九年级数学上册1.1.1菱形的性质与判定教案(新版)北师大版.doc
1.1+菱形的性质与判定++课件+++2024--2025学年北师大版九年级数学上册

学习目标
活动探究
当堂检测
课堂总结
问题2:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:
∠AFD=∠CBE.
证明:∵四边形ABCD是菱形, C
∴CB=CD,CA平分∠BCD,∴∠BCE=∠DCE.
B F
EA
又∵CE=CE,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDE. D
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠CDE,
∴∠AFD=∠CBE.
学习目标
活动探究
当堂检测
课堂总结
练一练 如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( B )
A.20
B.16
C.15
D.14
学习目标
活动探究
当堂检测
课堂总结
1.根据下图填一填:
(1)在菱形ABCD中,∠ABC=120 °,则∠BAC=___3_0_°__.
在等腰△ABD中,OB=OD,
∴AO⊥BD, 即AC⊥BD.
变式:试证明上题中的对角线是否都平分对角. ∵在等腰△ABD中,OB=OD,∴AO平分∠DAB, 同理可得BO平分∠ABC,CO平分∠BCD,DO平分∠ADC.
∴每条对角线平分一组对角.
学习目标
活动探究
当堂检测
课堂总结
归纳总结 菱形是特殊的平行四边形,它除具有平行四边形的所有性质外还有 平行四边形所没有的性质.
问题1:如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,
AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO= 1 AC,BO= 1 BD.
九年级数学北师大版上册1.1菱形的性质与判定优秀教学案例

(二)问题导向
在教学过程中,教师应设计具有启发性和思考性的问题,引导学生主动探究菱形的性质与判定方法。问题设计要由浅入深,让学生在解决问题的过程中逐步掌握知识。
例如,可以提出以下问题:
在教学过程中,我们将结合生活中的实际例子,引导学生观察、思考菱形在生活中的应用,从而激发他们的学习兴趣。通过对菱形性质的学习,使学生能够熟练运用这些性质解决实际问题,同时培养他们用数学的眼光看待世界的习惯。此外,我们还重视对学生判定能力的培养,让他们在探索中学会严谨、理性的思考方式,为今后的数学学习打下坚实基础。
3.培养学生的审美意识,使他们能够发现数学中的美,提高生活品质;
4.培养学生严谨、理性的思维品质,使他们学会用数学的眼光看待世界,解决问题;
5.培养学生的团队合作意识,让他们学会与他人分享、交流,共同成长。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握菱形的性质与判定,本节课将采用生活化的情景创设,将学生熟悉的实际生活场景引入课堂。例如,可以展示一幅含有菱形的建筑图案,让学生观察并指出其中的菱形。通过这种方式,让学生感受到数学与生活的紧密联系,激发他们的学习兴趣。
1.如何判定一个四边形是菱形?
2.菱形具有哪些独特的性质?
3.如何运用菱形的性质解决实际问题?
(三)小组合作
小组合作是培养学生团队合作能力和沟通能力的重要途径。在本节课中,教师可以将学生分成若干小组,让他们共同探究菱形的性质与判定方法。
小组合作的具体步骤如下:
1.分组讨论:让学生在小组内讨论如何判定一个四边形是菱形,并总结菱形的性质;
北师大版数学九年级上册1.1菱形的性质与判定(第一课时)优秀教学案例

4.学会欣赏数学的美,提高审美情趣,培养良好的情感态度。
本节课的教学目标是全面培养学生geometric thinking, spatial imagination, collaboration, communication, and information technology skills.通过achieving the knowledge and skills objectives, students will be able to apply the properties and判定methods of rhombuses in real-life situations, and develop their problem-solving abilities in geometry. Additionally, the process and method objectives will enhance students' ability to work independently, cooperate with others, and use mathematical language to express their ideas. Finally, the emotional attitude and value objectives will foster students' interest in mathematics, encourage them to explore and innovate, and cultivate their aesthetic appreciation for the beauty of mathematics.
