PAM与脉冲编码调制解调实验报告__PAM与PCM

合集下载

抽样定理和脉冲调幅(PAM)实验范文

抽样定理和脉冲调幅(PAM)实验范文

实验二:抽样定理和脉冲调幅(PAM)实验一、实验目的通过本实验,学生应达到以下要求:1、观察并了解PAM信号形成、平顶展宽、解调和滤波等过程;2、验证并理解抽样定理,掌握对频谱混叠现象的分析方法;3、观察时分多路系统中非理想信道之间的路际串话现象,分析并掌握其形成原因。

二、实验内容本实验课完成以下实验内容:采用专用集成抽样保持开关完成对输入信号的抽样;多种抽样时隙的产生;采用低通滤波器完成对PAM信号的解调;测试出入信号频率与抽样频率之间的关系,观察频谱混叠现象,验证抽样定理;多路脉冲条幅(PAM);观察并测试时分多路PAM信号和高频串话。

三、实验原理在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。

因此,采取多路化制式是极为重要的通信手段。

最常用的多路复用体制是频分多路复用( FDM) 通信系统和时分多路复用( TDM) 通信系统。

频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础的。

在工作设备中,抽样过程是模拟信号数字化的第一步。

抽样性能的优劣关系到整个系统的性能指标。

抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图2-1 单路PCM系统示意图作为例子,图2-1示意地画出了传输一路语音信号的PCM系统。

从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。

因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。

实验6 PAM调制与解调实验报告

实验6 PAM调制与解调实验报告
PAM音频输入:
PAM调制输出:
波形:PAM音频输入为4.5K正弦波,PAM时钟输入为8K方波(即抽样频率为8K)时的波形
PAM音频输入:PAM解调输出:
3、满足抽样定理临界点时的波形:给出临界点的音频输入频率,抽样频率
PAM音频输入:(写出频率)PAM解调输出:(写出抽样频率)
八、实验思考题
1,抽样频率为8K,而音频频率的临界点为3.915K(写你自己得出的临界点频率),并不是精确满足fs= 2fH,为什么?
九、调试中遇到的问题及解决方法
现代通信原理实验报告
实验室名称:通信原理实验室实验日期:年月日
学院
班级、组号
姓名
实验项目名称
脉冲幅度调制与解调实验
指导
教师
一、实验目的
二、实验内容
三、实验仪器
四、实验原理
五、实验步骤
六、实验思考题解答
1、简述抽样定理
七、实验结果及分析
1、满足抽样定理时的波形:PAM音频输入为2K正弦波,PAM时钟输入为32K/64K方波(即抽样频率为32K)时的波形

第二次PAM实验

第二次PAM实验

研究 内容
模拟信号的数字化→脉冲振幅调制(PAM) 与解调→ 脉冲编码调制(PCM)与解调系 统工作原理;
实验 技术
信息传输系统中 信源的编码
6



脉冲振幅(PAM) 调制与解调系统实验
模拟信号
PAM信号
实验应知知识
在数字调制的实验中,我们验证的调制 技术是采用连续振荡波形(如正弦信号) 作为受调制的载波,但在实际的通信工程 中,这并不是唯一的一种载波形式。在时 间上离散的脉冲信号序列,同样可以作为 载波。这时的调制是用基带信号去改变脉 冲信号的波形参数而达到的,人们把这种 调制称为脉冲调制。
U701A、B、C U703 U702B U702A、C
语音 限带器
缓 冲
抽样门
缓 冲
FPGA 抽样脉冲 产生器
低通 滤波器
5、脉冲调幅与解调系统实验电路构成框图
通信原理综合实验系统所设计的抽样定理实验系统组成框图是: 1、跳线控制开关:K701、K702、K001、KQ02 2、语音限带器 3、抽样门 4、抽样脉冲产生器 5、低通滤波器
(2)抽样定理:
抽样脉冲
抽样定理指出,一个频带受限(0;fH)信号m(t),如果它的 最高频率为fH,则可以唯一地由频率等于或大于2fH的样值序列 所决定。在满足这一条件的情况下,抽样信号保留了原信号的 全部信息,并且,从抽样信号中可以无失真地恢复出原始信号。
f≥2fH
话音输入 0-3400Hz
=
fH
基带信号
脉冲载波
振幅调制 (PAM)
PAM信号的特点:时间离散,但幅度不离散,仍为模拟信号。
一、实 验 目 的
1.通过脉冲幅度调制与解调实验,加深理 解脉冲幅度调制与解调的特点。 2.通过PAM编/译码系统实验,掌握PAM系 统的电路组成与工作原理,建立PAM通信系统 的概念。

