人教版数学选修2—1第三章测试题

合集下载

高二数学选修2-1第三章章末测试卷

高二数学选修2-1第三章章末测试卷

高二数学选修2-1第三章章末测试卷考试时间:60分钟 命题人:杨波 备课组长:姓名:___________班级:___________一、选择题(本题共7道小题,每小题7分,共49分)1.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是()A .B .C .D .2.已知平面α的法向量为(2,2,4),(3,1,2)n AB =-=-,点A 不在α内,则直线AB 与平面的位置关系为A .AB α⊥ B . AB α⊂C .AB 与α相交不垂直D .//AB α 3.已知平面α内有一点)2,1,1(-M ,平面α的一个法向量为)6,3,6(-=n ,则下列点P 中,在平面α内的是( )A. )3,3,2(PB. )1,0,2(-PC.)0,4,4(-PD.)4,3,3(-P4.已知O (0,0,0),()()1,0,0,0,1,1A B -,OA OB λ+与OB 的夹角为120°,则λ的值为( ) A. 66± B. 66 C. 66- D. 6± 5.若,,是平面内的三点,设平面的法向量,则( )A B 1:1:1 C -:1:1 D 3:2:46.已知斜三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )A .34B .54C .74D .347.三棱锥错误!未找到引用源。

三条侧棱两两垂直,PA=a ,PB=b ,PC=c ,三角形ABC 的面积为S ,则顶点P 到底面的距离是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

二、填空题(本题共3道小题,每小题7分,共21分)8.在xOy 平面内的直线x+y=1上确定一点M ,则M 到空间直角坐标系Oxyz 的点N (2,3,1)的最小距离为 .9.已知空间四点(0,3,5),(2,3,1),(4,1,5),(,5,9)A B C D x 共面,则x = .10.在四面体ABCD 中,AD⊥AB,AD⊥DC,若AD 与BC 成角60°,且AD=,则BC 等于 . 三、解答题(本题共2道小题,每小题15分,共30分)11.如图,几何体EF ﹣ABCD 中,CDEF 为边长为1的正方形,ABCD 为直角梯形,AB∥CD,CD⊥BC,BC=1,AB=2,∠BCF=90°(Ⅰ)求成:BD⊥AE(Ⅱ)求二面角B ﹣AE ﹣D 的大小.12.已知长方体1AC 中,棱1AB BC ==,棱12BB =,连接1B C ,过B 点作1B C 的垂线交1CC 于E ,交1B C 于F 。

人教a版高中数学选修21全册同步练习及单元检测含答案

人教a版高中数学选修21全册同步练习及单元检测含答案

答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根

三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1

2019-2020学年高二数学人教A版选修2-1:第三章检测(A) 含解析

2019-2020学年高二数学人教A版选修2-1:第三章检测(A) 含解析

( ) ������
������������ = 2������ - 1, - 2, + 2 . 2
������
+2
2������ - 1 - 2 2
∵ ������������ ∥ ������������, ∴
== ,
1 -1 3
∴p = 32,������ = 8.

p+q
=
19.
2
19
答案: 2
=
������������·(������������
-
������������)
=
|������������||������������|������������������
������ 3
-
|������������||������������|������������������
������ 3
8 在边长为 1 的菱形 ABCD 中,∠ABC=60°.将菱形沿对角线 AC 折起,使折起后 BD=1,则二面角 BAC-D 的余弦值为( )
A.13������.12������.233������.
3 2
解析:设菱形对角线 AC 与 BD 相交于点 O,则∠BOD 为二面角 B-AC-D 的平面角,
2 1 = ������������' + ������'������ + (������'������ ‒ ������'������) 2
1
1
= ������������' + ������'������ + ������'������,
2
2
= ������������·������������' = ∴sin ∠ADA' |������������||������������'|

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(2)

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(2)