北师大版九年级上册数学教案 1

第一章特殊平行四边形1.1 菱形的性质与判定1.1.1 菱形的判定1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力;2.经历菱形的判定方法的探索过程,在活动中发展合情推理的意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力.3.通过设置问题情境,丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识.菱形的判定方法.菱形的判定方法的综合运用.复习引入:1.菱形的定义:有一组邻边相等的平行四边形叫作菱形.2.菱形的特殊性质:(1)菱形是轴对称图形;(2)菱形的四条边相等;(3)菱形的对角线互相垂直.今天我们就来研究一下如何判定一个四边形是菱形.思考(1):除了运用菱形的定义,你还能找出判断一个平行四边形是菱形的其他方法吗?猜想1:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:如图1-1-5,在平行四边形ABCD中,对角线AC,BD互相垂直且交于点O. 求证:四边形ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线相互平分).又∵AC⊥BD,∴BD所在直线是线段AC的垂直平分线,∴AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理1对角线互相垂直的平行四边形是菱形.·议一议已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?小刚做法:如图1-1-7,分别以A,C为圆心,以大于12AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD看上去是菱形.你认为小刚的做法正确吗?你是怎样做的?图1-1-8学生:小刚的做法正确.还可以作AC的垂直平分线MN,交AC于点O,在MN上取OB=OD,依次连接A,B,C,D,四边形ABCD是菱形,思考(2):除了运用对角线,你还有其他判定菱形的方法吗?猜想2:四边相等的四边形是菱形.已知:如图1-1-9,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理2四边相等的四边形是菱形.思考:这里的条件能否再减少一些呢?能否有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画.学生:动手操作,得到有三条边相等的四边形不一定是菱形.·做一做你能用折纸等办法得到一个菱形吗?动手试一试.你能说说小颖这样做的道理吗?学生:小颖这样做的道理,四边相等的四边形是菱形.例题讲解图1-1-6例2如图1-1-6,已知平行四边形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F,求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴AE∥FC(平行四边形的对边平行),∴∠1=∠2.∵EF垂直平分AC,∴AO=OC,∠AOE=∠COF=90°.∴△AOE≌△COF(ASA),∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).·例题讲解图1-1-10例3已知:如图1-1-10,在ABCD中,对角线AC与BD相交于点O,AB=5,OA=2,OB=1.求证:ABCD是菱形.证明:在△AOB中,∵AB=5,OA=2,OB=1,∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴ABCD是菱形(对角线互相垂直的平行四边形是菱形).图1-1-11例4如图1-1-11,四边形ABCD是边长为13 cm的菱形,其中对角线BD 为10 cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,AC与BD相交于点E,∴∠AED=90°(菱形的对角线互相垂直),DE=12BD=12×10=5(cm)(菱形的对角线互相平分).∴AE=AD2-DE2=132-52=12(cm).∴AC=2AE=2×12=24(cm)(菱形的对角线互相平分).(2)S菱形ABCD=S△ABD+S△CBD=2S△ABD=2×12×BD×AE=2×12×10×12=120(cm2).·做一做图1-1-12如图1-1-12,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?解:重叠部分ABCD是菱形.理由如下:过点A作AH⊥BC交BC于点H,过点C作CQ⊥AB交AB于点Q.∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵S ABCD=BC·AH=AB·CQ,且两张纸条等宽,∴AH=CQ,∴AB=BC.∴四边形ABCD是菱形.【巩固练习】1.用两个边长为a的等边三角形纸片拼成的四边形是 ( ).A.等腰梯形B.正方形C.矩形D.菱形2.下列说法中正确的是( ).A.有两边相等的平行四边形是菱形B.两条对角线互相垂直平分的四边形是菱形C.两条对角线相等且互相平分的四边形是菱形D.四个角相等的四边形是菱形本节课应掌握:菱形的判定方法:(1)对角线互相垂直的平行四边形是菱形;(2)四边相等的四边形是菱形.课本习题1.2,1.3。
