统计与概率高考题文科资料全

合集下载

高考文科数学大题专项统计概率A精编版

高考文科数学大题专项统计概率A精编版

……………………………………………………………最新资料推荐…………………………………………………四统计概率(A)1.(2018·大庆模拟)某人租用一块土地种植一种瓜类作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455 kg.已知当年产量低于450 kg时,单位售价为12元/kg,当年产量不低于450 kg时,单位售价为10元/kg.(1)求图中a,b的值;(2)估计年销售额大于3 600元小于6 000元的概率.2.(2018·沈阳三模)根据相关数据统计,沈阳市每年的空气质量优良天数整体好转,2013年沈阳优良天数是191天,2014年优良天数为178天,2015年优良天数为193天,2016年优良天数为242天,2017年优良天数为256天,把2013年年份用代码1表示,以此类推,2014年用2表示,2015年用3表示,2016年用4表示,2017年用5表示,得到如下数据:1……………………………………………………………最新资料推荐…………………………………………………(1)试求y关于x的线性回归方程(系数精确到0.1);(2)试根据(1)求出的线性回归方程,预测2018年优良天数是多少天(精确到整数).=3 374,=55.x附:y参考数据ii-==.,参考公式:3.(2018·厦门一模)为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如表所示:2……………………………………………………………最新资料推荐…………………………………………………若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);(2)根据已知条件完成下面的2×2列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?2n=a+b+c+d.:其中,参考公式K=附:临界值表3……………………………………………………………最新资料推荐…………………………………………………4.(2018·焦作四模)某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了n名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.(1)求n,a,b的值;(2)估计该校高三学生体质测试成绩的平均数和中位数m;(3)若从成绩在[40,60)的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.4……………………………………………………………最新资料推荐…………………………………………………1.解:(1)由频率分布直方图的性质得100(a+0.001 5+b+0.004)=1, 得100(a+b)=0.45,由300×100a+400×0.4+500×100b+600×0.15=455,得300a+500b=2.05,解方程组得a=0.001 0,b=0.003 5.(2)由(1)结合频率分布直方图知,当年产量为300 kg时,其年销售额为3 600元,当年产量为400 kg时,其年销售额为4 800元,当年产量为500 kg时,其年销售额为5 000元,当年产量为600 kg时,其年销售额为6 000元,因为年产量为400 kg的频率为0.4,即年销售额为4 800元的频率为0.4,而年产量为500 kg的频率为0.35,即年销售额为5 000元的频率为0.35,故估计年销售额大于3 600元小于6 000元的概率为0.05+0.4+0.35+0.075=0.875.=×,计算(1+2+3+4+5)=3, :(1)2.解根据表中数据=×(191+178+193+242+256)=212,=3 374,=55,yx又ii5……………………………………………………………最新资料推荐…………………………………………………=19.4,=所以=3=153.8.=212-19.4所以=×-=19.4x+153.8. 的线性回归方程是y关于x, (1)的线性回归方程(2)根据270, 6+153.8≈,=19.4计算x=6时×. 天2018年优良天数是270即预测: 该校学生的每天平均阅读时间为3.解:(1) +110×+9010+30×××+50××+70=1.6+6+12+15.4+12.6+4.4=52., 11+7+2=20人(2)由频数分布表得,“阅读达人”的人数是: 2列联表如下根据等高条形图作出2×24.327,K计算==≈. 99%的把握认为“阅读达人”跟性别有关4.327<6.635,由于故没有,人的有由题中茎叶图可知分数在解4.:(1)[50,60)46 ……………………………………………………………最新资料推荐…………………………………………………n==40,所以=0.005,10b=×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)=45×0.05+55×0.1+65×0.2+75×0.3+85×0.25+95×0.1=74,由10×(0.005+0.010+0.020)+(m-70)×0.03=0.5,得m=75.(3)两名男生分别记为B,B,四名女生分别记为G,G,G,G, 411223从中任取两人共有15种结果,分别为:(B,B),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G),(B21112212331421221,G ),(G,G),(G,G),(G,G),(G,G),(G,G),(G,G), 4144322431231至少有一名男生的结果有9种,分别为:(B,B),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G),(B,G), 3422112212111213(B,G),42=p=. 所以至少有一名男生的概率为7。