一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .232.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠3.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .24.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .45.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =6.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C .D .7.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .77y x =±B .7y x =±C .55y x =±D .5y x =±8.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9169.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( )A .11,164⎛⎫⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34πC .(65)π-D .54π11.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D 612.已知椭圆E :()222210x y a b a b+=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B 3C .13D 23二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.15.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______.16.在平面直角坐标系中,已知椭圆22:12+=x E y ,直线10x y +-=与椭圆E 交于A ,B 两点,则△AOB 的外接圆圆心的坐标为______.17.如图,将桌面上装有液体的圆柱形杯子倾斜α角(母线与竖直方向所成角)后,液面呈椭圆形,当30α=︒时,该椭圆的离心率为____________.18.已知抛物线2:4C x y =的焦点为F ,过C 上一点A 作C 的准线l 的垂线,垂足为B ,连接FB 交x 轴于点D ,若||5AF =,则||AD =_________.19.已知点M 抛物线24y x =上的一点,F 为抛物线的焦点,点A 在圆()()22:311C x y -+-=上,则MA MF +的最小值________.20.已知椭圆()222210x y a b a b +=>>的离心率为22,右焦点为()1,0F ,三角形ABC的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、F ,且三条边所在直线的斜率分别为()123123,,0k k k k k k ≠.若直线OD 、OE 、OF 的斜率之和为-1(O 为坐标原点),则123111k k k ++=______. 三、解答题21.在平面直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点与椭圆:2212x y +=的右焦点重合. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)记(4,0)P ,若抛物线C 上存在两点B ,D ,使PBD △为以P 为顶点的等腰三角形,求直线BD 的斜率的取值范围.22.已知椭圆2222:1(0)x y D a b a b +=>>的离心率为2e =,点1)-在椭圆D 上.(1)求椭圆D 的标准方程;(2)设点(2,0)M -,(2,0)N,过点F 的直线l 与椭圆交于A ,B 两点(A 点在x 轴上方),设直线MA ,NB (O 为坐标原点)的斜率分别为k 1,k 2,求证:12k k 为定值. 23.已知椭圆C :22221x y a b+=()0a b >>的左、右焦点分别为1F ,2F ,点A 在椭圆C上,且112AF F F ⊥,12AF F △的面积为32,点,2b B b ⎛⎫- ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)斜率存在且不为零的直线l 与椭圆C 相交于P ,Q 两点,点M 的坐标为()8,0,若直线MP ,MQ 的倾斜角互补,求证:直线l 过定点.24.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.25.已知离心率e =C :()222210x y a b a b +=>>的一个焦点为()1,0-.(1)求椭圆C 的方程;(2)若斜率为1的直线l 交椭圆C 于A ,B两点,且3AB =,求直线l 的方程. 26.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为12F F 、,点P 在椭圆上运动,求12PF PF ⋅的取值范围; (2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB 、COD △的面积分别为1S 、2S ,求12S S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭,过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EF e QE QF==+. 故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x y m+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x y m +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.3.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =,∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==≥当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 5.