by 50%, then the final spindle jump 0.002 of the limit of the lathe can be processed about RA0.2 of the workpiece!。
车床加工基本时间计算参考表

工时定额的组成:1.批量加工的单件加工工时=基本时间+辅助时间+布置工作地时间+休息与生理需要的时间2.单件加工时:在以上的基础上加上相应的准备时间3.单件工时定额Td:单件时间td=tj+tf+tb+tx◆ 基本时间tj: 直接改变对象尺寸、开关、相对位置、状态或材料性质所用时间;◆ 辅助时间tf: 为实现工艺过程必须进行的各种辅助动作所用时间。
如装卸工件、操作要、改变切削用量、试切和测量工件、引进及退回刀具等动作所用时间。
辅助时间的的确定方法随生产类型不同而不同。
大批大量生产时,为了使辅助时间规定得合理,须将辅助动作分解成单一动作,再分别查表求得各分解动作的时间,最后予以综合;对于中批生产则可根据以往的统计资料确定;在单件小批生产中,一般用基本时间的百分比进行估算。
基本时间和辅助时间的总和称为作业时间◆ 布置工地时间tb:作班内照管工作地所耗的时间,调整更换刀具、修整砂轮、润滑擦试机床、清理切屑等。
一般按作业时间的2%~5%估算。
◆ 休息和生理时间tx:工作班内满足生理需要所耗的时间。
一般按作业时间的2%估算。
以上四部分时间总和就是单件时间td=tj+tf+tb+tx注意:因本厂每天有30分钟的休息时间,所以休息与生理需要时间tx不需计算在内;布置工地时间tb:车工,铣工按4%计算。
所以单件时间td=tj+tf+tb 组成在成批生产中,每一批工件的开始和终了时,工人需要做以下工作:A、开始时,要熟悉工艺文件,领取毛坯、材料,领取和安装刀具和夹具,调整机床及其他工艺装备等;B、终了时,要拆下和归还工艺装备,送交成品等。
这两部分所用时间叫做准备时间tz,设有N件产品,那分摊到每一个工件上的准备时间为tz/N,将这部分时间加到单件时间上去。
成批生产的单件核算时间:th=td+tz/N大批大量生产时,每个工作地始终完成某一道固定工序,tz/N接近0,故不考虑。
th=td。
4.缩减辅助时间。
在单件时间中占的比重较大。
流体力学 粗糙度计算公式

流体力学粗糙度计算公式流体力学是研究流体在静止和运动状态下的力学性质和运动规律的学科。
在工程实践中,流体力学的应用非常广泛,比如在水利工程、航空航天工程、能源工程等领域都有重要的应用。
而在流体力学中,粗糙度是一个非常重要的参数,它对流体的流动性能有着重要的影响。
粗糙度是指流体流动的管道或表面的不平整程度。
在实际工程中,粗糙度常常是一个需要进行准确计算的参数,因为它直接影响着流体的摩擦阻力和流速分布。
粗糙度的计算公式是流体力学中的一个重要内容,下面我们将介绍粗糙度的计算公式及其应用。
粗糙度的计算公式通常是根据实际工程情况和流体性质来确定的。
在工程实践中,常用的粗糙度计算公式有Colebrook公式、Nikuradse公式等。
其中,Colebrook公式是用来计算管道内流体的摩擦阻力系数的公式,它的表达式为:1/√f = -2log(ε/D/3.7 + 2.51/(Re√f))。
其中,f为摩擦阻力系数,ε为管道壁面的绝对粗糙度,D为管道的直径,Re 为雷诺数。
在工程实践中,可以根据实际情况和流体性质来确定Colebrook公式中的参数值,从而计算出管道内流体的摩擦阻力系数。
另外,Nikuradse公式是用来计算管道内流体的摩擦系数的公式,它的表达式为:1/√f = -1.8log(ε/3.7D + 6.9/Re√f)。
其中,f为摩擦系数,ε为管道壁面的绝对粗糙度,D为管道的直径,Re为雷诺数。
通过Nikuradse公式,可以计算出管道内流体的摩擦系数,从而进一步分析流体的流动性能。
在实际工程中,粗糙度的计算公式是非常重要的,它可以帮助工程师准确地分析流体的流动性能,从而为工程设计和优化提供重要的参考依据。
通过粗糙度的计算公式,工程师可以合理地选择管道材料、优化管道设计,从而降低流体的摩擦阻力,提高流体的流动效率。
除此之外,粗糙度的计算公式还可以帮助工程师分析流体的流速分布和流动状态,从而进一步优化流体的流动性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车床粗糙度计算公式
今天讲一下关于车削的表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的表面粗糙度。
下面跟yjbys 小编一起来学习车削表面粗糙度的计算方式吧!
车削表面粗糙度=每转进给的平方*1000/刀尖R 乘8
以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。
但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例
以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点:
1:进给--进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R--刀尖R 越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。
建议一般切削钢件6150 以下的车床不要使用R0.8 以上的刀尖,而硬铝合金不要用R0.4 以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然!
3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。
要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW 除2 比较保险。
而转速的高低又与切削时的线速度有密切关系,而传统的普车是。