2011年高考数学二轮考点专题突破检测(五):立体几何
【数学】2011年高考二轮考点专题突破检测:解析几何专题(含详细标准答案)

专题达标检测一、选择题1.(2010·山东潍坊)直线xcosα+错误!y+2=0的倾斜角的范围是()A.错误!∪错误!B.错误!∪错误!C.错误!D.错误!解析:由直线xcosα+错误!y+2=0,所以直线的斜率为k=-错误!.设直线的倾斜角为β,则tanβ=-错误!.又因为-错误!≤-错误!≤错误!,即-错误!≤tanβ≤错误!,所以β∈错误!∪错误!.答案:B2.若圆x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:ax+by=0的距离为2\r(2), 则直线l的倾斜角的取值范围是( )A.错误!B.错误!C.错误!D.错误!|2a+2b|≤2⇒a2解析:由题意知,圆心到直线的距离d应满足0≤d≤\r(2),d=a2+b2+b2+4ab≤0.显然b≠0,两边同除以b2,得错误!2+4错误!+1≤0,解得-2-错误!≤错误!≤-2+错误!.k=-错误!,k∈[2-错误!,2+错误!],θ∈错误!,故选B.答案:B3.(2010·陕西)已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为()A.错误!B.1C.2D.4解析:圆x2+y2-6x-7=0的圆心坐标为(3,0),半径为4.y2=2px(p>0)的准线方程为x=-p,2∴3+错误!=4,∴p =2.故选C.答案:CA.0 B.2 C.4 D .-2 解析:易知当P 、Q 分别在椭圆短轴端点时,四边形PF 1QF 2面积最大. 此时,F 1(-错误!,0),F 2(错误!,0),P (0,1), ∴错误!=(-错误!,-1),错误!=(3-x 0,-y 0), ∴错误!·错误!=-2.答案:D5.已知F 1、F 2是双曲线x2a 2-y 2b 2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形 MF 1F2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A.4+2错误!B.错误!-1C .错误!D .错误!+1 解析:设正三角形MF1F 2的边M F1的中点为H ,则M(0,3c),F1(-c,0). 所以H 错误!,H 点在双曲线上,故错误!-错误!=1,化简e 4-8e 2+4=0,解得e 2=4+23,所以e =3+1.答案:D。
高三数学二轮复习:立体几何

专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是
√
解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为
2011高考数学立体几何大题汇总

2011高考数学立体几何大题汇总(1)(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠DAB=60,AB=2AD,PD ⊥底面ABCD. (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。
(1)解:(Ⅰ )因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。
(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=-设平面PAB 的法向量为n=(x,y,z ),则即3030x y z -=-=(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。
作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,3SD SE SF DE⨯== 作FG BC ⊥,垂足为G ,则FG=DC=1。
连结SG ,则SG BC ⊥, 又,BC FG SG FG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。
…………9分作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。
37SF FG FH SG ⨯==,即F 到平面SBC 的距离为217 由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有217 设AB 与平面SBC 所成的角为α,则2121sin arcsin 77d EBαα=== …………12分解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。
设D (1,0,0),则A (2,2,0)、B (0,2,0)。
2011届高考数学专题练习 立体几何 含答案u新人教A版

2011届高考数学专题练习 立体几何试卷一、填空题 (共 小题,每小题 分)1. 如图,正方体1111ABCD A BC D -中,E 、F 分别为AB 、AD 的中点,则1AD 与EF 所成角的大小为 .2. 如图是一个几何体的三视图,若它的体积是33,则a=________.3. 如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧棱1CC 的中点,则异面直线1AB BM 和所成的角的大小是 。
4. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M ,若圆M 的面积为3π,则球O 的表面积等于__________________.二、选择题 (共 小题,每小题 分)5. 若直线a b ⊥,且直线//a 平面α,则直线b 与平面α的位置关系是 .A .b α⊂B .//b αC .b α⊂或//b αD .b 与α相交或b α⊂或//b α6. 在正四棱柱1111ABCD A BC D -中,顶点1B 到对角线1BD和到平面11A BCD 的距离分别为h 和d ,则下列命题中正确的是( )A .若侧棱的长小于底面的变长,则hd的取值范围为(0,1)B .若侧棱的长小于底面的变长,则h d 的取值范围为223( C .若侧棱的长大于底面的变长,则h d 的取值范围为23(2)3 D .若侧棱的长大于底面的变长,则h d 的取值范围为23()+∞7. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