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.6.A解析:A 【分析】设122F F c =,求出1AF ,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则223b c a a =-=, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形, 四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.7.C解析:C 【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b ,得渐近线方程. 【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c = 渐近线方程为by x a=±,其中一条为0bx ay -=,1==,1b =,∴a = ∴渐近线方程为y x =. 故选:C . 【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆.8.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.9.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A B M,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1122O l d -==,圆C 面积的最小值为2455ππ⎛= ⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =.5ce a ∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b --+=,因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a+-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以231c b e a a ⎛⎫==-= ⎪⎝⎭, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB 方程为33()34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ =, ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=. 【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.15.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b ac =-=-=,所以,32b =.故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.16.【分析】首先联立方程求得设圆心坐标利用其到△三个顶点的距离相等列出等量关系式求得结果【详解】联立方程可得:设圆心坐标则得:故答案为:【点睛】该题考查的是有关圆的问题涉及到的知识点有求直线与椭圆的交点解析:51,62⎛⎫⎪⎝⎭【分析】首先联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩,求得()0,1A ,41,33B ⎛⎫- ⎪⎝⎭,设圆心坐标(),x y ,利用其到△AOB 三个顶点的距离相等,列出等量关系式,求得结果. 【详解】联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩可得:()0,1A ,41,33B ⎛⎫- ⎪⎝⎭, 设圆心坐标(),x y ,则()22222241133x y x y x y ⎛⎫-++=+=+- ⎛⎫ ⎪⎝⎭⎪⎝⎭, 得:56x =,12y =, 故答案为:51,62⎛⎫ ⎪⎝⎭. 【点睛】该题考查的是有关圆的问题,涉及到的知识点有求直线与椭圆的交点,三角形外接圆的圆心的求法,属于简单题目.17.【分析】由图知椭圆的短轴长为圆柱的直径椭圆的长半轴与底面半径构成夹角为的直角三角形由此可求得椭圆离心率【详解】设圆柱形杯子的底面半径为画示意图如图所示:则是椭圆的长半轴长是椭圆的短半轴长则又则故答案 解析:12【分析】由图知椭圆的短轴长为圆柱的直径,椭圆的长半轴与底面半径构成夹角为30的直角三角形,由此可求得椭圆离心率. 【详解】设圆柱形杯子的底面半径为b ,画示意图如图所示:则OC 是椭圆的长半轴长,OB 是椭圆的短半轴长,则BC c ==,又30COB α∠==︒,则1sin 2c e a α===. 故答案为:12【点睛】本题考查了圆柱的截面为椭圆的问题,根据椭圆的性质求出椭圆的离心率,考查了学生的分析能力,空间想象能力,属于中档题.18.【分析】设根据利用抛物线的定义得到解得代入中得到AB 的坐标直线的方程令得D 的坐标用两点间的距离公式求解【详解】设因为所以得代入中得当时则直线为令得所以当时同理得故答案为:【点睛】本题主要考查抛物线的解析:【分析】设()00,A x y ,根据||5AF =,利用抛物线的定义得到0||15AB y =+=,解得04y =,代入24x y =中,得到A ,B 的坐标,直线BF 的方程,令0y =,得D 的坐标,用两点间的距离公式求解. 【详解】设()00,A x y ,因为||5AF =, 所以0||15AB y =+=,得04y =,代入24x y =中,得04x =±,当(4,4)A 时,(4,1)B -,则直线BF 为112y x =-+, 令0y =,得(2,0)D ,所以||AD =当(4,4)A -时,同理得||AD =故答案为:【点睛】本题主要考查抛物线的定义和几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题.19.3【分析】由题得抛物线的准线方程为过点作于根据抛物线的定义将问题转化为的最小值根据点在圆上判断出当三点共线时有最小值进而求得答案【详解】由题得抛物线的准线方程为过点作于又所以因为点在圆上且半径为故当解析:3 【分析】由题得抛物线的准线l 方程为1x =-,过点M 作MN l ⊥于N ,根据抛物线的定义将问题转化为MA MN +的最小值,根据点A 在圆C 上,判断出当、、C N M 三点共线时,MA MN +有最小值,进而求得答案. 