1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册

3. 教学内容与实际应用脱节:部分学生反映菱形的性质与判定知识与实际生活应用关联不大,需要加强与实际应用的结合,提高学生的学习动机。
(三)改进措施
1. 增加课堂互动:通过提问、小组讨论等方式,增加学生的参与度,鼓励学生积极思考和表达自己的观点。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解菱形的性质与判定知识点,结合实例帮助学生理解。
突出重点,强调难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕菱形的性质与判定问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
知识拓展:
介绍与菱形的性质与判定内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合菱形的性质与判定内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习菱形的性质与判定的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
3. 相邻角互补
4. 菱形中心对称
判定:
1. 四边相等的四边形
2. 对角线互相垂直平分的四边形
3. 相邻角互补的四边形
4. 中心对称的四边形
```
板书设计应根据实际教学情况和学生需求进行调整和优化,以达到最佳教学效果。
八、反思改进措施
(一)教学特色创新
1. 实践教学:在菱形的性质与判定教学中,通过实际操作和实验,让学生亲身体验菱形的性质和判定方法,提高学生的实践能力和解决问题的能力。
北师大版九年级数学上册1.1.1菱形的性质与判定优秀教学案例

二、教学目标
(一)知识与技能
1.学生能够理解菱形的定义,掌握菱形的性质,包括对角线互相垂直平分、四条边相等、对角相等等。
3.教师对学生的作业进行及时批改,给予评价和反馈,关注学生的成长和进步。
作为一名特级教师,我深知教学内容与过程的重要性,它不仅能提高学生的学习效果,也能提升教师的教学水平。在教学过程中,我将注重导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等环节,以有效地提升学生的数学素养。同时,我也会关注学生的情感态度与价值观的培养,让数学教学真正融入到学生的日常生活中。
四、教学内容与过程
(一)导入新课
1.教师通过展示一些实际的图形,如钻石、蜂巢等,引导学生发现这些图形都具有菱形的特征,从而引出本节课的主题——菱形的性质与判定。
2.教师提出问题:“你们认为菱形有哪些性质?”,“如何判断一个四边形是否为菱形?”引导学生思考,激发学生的学习兴趣。
3.教师展示一个菱形的实物模型,让学生直观地感受菱形的形状和特点,为接下来的学习做好铺垫。
5.关注学生情感态度与价值观的培养:在整个教学过程中,教师不仅注重知识的传授,还关注学生的情感态度与价值观的培养。通过引导学生发现菱形的实际应用,让学生体验到数学与生活的紧密联系,提高学生对数学的兴趣和热情。同时,教师还注重培养学生的团队合作意识,让他们在学习过程中感受到合作的重要性。
三、教学策略
(一)情景创设
1.结合生活实际,创设与菱形相关的问题情境,如在PPT中展示一些实际的图形,如钻石、蜂巢等,引导学生发现这些图形都具有菱形的特征。
1.1+菱形的性质与判定+第1课时课件2023-2024学年北师大版九年级上册数学

四边形变成了菱形;通过动画演绎让学生加深对菱形性质的理
解.
在学习菱形的性质时,需要利用预习导学问题,
边看书边从书中找到答案,对所学知识有一个初步认识,然后
再完成对点自测,对知识达到初步了解.
合作探究
如图,在菱形ABCD中,对角线AC与BD相交于点O.求
1.菱形的定义: 有一组邻边相等 的平行四边形是菱形.
2.菱形的性质:
(1)菱形是特殊的平行四边形,它具有一般平行四边形的性
质是 对边平行且相等,对角相等,对角线互相平分 .
(2)菱形的边 都相等 .
(3)对角线 互相垂直平分,每一条对角线平分一组对
角 .
预习导学
1.已知菱形ABCD的周长是8 cm,对角线AC、BD相交于点O,
∵∠ABC∶∠BAD=1∶2,∴∠ABC=60°.
∵AB=BC,∴△ABC是等边三角形,
∴AC=AB=10 cm.
合作探究
∵AC⊥BD,∴在Rt△AOB中,OB2+OA2=AB2,
∴OB2+52=102,∴OB=5 3 cm,
∴BD=10 3 cm.
连接AE,AF.求证:AE=AF.
证明:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,BC=CD.
又∵E,F分别为BC,CD的中点,
∴BE= BC= CD=DF.
合作探究
=
∵ ∠ = ∠ ,∴△ABE≌△ADF(SAS),
=
∴AE=AF.
合作探究
方法归纳交流 此题可以连接AC,证明△AEC≌△AFC进
证:AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC.