则该集合体的俯视图可以是8. 设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线,则//αβ的一个充分而不必要条件是A. 1////m l βα且B. 12////m l l 且nC. ////m n ββ且D. 2////m n l β且9. 如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900,∠ACC 1=600,∠BCC 1=450,侧棱CC 1的长为1,则该三棱柱的高等于 A.21 B.22 C.23 D.3310. 如图,正方体1111ABCD A BC D -的棱线长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是 (A )AC BE ⊥(B )//EF ABCD 平面(C )三棱锥A BEF -的体积为定值 (D )AEF BEF ∆∆的面积与的面积相等11. 一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为(A )48122+(B )48242+ (C )36122+(D )36242+三、解答题 (共 小题,每小题 分)12. 如图,已知PA ⊥正方形ABCD 所在平面,E 、F分别是AB ,PC 的中点,45PDA ∠=.(1)求证://EF 面PAD ;(2)求证:面PCE ⊥面PCD .13. 如图,在五面体ABCDEF 中,AB ∥DC ,2BAD π∠=,2CD AD ==,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,3,7FC ED ==(Ⅰ)直线AB 到平面EFCD 的距离;A 1B 1C 1D 1 (Ⅱ)二面角F ADE --的平面角的正切值.14. 如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.15. 如图,在四棱锥ABCD P -中,ABCD PD 平面⊥,CD AD ⊥,且DB 平分ADC ∠,E 为PC 的中点,1==CD AD ,22=DB(Ⅰ)证明BDE PA 平面// (Ⅱ)证明PBD AC 平面⊥(Ⅲ)求直线BC 与平面PBD 所成的角的正切值16. 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,∠ABM=60。
2011年高考数学试题 立体几何

四、立体几何一、选择题1.(重庆理9)高为的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为A .B .C .1D 【答案】C2.(浙江理4)下列命题中错误的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D3.(四川理3)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 A .12l l ⊥,23l l ⊥13//l l ⇒ B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒1l ,2l ,3l 共面D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【答案】B【解析】A 答案还有异面或者相交,C 、D 不一定4.(陕西理5)某几何体的三视图如图所示,则它的体积是 A .283π-B .83π-C .82π-D .23π【答案】A5.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】D6.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .0【答案】A7.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为【答案】D8.(全国大纲理6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C为垂足,B ∈β,BD ⊥ι,D为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .C .D .1【答案】C9.(全国大纲理11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π 【答案】D10.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+ B .9182π+C .942π+D .3618π+【答案】B11.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C12.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .B .C .D .【答案】B13.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .C .10D .【答案】C14.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为 (A )48 (B ) (C )(D )80【答案】C15.(辽宁理8)。
2011届高考数学复习专题模拟:立体几何