【详解】由题得抛物线的准线l 方程为1x =-,过点M 作MN l ⊥于N ,又MN MF =, 所以=MA MF MA MN ++,因为点A 在圆()()22:311C x y -+-=上,且()3,1C ,半径为1r =,故当、、C N M 三点共线时,()min413MA MN CN r +=-=-=,所以MA MF +的最小值为3. 故答案为:3 【点睛】本题主要考查了抛物线的标准方程与定义,与圆有关的最值问题,考查了学生的转化与化归的思想.20.2【分析】求出椭圆的方程利用点差法求得直线的斜率同理即可求得【详解】由题意可得所以所以椭圆的标准方程为设由两式作差可得则而故即同理可得所以故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法考查解析:2 【分析】求出椭圆的方程,利用“点差法”求得直线AB 的斜率,同理即可求得123111k k k ++ 【详解】 由题意可得1c =,22c a =,所以2a =221b a c =-=, 所以椭圆的标准方程为2212x y +=,设()11,A x y ,()22,B x y ,()33,C x y ,1212,22x x y y D ++⎛⎫ ⎪⎝⎭,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 两式作差可得()()()()212121212x x x x y y y y -+=--+,则()212121212y y x x y y x x -+=-+-, 而1212OD y y k x x +=+,故1122AB ODk k k =-=-,即112OD k k =-, 同理可得212OE k k =-,312OF k k =-, 所以()12311122OD OE OF k k k k k k ++=-++=. 故答案为:2 【点睛】本题考查三条直线的斜率的倒数和的求法,考查转化思想以及计算能力,属于中档题.三、解答题21.(Ⅰ)方程为24y x =,准线为1x =-;(Ⅱ)2,,2⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭【分析】(Ⅰ)由椭圆方程可得其右焦点为()1,0,即可求出p ,得出抛物线方程和准线; (Ⅱ)设直线BD 的方程为y kx m =+,联立直线与抛物线方程,可得1km <,表示出BD 中点M ,由题可得PM BD ⊥,由1PM k k=-建立关系可求. 【详解】(Ⅰ)由椭圆方程可得其右焦点为()1,0, 抛物线与椭圆右焦点重合,12p∴=,即2p =, 故抛物线C 的方程为24y x =,准线为1x =-; (Ⅱ)设直线BD 的方程为y kx m =+,联立直线与抛物线方程24y kx m y x=+⎧⎨=⎩,可得()222240k x km x m +-+=,则()2222440km k m ∆=-->,可得1km <,设()()1122,,,B x y D x y ,212122242,km m x x x x k k-∴+==, 设BD 中点为()00,M x y ,则120222x x km x k +-==,002y kx m k=+=,PBD △为以P 为顶点的等腰三角形,则PM BD ⊥,则2220212244PMk k k km km k k k -===-----,整理可得222km k =-, 1km <,则2221k -<,解得2k <-或k >,故直线BD的斜率的取值范围为2,,22⎛⎛⎫-∞-+∞ ⎪⎝⎭⎝⎭. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)22142x y +=;(2)证明见解析.【分析】(1)由已知得到关于,a b 的方程组,解方程组即得解;(2)设直线l 的方程为x my =+理化简12kk 即得解.【详解】(1)椭圆D的离心率2e a ==,a ∴=,又点1)-在椭圆D 上,22211a b∴+=,得2a =,b = ∴椭圆D的标准方程22142x y +=.(2)由题意得,直线l 的方程为x my =+由22142x y x my ⎧+=⎪⎨⎪=⎩消元可得()22220m y ++-=, 设())()1122,,,A x y B x y ,则1222y y m+=-+,12222y y m =-+, ()()1212121212222()4(2(4x x x x x x my my my my ++=+++=++++221212(2()2)m y y m y y =+++22222212(22222)m m m m m ⎛⎫+⎛⎫=-++-+= ⎪ ⎪ ⎪+++⎝⎭⎝⎭()()()2112122121222212121212222223222422x k y x y y x y y y y k x y x y x x x x ----∴=⋅=⋅=⋅==-+++-++定值). 【点睛】方法点睛:定值问题在几何问题中,有些几何量与参数无关,这就构成了定值问题,定值问题的处理常见的方法有:(1)特殊探究,一般证明;(2)直接求题目给定的对象的值,证明其结果是一个常数.23.(1)22143x y +=;(2)证明见解析.【分析】(1)先求出21=b AF a,利用12AF F △的面积为32,点,2b B b ⎛⎫- ⎪⎝⎭在椭圆C 上列方程组,解出a 、b ,写出椭圆C 的标准方程;(2)设直线l 的方程为y kx m =+()0k ≠,用“设而不求法”把直线MP ,MQ 的倾斜角互补,表示为0MP MQ k k +=,求出k 、m 的关系,利用点斜式方程求出定点坐标. 【详解】(1)解:设椭圆C 的焦距为2c ,令x c =,代入椭圆C 的方程可求2by a=±.∵112AF F F ⊥,∴21=b AF a由12AF F △的面积为32,可得232b c a =,有232b c a =.将点B 的坐标代入椭圆C 的方程,可得222214b b a b +=,解得2b a =.联立方程组2222,3,2b b c a a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得:2a =,b =1c =, 故椭圆C 的标准方程为22143x y +=.(2)证明:设直线l 的方程为y kx m =+()0k ≠,点P ,Q 的坐标分别为()11,x y ,()22,x y ,联立方程221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 后整理为()2224384120k x kmx m +++-=. 