专题七-统计与概率-数学(文科)-全国卷地区专用

专题七-统计与概率-数学(文科)-全国卷地区专用

P1=2145,则小波
不去唱歌的概率⑥ 为________.
—— 体验高
考 —[答—案]
11 15
核心知识聚焦
⇒ 互斥事件的 概率 关键词:3 互斥事件、
对立事件,如⑤⑥.
——主干知识 — —
[解析] P=1-P1=1-145=1115.
第16讲 统计
—— 基础知识必备 — —
第16讲 统计
► 考向一 古典概型
(2)要使 S4=2,需出现 3 个 1,1 个-1,所以基本事 件的总数是 2×2×2×2=16,满足 S4=2 的基本事件有 4 个,所以 S4=2 的概率为146=14.
第16讲 统计
► 考向二 几何概型
考向:从基本事件的无限性构建几何模型.
考例:2010 年 T14,近五年新课标全国卷共考查了 1 次.
第16讲 统计
规范解答 8.高考中常见的概率问题 解:(1)第 3 组的人数为 0.3×100=30,第 4 组的人数 为 0.2×100=20,第 5 组的人数为 0.1×100=10.(2 分) 因为第 3,4,5 组共有 60 名志愿者,所以利用分层抽 样的方法在 60 名志愿者中抽取 6 名志愿者,每组抽取的人 数1600分×别6=为1命:.所题第以考3应向组从探,究第36003×,64=,35;组第中4各组抽,取2600×3 名6=,22;名第,51组名, 志愿者.(4 分) (2)根据频率分布直方图,样本的平均数的估计值为: 22.5×(0.01×5)+27.5×(0.07×5)+32.5×(0.06×5)+ 37.5×(0.04×5)+42.5×(0.02×5)=6.45×5=32.25(岁). 所以这 100 名志愿者样本的平均数为 32.25 岁.(6 分)

高中数学文科概率与统计

高中数学文科概率与统计

概率与统计主要考点:(1)等可能事件、互斥事件(对立事件)、相互独立事件及独立重复实验的基本知识及四 种概率计算公式的应用,考查基础知识和基本计算能力.(2)求简单随机变量的分布列、数学期望及方差,特别是二项分布,常以现实生活、社 会热点为载体.(3)抽样方法的确定与计算、总体分布的估计.题型一 几类基本概型之间的综合【例1】 (08·安徽高考)在某次普通话测试中,为测试汉字发音水平,设置了10张 卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(Ⅰ) 现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测 试后放回,余下2位的测试,也按同样的方法进行。

求这三位被测试者抽取的卡片上, 拼音都带有后鼻音“g”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张, 求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率.【分析】 第(Ⅰ)小题首先确定每位测试者抽到一张带“g”卡片的概率,再利用相互独 立事件的概率公式计算;第(Ⅱ)利用等可能事件与互斥事件的概论公式计算. 【解】 (Ⅰ)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有 后鼻音“g”的概率为310,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为310×310×310=271000.(Ⅱ)设A i (i =1,2,3)表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g”的事件,且其相应的概率为P(A i ),则P(A 2)=C 17C 23C 310=740,P(A 3)=C 33C 310=1120,因而所求概率为P(A 2+A 3)=P(A 2)+P(A 3)=740+1120=1160.【点评】 本题主要考查等可能事件、互斥事件、相互独立事件的概率.解答题注意不要 混淆了互斥事件与相互独立事件,第(Ⅱ)的解答根据是“不少于”将事件分成了两个等 可能事件,同时也可以利用事件的对立事件进行计算. 【例2】(08·福建高考)三人独立破译同一份密码,已知三人各自破译出密码的概率分 别为15,14,13,且他们是否破译出密码互不影响。

统计概率文科高考题精选

统计概率文科高考题精选

2012年统计概率文科高考题精选(重庆15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)(重庆18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。

)甲、乙两人轮流投篮,每人每次投一球。

约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束。

设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。

(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率。

(陕西3).对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是( A )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53(陕西19)(本小题满分12分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(Ⅰ)估计甲品牌产品寿命小于200小时的概率;(Ⅱ)这两种品牌产品中,,某个产品已使用了200小时,试估计该产品是甲品牌的概率。

(湖南5).设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg(湖南13).图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 的平均数)(湖南17).(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) (广东13). 由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为_________。

最新各地高考数学文科分类汇编——统计与概率

最新各地高考数学文科分类汇编——统计与概率

(全国1卷3)答案:(全国1卷19)答案:(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3答案:D(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模y t型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y$=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y$=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(全国3卷5)答案:B(全国3卷14)答案:分层抽样(全国3卷18)答案:(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(天津卷15)(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人.(II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =.。

文科高考概率大题各省历年真题及答案

文科高考概率大题各省历年真题及答案

概率及统计1.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 (I )试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

2.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人) (Ⅰ)求x,y ;(Ⅱ)若从高校B 、C 抽取的人中选2人作专题发言,求这二人都来自高校C 的概率。

3.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率。

4.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率. 5.有编号为1A ,2A ,…10A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品 (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率。

6.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x x x x nsn -+-+-= 其中x 为n x x x ,,,21 的平均数) 7. 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概8.某日用品按行业质量标准分成五个等级,等级系数X 依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:编号1A2A3A4A5A6A7A8A9A10A直径1.511.491.491.511.491.511.471.461.531.47(I )若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a 、b 、c 的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