脉冲编码调制实验报告

脉冲编码调制实验报告

一、实验目的1. 了解脉冲编码调制(PCM)的工作原理和实现过程;2. 掌握PCM编译码器的组成和功能;3. 验证PCM编译码原理在实际应用中的有效性;4. 分析PCM编译码过程中可能出现的问题及解决方法。

二、实验原理脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的方法。

其基本原理是:首先对模拟信号进行抽样,使其在时间上离散化;然后对抽样值进行量化,使其在幅度上离散化;最后将量化后的信号编码成二进制信号。

PCM编译码器是实现PCM调制和解调的设备。

1. 抽样:抽样是指在一定时间间隔内对模拟信号进行采样,使其在时间上离散化。

抽样定理指出,为了无失真地恢复原信号,抽样频率必须大于信号最高频率的两倍。

2. 量化:量化是指将抽样值进行幅度离散化。

量化方法有均匀量化和非均匀量化。

均匀量化是将输入信号的取值域按等距离分割,而非均匀量化则是根据信号特性对取值域进行不等距离分割。

3. 编码:编码是指将量化后的信号编码成二进制信号。

常用的编码方法有自然二进制编码、格雷码编码等。

三、实验仪器与设备1. 实验箱:包括模拟信号发生器、抽样器、量化器、编码器、译码器等;2. 示波器:用于观察信号波形;3. 数字频率计:用于测量信号频率;4. 计算机软件:用于数据处理和分析。

四、实验步骤1. 模拟信号发生器输出一个连续的模拟信号;2. 通过抽样器对模拟信号进行抽样,得到一系列抽样值;3. 对抽样值进行量化,得到一系列量化值;4. 将量化值进行编码,得到一系列二进制信号;5. 将二进制信号输入译码器,恢复出量化值;6. 将量化值进行反量化,得到一系列反量化值;7. 将反量化值通过重建滤波器,恢复出模拟信号;8. 观察示波器上的信号波形,分析PCM编译码过程。

五、实验结果与分析1. 观察示波器上的信号波形,可以发现,通过PCM编译码过程,模拟信号被成功转换为数字信号,再恢复为模拟信号。

这验证了PCM编译码原理在实际应用中的有效性。

脉冲编码调制与解调实验

脉冲编码调制与解调实验

实验五脉冲编码调制解调实验一、实验目的1.掌握脉冲编码调制与解调的原理。

2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3.了解脉冲编码调制信号的频谱特性。

4.了解大规模集成电路W681512的使用方法。

二、实验内容1.观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。

2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4.改变位同步时钟,观测脉冲编码调制波形。

三、实验器材1.信号源模块2.模拟信号数字化模块3.终端模块(可选)4.频谱分析模块5.20M双踪示波器一台6.音频信号发生器(可选)一台7.立体声单放机(可选)一台8.立体声耳机一副9.连接线若干四、实验原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图8-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300-3400Hz 左右,所以预滤波会引入一定的频带失真。

图8-1 PCM 调制原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比,即信噪比S/N来表示,国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s,使用A律或 律编码律。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM 数字电话终端机的结构示意图1、实验原理和电路说明PCM 编译码系统由定时部分和PCM 编译码器构成,电路原理图附于本章后.◆ PCM 编译码原理为适应语音信号的动态范围,实用的PCM 编译码必须是非线性的.目前,国际上采用的 均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和 15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A 律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的. ◆ PCM 编译码器简介鉴于我国国内采用的是A 律量化特性,因此本实验采用TP3067专用大规模集成电路,它 是CMOS 工艺制造的单片PCMA 律编译器,并且片内带输入输出话路滤波器. TP3067的管脚如图4.4所示,内部组成框图如图4.5所示. TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考. (3)VPO- 收端功放的反相输出端. (4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端. (6)VCC +5V 电压输入.(7)FSR 接收部分帧同步时隙信号,是一个8KHz 脉冲序列. (8)DR 接收部分PCM 码流解码输入端.(9)BCLKR/CLKSEL 位时钟(bitclock),它使PCM 码流随着FSr 上升沿逐位移入Dr 端,位时钟 可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.混合装置V oice发滤波器波器收滤编码器器码译分路路合发收(10)MCLKR/PDN 接收部分主时钟,它的频率必须为1536MHz,1544MHz 或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR 被选择为内部时钟,当 MCLKx 接高电平,该芯片进入低功耗状态.(11)MCLKx 发送部分主时钟,必须为1536MHz,1544MHz 或2048MHz.可以和MCLKR 异步,但 是同步工作时可达到最佳状态.(12)BCLKx 发送部分时钟,使PCM 码流逐位移入DR 端.可以为从64KHz 到2048MHz 的任意 频率,但必须和MCLKx 同步.(13)Dx 发送部分PCM 码流编码输出端.(14)FSx 发送部分帧同步时隙信号,为一个8KHz 的脉冲序列. (15)TSx 漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送 部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连. (17)GSx 发送部分输入放大器的模拟基础,用于在外部同轴增益. (18)VFxI 发送部分输入放大器的反相输入端。