有122843km x x k +=-+,212241243m x x k -=+ 有()11111118888888MP k x k m y kx m k m k k x x x x -++++====+----, 同理:288MQ k mk k x +=+-, 所以()12128811288888MP MQ k m k m k k k k k k m x x x x ⎛⎫+++=+++=+++ ⎪----⎝⎭又()()2212222121212228162861611434126488864166445644343km k km x x k m km x x x x x x m km k k k --+++-++===-----+++++++++,由直线MP 、MQ 的倾斜角互补,有()121128088k k m x x ⎛⎫+++= ⎪--⎝⎭, 有()()222288620166445k m k km k m km k +++-=+++,通分整理后可得2k m =-,可得直线l 的方程为2y mx m =-+,即122y m x ⎛⎫=-- ⎪⎝⎭,可知直线l 过定点1,02⎛⎫ ⎪⎝⎭. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.(3)证明直线过定点,通常有两类:①把直线方程整理为斜截式y=kx+b ,过定点(0,b ); ②把直线方程整理为点斜式y - y o =k (x- x 0),过定点(x 0,y 0) . 24.(1)240x y --=;(2)18y x x ⎛=-<< ⎝⎭. 【分析】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=,22221164x y +=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m =+,弦的端点坐标及中点(),M x y ,与椭圆方程联立化为:2217164160x mx m ++-=,由0>,化为:268m <,再利用根与系数的关系、中点坐标公式即可得出. 【详解】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=, 22221164x y +=,相减可得:12121212()()()()0164x x x x y y y y +-+-+=,把1222x x +=,1212y y +=-, 1212y y k x x -=-代入可得: 12k =.∴以()2,1P -为中点的弦所在直线的方程为:()1122y x +=-,化为: 240x y --=. (2)设直线方程为:2y x m =+,弦的端点()11,A x y , ()22,B x y ,中点(),M x y .联立2221164y x m x y =+⎧⎪⎨+=⎪⎩,化为 2217164160x mx m ++-=,()22256684160m m =-->,化为: 268m <,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得1717x -<<,∴18y x x ⎛=-<< ⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法;(2)由直线与椭圆的位置关系得出m 的范围.25.(1)2212x y +=;(2)1y x =+或1y x =-.【分析】(1)由离心率求出a ,再求出b ,可得椭圆方程;(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,然后代入弦长公式12AB x =-可求得参数m 值得直线方程.【详解】(1)由题意知,1c =,2c e a ==,∴a = 1b =, ∴椭圆C 的方程为2212x y +=.(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩, 化简,得2234220x mx m ++-=.由已知得,()2221612228240m m m ∆=--=-+>,即23m <,∴m <<1243m x x +=-,212223m x x -=.∴213AB x =-===, 解得1m =±,符合题意,∴直线l 的方程为1y x =+或1y x =-. 【点睛】方法点睛:本题考查直线与椭圆相交弦长问题.解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)A x y B x y ,设出直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +,代入弦长公式12AB x =-求解.26.(1)[0,3];(2)2,2⎡⎢⎣⎦. 【分析】(1)设(),P x y ,求出21212PF PF x ⋅=,即得解;(2)①当直线l 的斜率不存在时,求得122S S =;②若直线l 的斜率存在,设其方程为y kx m =+,联立直线和椭圆方程得到韦达定理,求出12S S =换元求解.最后综合得解. 【详解】(1)由已知,())12,F F ,设(),Px y,(x ≤≤,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故2121[0,3]2PF PF x ⋅=∈. 所以12PF PF ⋅的取值范围为[0,3]. (2)①当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x()(),,1,1,1,1ABC D -,故12221S S ==. ②若直线l 的斜率存在,设其方程为y kx m =+,=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立, 得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD =22221122113,322x y y x =-=-,可知12S S == 将根与系数的关系代入整理得:12S S =结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12SS ∴的取值范围是2,2⎡⎢⎣⎦. 【点睛】关键点点睛:解答本题的关键是求出12S S =值范围.本题利用了两次换元,转化成二次函数求范围.换元法是高中数学常用的一个解题技巧,要理解掌握灵活运用.。