1.1菱形的的性质与判定(教案)北师大版九年级数学上册

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与菱形相关的实际问题,如如何计算菱形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器绘制一个菱形,并测量其对角线。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-将理论知识应用于解决实际问题时,如何建立数学模型,提取关键信息。
举例解释:
-在证明菱形对角线互相垂直平分的性质时,需要引导学生通过画图和推理来理解,可以使用动态软件辅助教学,让学生直观感受。
-在讲解判定方法时,通过对比不同四边形的例子,让学生区分哪些条件适用于菱形,哪些不适用,从而加深理解。
-在解决实际问题时,教师应指导学生如何从问题中抽象出数学模型,例如,在艺术设计中的菱形布局问题,如何运用菱形的性质来求解。
五、教学反思
今天在讲解菱形的性质与判定这一章节时,我尝试了多种教学方法,让学生从不同角度理解和掌握这一几何概念。在课堂上,我注意到以下几点:
1.学生对菱形的基本概念掌握得比较扎实,能够迅速理解四边相等这一特点。但在对角线垂直平分的性质理解上,部分学生还存在困难。这让我意识到,在讲解难点时,需要更加细致地进行引导和解释。
四、教学流程
(一)导入新课(用时5分钟)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.1.1 菱形的性质与判定教学目标:1. 理解菱形的概念,了解它与平行四边形之间的关系.2. 经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.3. 体会探索与证明过程中所蕴含的抽象、推理等数学思想.教学重、难点:重点:菱形的性质定理的证明.难点:菱形的性质定理的应用.课前准备:教师准备:多媒体课件.学生准备:制作菱形纸片.设计意图:学生准备菱形纸片的过程,就是学生对平行四边形的回顾过程,以及对特殊的平行四边形——菱形的初步认识.教学过程:一、创设情境,导入新课ADA D活动内容1:知识回顾1. 什么叫做平行四边形?OC B C B2. 平行四边形有哪些性质?处理方式:让学生结合图形复述平行四边形的定义与性质.在学生复述平行四边形的定义时,容易与平行四边形的判定定理混淆;对于平行四边形的性质,教师应及时引导学生从边、角、对角线、对称性四个方面复述,并能结合图形将文字语言转化成符号语言.设计意图:通过对平行四边形定义及性质的回顾,一方面利于学生尽快进入学习新课的状态,另一方面利于学生积累探究图形定义及性质的方法和经验.活动内容2:导入新课导语:在我们现实生活中,平行四边形的形象无处不在,请同学们观察下列图片中的平行四边形.你能发现它们有怎样的共同特征?你知道这样特殊的平行四边形叫做什么吗?它有哪些特殊的性质?本节课我们一起走进“菱形”,去探究菱形的性质与判定. 【教师板书课题:1.1 菱形的性质与判定(1)】处理方式:学生观察生活中常见的特殊平行四边形图片,并与一般平行四边形进行对比,找出与一般平行四边形的不同之处,对菱形的定义与性质先有感性认识.设计意图:从生活中的菱形入手,让学生感受生活中的数学. 使用疑问的语言导入新课,有利于激起学生的探究欲望,培养学生对新知识的兴趣.二、探究学习,获取新知活动内容1:提出问题(多媒体出示)1. 结合以上特殊平行四边形的特征,你能给菱形一个定义吗?2. 因为菱形是特殊的平行四边形,所以它不仅具有平行四边形的所有性质,而且还具有它本身独特的性质.你认为菱形还具有哪些特殊的性质?处理方式:结合图片上图形的特征,引导学生在平行四边形的基础上归纳菱形的定义;通过对菱形的观察,与一般平行四边形进行对比,归纳菱形特有的性质,并口述,教师板书.设计意图:让学生通过与平行四边形的对比,对图形进行观察与抽象,归纳菱形的定义与性质,体会菱形与平行四边形之间的关系和菱形的“特殊”之处,为下步探索、证明菱形的性质做好铺垫.做一做:请同学们用你手中的菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?2(2)菱形中有哪些线段相等?处理方式:让学生利用课前准备的菱形纸片进行折叠,折叠的过程中,让学生回顾轴对称图形的意义及轴对称图形的性质,从而发现菱形的“特殊”性质,感受折纸过程对性质的初步验证.设计意图:通过折纸这一过程,引导学生发现菱形的对称性,即菱形不只是中心对称图形,还是轴对称图形,在操作过程中验证菱形的特殊性质,鼓励学生通过多种方法验证发现的结论.活动内容2:菱形性质定理的证明如何推理证明“菱形的四条边相等,对角线互相垂直”这两个性质呢?(多媒体出示)已知:如图,在菱形ABCD中,AB=AD,B对角线AC与B D相交于点O.求证:(1)AB=BC=C D=AD;(2)AC⊥BD.A CO 处理方式:让学生从平行四边形的性质出发,独立思D考、分析证明思路. 第(2)题多数学生可能会应用全等三角形的性质,想不到利用“等腰三角形的三线合一”性质,教师引导学生互相交流、确定证明思路,最后找一名学生板书证明过程,教师规范解题过程的书写.