2012届高考数学复习专题模拟:立体几何(2012届模拟题)立体几何(1)(2011届·成都树德协进中学高三期中)19、(12分)长方体1111D C B A ABCD -中,1==BC AB ,21=AA ,E 是侧棱1BB 中点.(Ⅰ)求直线1AA 与平面E AC 1所成角的大小; (Ⅱ)求二面角B AC E --1的大小; (Ⅲ)求三棱锥11C AD E -的体积.答案:(I )arcsin ,距离与面33AEC )(1515arccos)(3311D III II 61V 11A E C -D =(2011届·江西白鹭洲中学高三期中(文))4.已知m 、n 为两条不同的直线,βα,为两个不同的平面,下列四个命题中,错误的命题个数是 ( A )①n m n m //,,,//则βαβα⊂⊂;②若βαββαα//,//,//,,则且n m n m ⊂⊂网③βαβα⊥⊂⊥m m 则若,,; ④ααββα//,,,m m m 则若⊄⊥⊥A .1B .2C .3D .4 (2011届•江西白鹭洲中学高三期中(文))8.某几何体的三视图如图所示,根据图中标出的数据,可得这个几何体的表面积为( B )A .344+B .544+C .38D .12(2011届•江西白鹭洲中学高三期中(文))9. 已知3||,22||==q p ,p 与q的夹角为4π,则以 q p b q p a3,25-=+=为邻边的平行四边形的长度较小的对角线的长是( A ).A.15B.15 C. 4 D. 14(2011届•江西白鹭洲中学高三期中(文))19. (本小题满分12分)如图所示,在正三棱柱ABC-A 1B 1C1ACA C 1中,底面边长是2,D 是棱BC 的中点,点M 在棱BB 1上,且BM=31B 1M ,又CM ⊥AC 1. (Ⅰ)求证:A 1B//平面AC 1D ; (Ⅱ)求三棱锥B 1-ADC 1体积.答案:提示:)1(连接C A 1,交1AC 于点,E 连接DE ,则DE 是BC A 1∆的中位线,B A DE 1//,又111ADC B A ,ADC 面面⊄⊂DE ,D AC //11面B A ∴.)2(在正三棱锥111C B A ABC -中,BC 是D 的中点,则11B BCC 面⊥AD ,从而MC AD ⊥,又1AC CM ⊥,则1ADC CM 和面内的两条相交直线1AC AD,都垂直,1ADC MC 面⊥∴,于是1DC CM ⊥,则1CDC ∠与MCB ∠互余,则1tan CDC ∠与MCB ∠tan 互为倒数,易得221=AA , 连结D B 1,∴2211=∆D C B S ,D C B 11面⊥AD , ∴三棱锥11ADC -B 的体积为362. 方法2:以D 为坐标原点,DA DC ,为x y ,轴,建立空间直角坐标系,设h BB =1,则)0,0,0(D ,)0,0,1(-B ,0,0,1(C ,)0,3,0(A ,),0,1(1h B -,),0,1(1h C , ),3,0(1h A ,)4,0,1(hM -,→B A 1),3,1(h ---=,),3,1(),0,3,0(1h A C AD --=-=→→,设平面D AC 1的法向量),,(z y x n =→,则⎪⎩⎪⎨⎧=⋅=⋅→→→→010n A C n AD )1,0,(-=⇒→h n ,→→⊥n B A 1 ∴D AC //11面B A)2(),3,1(),4,0,2(1h AC h CM -=-=→→,1AC CM ⊥,=⋅→→1AC CM 0422=+-h ,22=∴h .平面D AC 1的法向量为)1,0,22(-=→n ,)22,3,1(1-=→A B 点)22,0,1(1-B 到平面D AC 1的距离3241=⋅=→→→nd nA B ,233=∴∆ADCS . 3623242333111=⨯⨯=∴-ADC B V .(2011届•江西白鹭洲中学高三期中(文))20. (本小题满分12分)在数列{}n a 中,).)((2,1*2111N n a a a na a n n ∈+⋅⋅⋅++==+(Ⅰ)求2a 、3a 、4a 及通项公式n a ;(Ⅱ)令n n n a b 12+=,求数列{}n b 的前n 项和S n ; 答案:(1)由题意得,4,3,2432===a a a 当2≥n 时,)(2211n n a a a na +++=+ , ①).(2)1(121-+++=-n n a a a a n ②①-②得,2)1(1n n n a a n na =--+ 即,1,)1(11nn a a a n na n n n n +=+=++ ),2(123121123121≥=-⋅⋅=⋅⋅=∴-n n n n a a a a a a a a a n n n 又11=a 满足上式,∈=∴n n a n (N *) . (4分)(2)由(1)得∈=+n n b n n (21N *) ,14322232221+⋅++⋅+⋅+⋅=n n n S , ③ .223222122543+⋅++⋅+⋅+⋅=n n n S ④③-④得,2)2222(2215432++⋅-+++++=-n n n n S .42)1(2+-=+n n n S(2011届·温州十校联合体高三期中(理))6.设,,αβγ是三个不重合的平面,n m ,是不重合的直线,下列判断正确的是(D )A .若γββα⊥⊥,则γα||B .若,//,l αββ⊥则l α⊥C .若αα||,||n m 则//m nD .若αα⊥⊥n m ,则//m n(2011届•温州十校联合体高三期中(理))12.一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为 ▲ .2侧视图22正视图211俯视图2(2011届•温州十校联合体高三期中(理))16.如图,已知直线1212//,,l l A l l 是之1间的一定点,并且A 到21,l l 之间的距离分别为3和2,B 是直线2l 上一动点,作AB AC ⊥且使AC 与直线1l 交于点C ,则ABC ∆的面积的最小值是 ▲ 6(2011届•温州十校联合体高三期中(理))17.