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。

2019年高中数学选修2-1第三章测评考试试题(有答案)

2019年高中数学选修2-1第三章测评考试试题(有答案)

评卷人 得分
三、解答题
17 . 在 四 棱 锥 P-ABCD 中 ,ABCD 为 平 行 四 边 形 ,AC 与 BD 交 于 O,G 为 BD 上 一 点,BG=2GD, = , = , = ,试用基底{ , , }表示向量 . 18.已知向量 =(1,-3,2), =(-2,1,1),点 A(-3,-1,4),B(-2,-2,2). (1)求|2 + |; (2)在直线 AB 上,是否存在一点 E,使得 ⊥ ?(O 为原点)
【详解】
设平面 ABC 的单位法向量是
,则
解得
,所以平面 ABC 的单位法向量是±
【点睛】
本题主要考查向量数量积及模的坐标运算,关键要掌握运算法则,属于基础题。
15. 【解析】 【分析】 先设上、下底面中心分别为 O1、O,则 OO1⊥平面 ABCD,以 O 为原点,直线 BD、AC、OO1 分别 为 x 轴、y 轴、z 轴建立空间直角坐标系.设棱台高为 h,根据侧棱与底面所成的角为 60°
求得 h= ,再求得 =(- , , ), =(- , ,- ),再求 cos〈 , 〉 的值,即得异面直线 AD1 与 B1C 所成角的余弦值. 【详解】
11
设上、下底面中心分别为 O1、O,则 OO1⊥平面 ABCD,以 O 为原点,直线 BD、AC、OO1 分别为 x 轴、y 轴、z 轴建立空间直角坐标系. ∵AB=2,A1B1=1,∴AC=BD=2 ,A1C1=B1D1= , ∵平面 BDD1B1⊥平面 ABCD,∴∠B1BO 为侧棱与底面所成的角,∴∠B1BO=60°,
因为

,所以有
,即 与 共线(平行),可知平面α和
7
平面β相互平行。答案选 B。 【点睛】 本题主要考查向量语言表达线面位置关系,关键是向量共线运算,把握公式,精确计算,问 题较容易解决。 6.A 【解析】 【分析】