通信报告PAM实验

通信报告PAM实验

通信原理实验报告--PAM实验101180009陈惠娟一、实验目的1、验证抽样定理;2、观察PAM信号形成的过程;3、了解混迭效应产生的原因;4、学习中频抽样的基本方法;二、实验仪器1、JH5001(Ⅲ)通信原理基础实验一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为f h,则可以唯一地由频率等于或大于2f h的样值序列所决定。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原始信号。

实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz的语音信号,通常采用8KHz抽样频率。

这样可以留出一定的防卫带(1200Hz)。

当抽样频率f s低于2倍语音信号的最高频率f h,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量。

本次实验采用标准的8KHz抽样频率,并用函数信号发生器产生一个信号,通过改变函数信号发生器的频率,观察抽样序列和重建信号,检验抽样定理的正确性。

图6 抽样定理实验电路组成框图上图为抽样定理实验电路组成框图,低通滤波器为3dB带宽为3400Hz的滤波器,用于限制最高的信号频率,信号通过跟随器缓冲送到模拟开关。

通过抽样时钟完成对信号的抽样,形成抽样序列信号,再通过运放输出。

接着继续通过3dB带宽为3400Hz的低通滤波器,恢复原始信号。

跳线开关K702用于选择输入滤波器,当K702设置在滤波位置时(左端),送入到抽样电路的信号经过3400Hz的低通滤波器;当K702设置在直通位置时(右端),实验中所有信号都不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。

四、实验内容1、自然抽样脉冲序列测量(1)实验步骤将复接解复接模块中的KB04设置在右端(自然抽样状态);将ADPCM模块的输入信号选择开关K501设置在右端以输入测试信号。

脉冲编码调制(PCM)及系统实验报告

脉冲编码调制(PCM)及系统实验报告

深圳大学实验报告
课程名称:通信原理
实验项目名称:脉冲编码调制(PCM)及系统
学院:信息工程学院
专业:通信工程
指导教师:李晓滨
报告人:学号:班级: 2 实验时间:2017.11.22
实验报告提交时间:2017.12.
教务部制
图2-2帧脉冲和PCM编码数据(128K)实测波形
(2)时钟为128KHZ,频率为2KHZ的同步正弦波及PCM编码数据波形:用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据
(3)时钟为64KHZ,频率为2KHZ的非同步正弦波及PCM编码数据波形用8KHZ的矩形窄脉冲测出一帧8bit的PCM编码数据;
(4)时钟为128KHZ,频率为2KHZ的非同步正弦波及用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二PAM与PCM
一、实验目的
1.掌握脉冲编码调制与解调的原理。

2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3.了解大规模集成电路TP3067 的使用方法。

二、实验器材
1. 信号源模块
2. 模拟信号数字化模块
3. 终端模块(可选)
4. 60M 双踪示波器一台
5. 音频信号发生器(可选)一台
6. 立体声单放机(可选)一台
7. 立体声耳机一副
8. 连接线
三、实验内容
1.观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况
四、实验原理
1 PAM 实验
原理框图如图2-1所示:
图2-1
假设m(t)、和的频谱分别为、、)。

可得:
所以,抽样频率,频谱才不会发生混叠,此时,被称为奈奎斯特频率。

所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。

如果脉冲载波是由冲激脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制的原理。

但是,实际上理想的冲激脉冲串物理实现困难,通常采用窄脉冲串来代替。

本实验模块采用32K 或64K 或1MHz 的窄矩形脉冲来代替理想的窄脉冲串,当然,也可以采用外接抽样脉冲对输入信号进行脉冲幅度调制,本实验采用图2-2 所示的原理方框图。

图2-2
脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图2-3所示。

PCM 主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。

编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300-3400Hz 左右,所以预滤波会引入一定的频带失真。

图2-3
五、实验步骤及结果分析
1. PAM 实验部分
①将信号源模块、PAM/AM 模块、终端模块小心地固定在主机箱中,确保电源接触良好。

②插上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的开关POWER1、POWER2、S2、S3,对应的发光二极管LED001、LED002、D200、D201、LED600、L1、L2 发光,按一下信号源模块的复位键,四个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
③将信号源模块产生的2KHz(峰-峰值在2V 左右,从信号输出点“模拟输出”输出)的正弦波送入PAM/AM 模块的信号输入点“PAM 音频输入”,将信号源模块产生的62.5KHz 的方波(从信号输出点64K 输出)送入PAM/AM 模块的信号输入点“PAM时钟输入”,观察“调制输出”和“解调输出”测试点输出
的波形。