下列四个命题:①圆4)1()2(22=+++y x 与直线02=-y x 相交,所得弦长为2;②直线kx y =与圆1)sin ()cos (22=-+-θθy x 恒有公共点;③若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为108π;④若棱长为2的正四面体的顶点都在同一球面上,则该球的体积为π23其中,正确命题的序号为 ▲(2) (4) 写出所有正确命的序号)(2011届•温州十校联合体高三期中(理))20(本小题满分14分)已知在四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,E 、F 、G 分别是PA 、PB 、BC 的中点.(I )求证:EF ⊥平面PAD ;(II )求平面EFG 与平面ABCD 所成锐二面角的大小;答案:解:方法1:(I )证明:∵平面PAD ⊥平面ABCD ,AD AB ⊥,∴⊥AB 平面PAD , …………(4分) ∵E 、F 为PA 、PB 的中点,∴EF //AB ,∴EF ⊥平面PAD ; …………(6分) (II )解:过P 作AD 的垂线,垂足为O ,∵ABCD PAD 平面平面⊥,则PO ⊥平面ABCD . 取AO 中点M ,连OG ,,EO,EM, ∵EF //AB//OG,∴OG 即为面EFG 与面ABCD 的交线…………(8分) 又EM//OP,则EM ⊥平面ABCD .且OG ⊥AO,故OG ⊥EO ∴EOM ∠ 即为所求 …………(11分) 中EOM ∆Rt ,EM =,3OM=1∴tan EOM ∠=,3故 EOM ∠= 60∴平面EFG 与平面ABCD 所成锐二面角的大小是 60 …………(14分)方法2:(I )证明:过P 作P O ⊥AD 于O ,∵ABCD PAD 平面平面⊥, 则PO ⊥平面ABCD ,连OG ,以OG ,OD ,OP 为x 、y 、z轴建立空间坐标M系, …………(2分)∵PA =PD 4==AD ,∴2,32===OA OD OP , 得)32,0,0(),0,2,0(),0,2,4(),0,2,4(),0,2,0(P D C B A --,)0,0,4(),3,1,2(),3,1,0(G F E --, …………(4分)故)32,2,0(),0,4,0(),0,0,2(-===, ∵0,0=⋅=⋅,∴EF ⊥平面PAD ; …………(6分) (II )解:)3,1,4(),0,0,2(-==,设平面EFG 的一个法向量为),,,(z y x =n则⎪⎩⎪⎨⎧=-+=⎪⎩⎪⎨⎧=⋅=⋅03402,00z y x x EF ,即n n , )1,3,0(,1==n 得取z , …………(11分) 平面ABCD 的一个法向量为),1,0,0(1=n ……(12分) 平面EFG 与平面ABCD 所成锐二面角的余弦值是:21||||,cos |111=⋅>=<n n n n n n ,锐二面角的大小是60; …………(14分)(2011届•温州十校联合体高三期中(理))21.(本题满分15分)已知椭圆22221(0)x y a b a b +=>>F的距离的最大值为1。
高考数学二轮专题训练—立体几何(五)

立体几何(五)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设α、β、γ是三个不同的平面,a 、b 是两条不同的直线,给出下列4个命题: ①若a ∥α,b ∥α,则a ∥b ; ②若a ∥α,b ∥β,a ∥b ,则α∥β; ③若a ⊥α,b ⊥β,a ⊥b ,则α⊥β;④若a 、b 在平面α内的射影互相垂直,则a ⊥b . 其中正确命题是A. ③ B ④ C. ①③ D. ②④ 2、直线a ∥平面α的一个充分条件是( ) A .存在一条直线b ,b ∥α,a ∥b B .存在一个平面β,,β∈a α∥β C .存在一个平面β,a ∥β,α∥β D .存在一条直线b ,b ⊂α,a ∥b3、已知直线m 、l ,平面α、β,且m ⊥α, l⊂β,给出下列命题:①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α∥β;④若m ∥l ,则α⊥β.其中正确命题的个数是 A.1 B.2C.3D.44、设a ,b ,c 是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立...的是( )A.当c ⊥α时,若c ⊥β,则α∥βB.当α⊂b ,且c 是a 在α内的射影时,若b ⊥c ,则a ⊥b C .当α⊂b 时,若b ⊥β,则βα⊥D .当α⊂b ,且α⊄c 时,若c ∥α,则b ∥c5、设m ,n 表示不同的直线,,αβ表示不同的平面,且,m n α⊂。
则“αβ∥”是“m n ββ且∥∥”的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件6、已知直线m ,n 和平面α,则m//n 的必要非充分条件是( ) A m//α且n//α B m ⊥α且 n ⊥αC m//α且α⊂nD m ,n 与α成等角7、在空间中,有如下命题:①互相平行的两条直线在同一平面内的射影必然是互相平行的两条直线;②若平面α内任意一条直线m//平面β,则平面α//平面β;③若平面α与平面β的交线为m ,平面β内的直线⊥n 直线m ,则直线⊥n 平面α;④若点P 到三角形三个顶点的距离相等,则点P 在该三角形所在平面上的射影是该三角形的外心。
高三数学立体几何历年高考题(2011年-2017年)

高三数学立体几何高考题1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )182.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π47.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )89(2016年7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33 (D )1311.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又因BD⊥AC可知NA⊥AC,
∴∠C1AC就是平面AFC1与平面ABCD所成锐二面角的平面角.