高考文科统计概率习题(含答案)汇编

高考文科统计概率习题(含答案)汇编

160/3120/3100/360/340/380/320/3频率/组距pm2.5(毫克/立方米)0.1050.1000.0950.0900.0850.0800.0750.0700.0650概率统计习题(文)概率统计习题(文) 1.某中学为了了解学生的课外阅读情况,某中学为了了解学生的课外阅读情况,随机调查了随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图1的条形图表示。

根据条形图可得这50名学生这一天平均每人的课外阅读时间为均每人的课外阅读时间为A.0.67(小时)(小时) B.0.97(小时)(小时) C.1.07(小时)(小时) D.1.57(小时) 2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .31 B .21 C .32D .43 3.近年来,随着以煤炭为主的能源.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急消耗大幅攀升、机动车保有量急 剧增加,我国许多大城市灰霾现剧增加,我国许多大城市灰霾现 象频发,造成灰霾天气的“元凶” 之一是空气中的pm2.5(直径小(直径小于等于2.5微米的颗粒物)微米的颗粒物)..右图是某市某月(按30天计)根据对“pm2.5” 24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中“pm2.5”24小时平均浓度值不超过0.075毫克/立方米为达标,那么该市当月有立方米为达标,那么该市当月有 天“pm2.5”含量不达标.”含量不达标.4.对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( )A . 300B . 100C . 60D . 205.高三某班学生每周用于数学学习的时间x (单位:小时)与数学成绩y (单位:分)之间有如下数据:之间有如下数据:x 24 15 23 19 16 11 20 16 17 13y 92 79 97 89 64 47 83 68 71 59根据统计资料,该班学生每周用于数学学习的时间的中位数是该班学生每周用于数学学习的时间的中位数是▲ ; 根据上表可得回归方程的斜率为3.53,截距为13.5,若某同学每周用于数学学习的时间为18 小时,则可预测该生数学成绩生数学成绩是 ▲ 分(结果保留整数). 6.记集合{}22(,)|16A x y x y =+£和集合{}(,)|40,0,0B x y x y x y =+-£³³表示的平面区域分别为12,W W ,若在区域1W 内任取一点(,)M x y ,则点M 落在区域2W 内的第12题图题图24小时平均浓度小时平均浓度 (毫克/立方米)0.060 0.0560.0400.034 0组距频率体重(kg )45 50 55 60 65 70 0.010(第4题图)概率为概率为( )A .12pB .1pC .14D .24p p- 7.已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程为( )A .ˆ 1.234y x =+B .ˆ 1.235y x =+C .ˆ 1.230.08y x =+D .ˆ0.08 1.23y x =+8.(本小题满分13分)分) 2012年春节前,有超过20万名广西、四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年的摩托车驾驶人有一个停车休息的场所。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计与概率高考题1(文科)
一、选择题
1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现
翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A .新农村建设后,种植收入减少
B .新农村建设后,其他收入增加了一倍以上
C .新农村建设后,养殖收入增加了一倍
D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2
人都是女同学的概率为
A .0.6
B .0.5
C .0.4
D .0.3
3.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非
现金支付的概率为0.15,则不用现金支付的概率为
A .0.3
B .0.4
C .0.6
D .0.7
4.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地
的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A .1x ,2x ,…,n x 的平均数
B .1x ,2x ,…,n x 的标准差
C .1x ,2x ,…,n x 的最大值
D .1x ,2x ,…,n x 的中位数
5.(2017新课标Ⅰ,T4)如图,正方形ABCD 的图形来自中国古代的太极图,正方形切圆
中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形随机取一点,则此点取自黑色部分的概率是
A .14
B .8π
C .12
D .4
π 6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5卡片中随机抽取1,放回后再随
机抽取1,则抽得的第一卡片上的数大于第二卡片上的数的概率为
A .110
B .15
C .310
D .25
7.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A .月接待游客逐月增加
B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
A.1
3
B.
1
2
C.
2
3
D.
5
6
9.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为
A.
7
10
B.
5
8
C.
3
8
D.
3
10
10.(2016年全国III卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各
月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
11.(2016全国III卷,T5)小敏打开计算机时,忘记了开码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是
A.
8
15
B.
1
8
C.
1
15
D.
1
30
12.(2016年,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为
A.1
5
B.
2
5
C.
8
25
D.
9
25
13.(2016年,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则
A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为
A.
3
10
B.
1
5
C.
1
10
D.
1
20
15.(2015新课标2,T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
16.(2015,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为
A.90 B.100 C.180 D.300
类别人数
老年教师900
中年教师1800
青年教师1600
合计4300
二、填空题
17.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
18.(2016年全国II卷,T16)有三卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
19.(2016年,T14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
②第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
20.(2015,T14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成
绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.。

相关文档
最新文档