人教版高中数学选修2-1第三章单元测试(二)-含答案

人教版高中数学选修2-1第三章单元测试(二)-含答案

2018-2019学年选修2-1第三章训练卷空间向量与立体几何(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知三棱锥OABC ,点M ,N 分别为AB ,OC 的中点,且OAuu va ,OBuu u v b ,OC uuu v c ,用a ,b ,c 表示MN uuu v ,则MN uuu v等于()A .12b c aB .12abc C .12ab c D .12c ab2.已知cos ,1,sin a 、sin ,1,cosb,且∥a b ,则向量ab 与ab 的夹角是()A .90°B .60°C .30°D .0°3.已知A 、B 、C 三点的坐标分别为4,1,3A 、2,5,1B 、3,7,C ,若ABu u u v AC uuu v ,则等于()A .28B .28C .14D .144.若向量,,a b c 是空间的一个基底,则一定可以与向量2pab ,2qab 构成空间的另一个基底的向量是()A .aB .bC .cD .ab5.在空间直角坐标系Oxyz 中,已知2,0,0A 、2,2,0B 、0,2,0C 、1,12D ,,若1S 、2S 、3S 分别表示三棱锥DABC 在xOy 、yOz 、zOx 坐标平面上的正投影图形的面积,则()A .123S S SB .231S S SC .132S S S D .123S S S 6.已知a 、b 是两异面直线,A 、B a ,C 、Db ,AC b ,BDb 且2AB,1CD,则直线a 、b 所成的角为()A .30°B .60°C .90°D .45°7.如图所示,在平行六面体1111ABCDA B C D 中,点E 为上底面对角线11A C 的中点,若1BEAA xABy AD uu u vuuu v uu u v uuu v,则()A .12x,12y B .12x ,12y C .12x,12yD .12x,12y8.已知1,1,2A 、1,0,1B ,设D 在直线AB 上,且2AD DB uuu vu uu v ,设C 1,,13,若CD AB ,则的值为()A .116B .116C .12D .13此卷只装订不密封班级姓名准考证号考场号座位号9.如图,在长方体1111ABCD A B C D 中,2AB BC,12AA ,E 、F 分别是面1111A B C D 、面11BCC B 的中心,则E 、F 两点间的距离为()A .1B .52C .62D .3210.如图,在空间直角坐标系中有长方体1111ABCD A B C D ,1AB ,2BC,13AA ,则点B 到直线1A C 的距离为()A .27B .2357C .357D .111.如图所示,在长方体1111ABCDA B C D 中,11ADAA ,2AB,点E 是棱AB 的中点,则点E 到平面1ACD 的距离为()A .12B .22C .13D .1612.如图所示,正方体1111ABCDA B C D 中,E 、F 分别是正方形11ADD A 和ABCD的中心,G 是1CC 的中点,设GF 、1C E 与AB 所成的角分别为,,则等于()A .120°B .60°C .75°D .90°二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知1,2,0A 、0,1,1B ,P 是x 轴上的动点,当AP BP uu u v uu v取最小值时,点P的坐标为_____________.14.已知正四棱台1111ABCDA B C D 中,上底面1111A B C D 边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线1AD 与1B C 所成角的余弦值为___________.15.三棱锥P -ABC 中,PA =PB =PC =AB =AC =1,∠BAC =90°,则直线P A 与底面ABC 所成角的大小为________________.16.已知矩形ABCD 中,AB =1,3BC,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G为BD 上一点,BG =2GD ,PA uu va ,PBuu vb ,PCuu u v c ,试用基底,,a b c 表示向量PG uu u v .18.(12分)如图,在直三棱柱111ABCA B C 中,2ABC,D 是棱AC 的中点,且12ABBCBB .(1)求证:1AB ∥平面1BC D ;(2)求异面直线1AB 与1BC 所成的角.19.(12分)如图所示,在四面体ABCD 中,AB 、BC 、CD 两两互相垂直,且1BCCD.(1)求证:平面ACD ⊥平面ABC ;(2)求二面角C -AB -D 的大小;(3)若直线BD 与平面ACD 所成的角为30°,求线段AB 的长度.20.(12分)如图,在正四棱柱1111ABCDA B C D 中,已知AB =2,15AA ,E 、F分别为1D D 、1B B 上的点,且11DE B F.(1)求证:BE ⊥平面ACF ;(2)求点E 到平面ACF 的距离.21.