2. 脉冲编码调制解调部分
1. 将信号源模块、模拟信号数字化模块、终端模块小心地固定在主机箱中,确保电源接触良好。

2.插上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的开关POWER1、POWER2、S2、S3,对应的发光二极管LED001、LED002、D200、D201、LED600、LED300、LED301 发光,按一下信号源模块的复位键,四个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
3.将信号源模块的拨码开关SW101、SW102 设置为0000000 0000001。

4.将信号源模块产生的正弦波信号(频率为2.5KHz,峰-峰值为3V)从点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”“BS”分别与模拟信号数字化模块的信号输入点“CLKB-IN”、“FRAMB-IN”、“2048K-IN”连接,观察信号输出点“PCMB-OUT”的波形。

5. 连接“CLKB-IN”和“CLK2-IN”,“FRAMB-IN”和“FRAM2-IN”,连接信号输出点“PCMB-OUT”和信号输入点“PCM2-IN”,观察信号输出点“OUT”输出的波形。

6. 改变输入正弦信号的幅度,分别使其峰-峰值等于和大于5V(若幅度无法达到5V,可将输入正弦信号先通过信号源模块的模拟信号放大通道,再送入模拟信号数字化模块),将示波器探头分别接在信号输出点“OUT”和“PCMB-OUT”上,观察满载和过载时的脉冲幅度调制和解调的波形,并记录下来(应可观察到,当输入正弦波信号幅度大于5V 时,PCM 解码信号中带有明显的噪声)。

7.改变输入正弦信号的频率,使其频率分别大于3400Hz 或小于300Hz,观察点“OUT”、“PCMB-OUT”的输出波形,记录下来(应可观察到,当输入正弦波的频率大
于3400Hz 或小于300Hz 时,PCM 解码信号的幅度急剧减小)
五、实验思考题
1.什么是PN 序列,有何用途,实验箱提供怎么样的?电路设计如何产生。

答:这类序列具有类似随机噪声的一些统计特性,但和真正的随机信号不同,它可以重复产生和处理,故称作伪随机噪声序列。

PN序列的频带利用率非常高,最典型应用就是在CDMA 中。

电路是由移位寄存器和反馈逻辑电路组成。

2.本实验采用的是什么抽样方式?为什么?
答:本实验模块采用窄脉冲串来代替。

因为实际上理想的冲激脉冲串物理实现困难,所以通常采用窄脉冲串来代替。

3.本实验的抽样形式同理想抽样有何区别?试将理论和实验相结合加以分析。

答:理想的抽样脉冲是时间点,是在一个时刻上实现的没有时间长度,实际上是得不到的,只能以周期性窄脉冲信号代替冲激信。

实际上我们可以将周期性脉冲看作非正弦载波,而抽样过程可以看作用模拟信号对其进行振幅调制。

4. TP3067PCM 编码器输出的PCM 数据的速率是多少?在本次实验系统中,为什么要给TP3067 提供2.048MHz 的时钟?
答:速率为64kb/s。

由PCM帧结构可知,每秒有800帧,一帧有32时隙,每个时隙有8bit。

所以需要要给TP3067 提供 2.048MHz 的时钟
5. 认真分析TP3067 主时钟与8KHz 帧收、发同步时钟的相位关系。

答:TP3067主时钟与8KHz帧收、发同步时钟的相位始终保持反向。

6. 为什么实验时观察到的PCM 编码信号总是随时变化的?
答:采样频率不是输入信号频率的整数倍,所以每个周期中抽样点都不是一样的,所以所得到的的编码输出也是不一样的。

PCM 编码信号总是随时变化的。

7. 模拟音频信号变换成了PCM 数字信号,请描述有些什么具体改变?是在哪个域的?答:其波形为一系列脉冲的组合,并且脉冲幅度随输入信号的幅度规律变化。

该变化出现在时域。

六:实验小结
通过本次试验,我对脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法有了更好的认识。

同时对脉冲编码调制与解调的原理有了清晰的认识,了解了大规模集成电路TP3067 的使用方法。

当然,实验中还是出现了许多问题,比如实验中出现比较乱没有规律的波形,虽然反复调试后得到了结果,但对那个没规律的图形我还是很难分析其中的原因。

要去真正了解和熟悉示波器还是需要更多实践的,我希望在以后的实验中能有更多的亲手实践机会,更多的独立思考空间来解决实验中的各种问题。

相关文档
最新文档