学生预设:证明:(1)∵四边形ABCD是菱形,∴AB=C,D AD=B(C菱形的对边相等).又∵AB=AD,∴AB=BC=CD=.AD(2)∵AB=AD,∴△ABD是等腰三角形.又∵四边形ABCD是菱形,∴OB=O(D菱形的对角线互相平分).在等腰三角形ABD中,∵OB=O,D∴AO⊥BD.即AC⊥BD.设计意图:通过对性质的分析与证明,一方面让学生养成独立思考问题的习惯,对于不3能独立解决的问题,引导学生发挥小组合作的作用,提高学生的交流能力;另一方面通过解题过程的板书提高学生的书写能力,养成规范书写的习惯.教师强调:菱形的性质定理定理菱形的四条边相等.定理菱形的对角线互相垂直.活动内容3:定理的拓展延伸通过对“菱形的对角线互相垂直”的证明过程,你还能发现菱形对角线有什么性质?处理方式:学生在小组交流后说出自己的发现,若不能,教师引导学生观察等腰三角形ABD中,“三线合一”还能有什么结论?还可以引导学生再次通过对菱形纸片的折叠发现一些相等的角,从而总结出“菱形的每条对角线平分一组对角”.设计意图:通过问题的延伸,结合推理或折叠,培养学生勇于探索、善于发现、善于总结的好习惯.教师强调:菱形的每条对角线平分一组对角.三、训练反馈,应用提升活动内容1:B 例1 在菱形ABCD中,对角线AC和B D相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线 A C的长.处理方式:教师引导学生根据已知条件说出菱形的性A CO质,发现本题线段和角的有关结论,再独立组织本题的解题D过程. 然后让一名学生板演解题过程,师生共同评价.学生还有可能会应用“菱形的每条对角线平分一组对角”结合直角三角形的其它知识解决此题,教师都应给与肯定.学生预设:解:∵四边形ABCD是菱形,∴AB=AD(菱形的四条边相等),AC ⊥BD(菱形的对角线互相垂直),1 1OB OD BD (菱形的对角线互相平分).6 32 24在等腰三角形ABD中,∵∠BAD=60°,∴△ABD是等边三角形.∴AB=BD=6.在Rt△AOB中,由勾股定理得2 2 2OA OB AB ,∴ 2 2 62 32 3 3OA AB OB .∴AC=2OA= 6 3 (菱形的对角线互相平分).设计意图:让学生通过此例题的思考与分析,初步应用菱形的性质定理解决有关问题,在应用的过程中明确菱形与平行四边形的关系,同时鼓励学生一题多解,理解菱形的性质定理.活动内容2:方法提炼B 在菱形ABCD中,对角线 A C和B D相交于点O,图中有多少个等腰三角形和直角三角形?请说说你的理由.处理方式:让学生在小组内完成,并进行说理. A COD教师强调:菱形的问题经常会转化为等腰三角形和直角三角形的问题来解决.设计意图:让学生再次巩固菱形性质定理的同时,明确菱形问题可以转化为等腰三角形和直角三角形问题,体会数学中的转化思想.活动内容3:巩固训练A 在菱形ABCD中,对角线AC和B D相交于点O,已知AB=5cm,AO=4cm,求BD的长.处理方式:学生独立完成本题目的思考、分析及书写的过程, D BO一生在黑板板书并进行讲解. 若有不规范之处,教师引导其他学生进行规范.设计意图:学生已通过前两个问题对菱形的性质进行理解,C所以对于本题的处理完全可以由学生独立完成,训练学生独立解决问题的能力.四、回顾反思,提炼升华5通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调: 1. 菱形的性质定理:①菱形的四条边相等;②菱形的对角线互相垂直.2. 菱形的一条对角线把菱形分成两个全等的等腰三角形,菱形的两条对角线把菱形分成四个全等的直角三角形.因此,有关菱形的问题,往往可转化为等腰三角形或直角三角形的问题来解决.设计意图:课堂小结有学生完成,一是可以让学生通过小结对本课知识进行回顾,二是可以提高学生总结、反思、提炼的好习惯.五、达标检测,反馈提高活动内容:完成导学案中的达标检测题.(多媒体出示)A组菱形ABCD的周长为40cm,对角线AC和B D相交B于点O,AC=10cm.(1)BAC _____, B _____.(2)对角线BD=________. A CO(3)过点B作BE⊥AD,则BE=_________,D菱形ABCD的面积为____________.BA1 B组已知,如图,在菱形ABCD中,F 为边BC上的点,FDF与对角线AC交于点M,过M作ME⊥CD于点E,1 2 . M若C E=1,求B C的长.处理方式:学生在 5 分钟内独立完成后,一生说出答CE2D案,同位互换批改,不明白的问题利用 1 分钟时间交流、改正.设计意图:当堂达标的题目不能太多、太难,只要能达到检测本课知识的目的即可. B 组题可以加强学习能力较强的学生的挑战性,以更好的体验成功的喜悦.六、布置作业,课堂延伸基础作业:课本P4 习题 1.1 第1、2 题.拓展作业:已知地板砖上一菱形花纹周长为40cm,两个相邻内角之比为2:1 ,求菱形的对角线长.板书设计:6§ 1.1 菱形的性质与判定(1)菱形的定义:菱形的性质定理:例11.投2.影区学生活动区7。