在Rt△C1AC中,tan∠C1AC==,故∠C1AC=30°.
∴平面AFC1与平面ABCD 所成锐二面角的大小为30°.
13.(2010·湖北,18)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,
专题达标检测五
一、选择题
1.若a、b表示互不重合的直线,α、β表示不重合的平面,则a∥α的一个充分条件是()
A.α∥β,a∥βB.α⊥β,a⊥β
C.a∥b,b∥α D. α∩β=b,a⊄α,a∥b
解析:A,B,C选项中,直线a都有可能在平面α内,不能满足充分性,故选D.
答案:D
2.(2010·全国Ⅰ)正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的 余弦值为()
又∵AC∩A1A=A,AC、A1A⊂平面ACC1A1,
∴BD⊥平面ACC1A1.
在四边形DANB中,DA∥BN且DA=BN,
所以四边形DANB为平行四边形.
故NA∥BD,∴NA⊥平面ACC1A1.
又∵NA⊂平面AFC1
∴平面AFC1⊥平面ACC1A1
(3)解:由(2)知BD⊥平面ACC1A1,
又AC1⊂平面ACC1A1,
∠AOB=120°,且OA=OB=OC=1.
(1)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,
并计算的值;
(2)求二面角O-AC-B的平面角的余弦值.
解:解法一:(1)在平面OAB内作ON⊥OA交AB于N,连结NC.
又OA⊥OC,∴OA⊥平面ONC.
∵NC⊂平面ONC,∴OA⊥NC.
取Q为AN的中点,则PQ∥NC,
A.B.C.D.
解析:∵BB1∥DD1,∴DD1与平面ACD1所成的角即为BB1与平面ACD1所成的角,设其大小为θ,设正方体的棱长为1,则点D到面ACD1的距离为,所以sinθ=,
得cosθ=,故选D.
答案:D
3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()
则四面体PEFQ的体积( )
A.与x,y,z都有关
B.与x有关,与y,z无关
C.与y有关,与x,z无关
D.与z有关,与x,y无关
解析:连结EQ、FQ、A1D,作PN⊥A1D,垂足为N.
∵A1B1∥DC且EF=1,∴S△EFQ是定值.
∵A1B1⊥面ADD1A1且PN⊂面ADD1A1,
∴A1B1⊥PN,∴PN⊥面A1B1CD.
∵PD=z,∠A1DA=45°,
∴PN=z,∴VPEFQ=S△EFQ·PN与x,y无关,与z有关,故选D.
答案:D
二、填空题
7.(2010·湖南,13)下图中的三个直角三角形是一个体积为20cm3的几何体的三视图,
则h=____________cm.
解析:直观图如图,则三棱锥中AD⊥AB,AD⊥AC,AB⊥AC,
1面是菱形,
且∠DAB=60°,AD=AA1,F为棱BB1的中点,点M为线段AC1
的中点.
(1)求证: 直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1;
(3)求平面AFC1与平面ABCD所成的锐二面角的大小.
(1)证明:延长C1F交CB的延长线于点N,连结AN.因为F是BB1的中点,所以F
+b=h),则酒瓶容积与瓶内酒的体积之比为 ()
A.1+且a+b>h
B.1+且a+b<h
C .1+且a+b>h
D.1+且a+b<h
解析:设啤酒瓶的底面积为S,啤酒瓶的容积为V瓶,
瓶内酒的体积为V酒,
则V酒=Sa,V瓶-V酒=Sb,
即得V瓶=V酒+Sb=S(a+b),
∴==1+.
又∵Sa′>Sa,即a′>a,
∴体积V=×AB·AC·h=20,
∴h=4.
答案:4
8.如图所示, 在正 方体,ABCD-A1B1C1D1中,M、N分别为
A1B1,CC1的中点,P为AD上一动点,记α为异面直线PM
与D1N所成的角,则α的取值集合为________.
答案:
9.已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多
∴PQ⊥OA.
在等腰△AOB中,∠AOB=120°,
∴∠OAB=∠OBA=30°.
在Rt△AON中,∠OAN=30°,
∴ON=AN=AQ.
在△ONB中,∠NOB=120°-90°=30°=∠NBO,∴NB=ON=AQ,∴=3.
(2)连结PN,PO.
由OC⊥OA,OC⊥OB知OC⊥平面OAB.
又ON⊂平面OAB,∴OC⊥ON.
=90°,SA、SB、SC为三棱锥S—ABC外接球的内接正方体的三条棱,设球半径为R,
则4R2=3SA2=36,球表面积为4πR2=36π.
答案:C
6.(2010·北京)如图,正方体ABCD-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动
点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),
为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.
又∵MF⊄平面ABCD, AN⊂平面ABCD,
∴MF∥平面ABCD.
( 2)证明:(如上图)连结BD,由直四棱柱ABCD-A1B1C1D1,可知:A1A⊥平面ABCD,
又∵BD⊂平面ABCD,
∴A1A⊥BD.
∵四边形ABCD为菱形,∴AC⊥BD.
A.PA=PB>PC
B.PA=PB<PC
C.PA=PB=PC
D.PA≠PB≠PC
解析:∵M是Rt△ABC斜边AB的中点,∴MA=MB=MC.又∵PM⊥平面ABC,∴MA、
MB、MC分别是PA、PB、PC在平面ABC上的射影,∴PA=PB=PC.应选C.
答案:C
4.如图,啤酒瓶的高为h,瓶内酒面高度为a,若将瓶盖盖好倒置,酒面高度为a′(a′
BC⊥BC1,AB=BC1,E、F、G分别为线段AC1、A1C1、BB1
的中点,求证:
(1)平面ABC⊥平面ABC1;
(2)EF∥平面BCC1B1;
(3)GF⊥平面AB1C1.
证明:(1)∵BC⊥AB,BC⊥BC1,AB∩BC1=B,∴ BC⊥平面ABC1.
∵BC⊂平面ABC,∴平面ABC⊥平面ABC1.
又由ON⊥OA知ON⊥平面AOC.
∴OP是NP在平面AOC内的射影.
在等腰Rt△COA中,P为AC的中点,
∴AC⊥OP.
根据三垂线定理,知AC⊥NP.
∴∠OPN为二面角O-AC-B的平面角.在等腰Rt△COA中,OC=OA=1,
解析:过A作AC⊥平面β于C,C为垂足,连结CB,过C作CD⊥l于D ,连结
AD,则AD⊥l,
∴∠ADC为二面角α-l-β的平面角,即∠ADC=60°.
∵AC⊥β,∴∠ABC为直线AB与平面β所成角.设AB=1,则AD=,AC=×
=,
∴sin∠ABC===.
答案:
三、解答题
11.(2010·江苏无锡)如图,在三棱柱ABC-A1B1C1中,AB⊥BC,
∴h=a′+b>a+b,
∴=1+且a+b<h.
答案:B
5.在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA
=2,则正棱锥S-ABC外接球的表面积是()
A.12π B.32π
C.36π D.48π
解析:由于MN⊥AM,MN∥BS,则BS⊥AM,
又根据正三棱锥的性质知BS⊥AC,则BS⊥平面SAC,于是有∠ASB=∠BSC=∠CSA
面体的体积V=________.
解析:该几何体形状如图所示,是一个正方体与正四棱锥的组合体,正方体的体积是
1,正四棱锥的体积是,故该凸多面体的体积为1+.
答案:1+
10.(2010·四川)如图,二面角α-l-β的大小是60°,线段AB⊂α,
B∈l,AB与l所成的角为30°,则AB与平面β所成的角的
正弦值是________.
(2)∵AE=EC1,A1F=FC1,∴EF∥AA1.
∵BB1∥AA1,∴EF∥BB1.
∵EF⊄平面BCC1B1,∴EF∥平面BCC1B1.
(3)连结EB,则四边形EFGB为平行四边形.
∵EB⊥AC1,∴FG⊥AC1.
∵BC⊥面ABC1,∴B1C1⊥面ABC1,
∴B1C1⊥BE,∴FG⊥B1C1.
∵B1C1∩AC1=C1,∴GF⊥平面AB1C1.