(12分)如图所示,PD⊥底面ABCD,四边形ABCD是正方形,PD=DC,E 是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B-DE-C的余弦值.22.(12分)如图,在四棱柱1111ABCD A B C D中,侧棱1A A底面ABCD,AB⊥AC,1AB,12AC AA,5AD CD,且点M和N分别为1B C和1D D的中点.(1)求证:MN∥平面ABCD;(2)求二面角11D AC B的正弦值;(3)设E为棱11A B上的点.若直线NE和平面ABCD所成角的正弦值为13,求线段1A E的长.2018-2019学年选修2-1第三章训练卷空间向量与立体几何(二)答案一、选择题1.【答案】D 【解析】111111222222MN ONOMOC OA OBuu u v uu u vuuu v u uu v u uv uu u v cabc ab ,故选D .2.【答案】A 【解析】∵22a ,22b,220a b a b ab,∴abab .故选A .3.【答案】D 【解析】2,6,2AB uu u v ,1,6,3ACuuu v,∵ABAC uu u v uuu v ,∴2166230AB ACuu u v uuu v ,解得14,故选D .4.【答案】C 【解析】∵1144apq ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;∵1122bpq ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;∵3144a bpq ,所以ab 、p 、q 共面,故ab 、p 、q 不能构成空间的一个基底,排除D ;故选C .5.【答案】B【解析】由题意可得112222S ,212222S ,312222S ,故231S S S .故选B .6.【答案】B【解析】由于AB AC CD DB u u u vuu u v u uu v u uu v ,∴21AB CD AC CD DB CD CDuu u v uu u v uuu v uu u v uu u v uu u v uu u v .1cos ,,602AB CD AB CDAB CDABCDuu u v uu u v uu u v uu u v uu u v uu u v uu u v uu u v ,故选B .7.【答案】A【解析】11111111111222BEBAAA A E ABAA A B A D ABAA AB AD u u u v uu v u uu v uuu vuu u v u uu v uu uuv uuuu v u u u v uuu v uu u v uuu v 11122AB AA AD uu u v uuu v uuuv ,∴12x ,12y.故选A .8.【答案】B【解析】设,,D x y z ,则1,1,2ADxy zuuu v ,2,1,3ABuu u v ,1,,1DBx y z uu u v,∵2ADDB u uu v uu u v,∴12112222x x y y zz ,∴13130xy z.∴11033D ,,,113CDuu u v ,,,∵CDAB uu u v uu u v ,∴1231=03CD ABuu u v uu u v ,∴116.故选B .9.【答案】C【解析】以点A 为原点,建立如图所示的空间直角坐标系,则1,1,2E 、22,1,2F ,所以222261211222EF,故选C .10.【答案】 B【解析】过点B 作BE 垂直1A C ,垂足为E ,设点E 的坐标为,,x y z ,则10,0,3A ,1,0,0B ,1,2,0C ,11,2,3A C uuu v ,1,,3A Ex y z uuu v,1,,BEx y z uu u v .因为1110A E A CBE A Cuuu v uuu v uu u v uuu v∥,所以31231230xyzx y z,解得5710767xyz,所以2106,,777BEuu u v,所以点B 到直线1A C 的距离2357BE uu u v,故选B .11.【答案】C【解析】如图,以D 为坐标原点,直线DA 、DC 、1DD 分别为x 、y 、z 轴建立空间直角坐标系,则10,0,1D 、1,1,0E 、1,0,0A 、0,2,0C .从而11,1,1D E uuu v 、1,2,0AC uuu v、11,0,1AD uuuv,设平面1ACD 的法向量为,,a b c n ,则100AC AD uuu vuuuvn n ,即200a b ac,得2a b ac.令2a,则2,1,2n.所以点E 到平面1ACD 的距离为1212133D E h uuu vn n.故选C .12.【答案】D【解析】建立坐标系如图,设正方体的棱长为2,则2,0,0B 、2,2,0A 、0,0,1G 、1,1,0F 、10,0,2C 、1,2,1E .则0,2,0BAuu v 、1,1,1GFuuu v、11,2,1C Euuu v,∴1cos ,3BA GF BA GFBA GF uu v uuu v uu v uuu vuu v uuu v ,1112cos ,3BA C E BA C EBA C Euu v uuu v uu v uuu vuu v uuu v ,∴1cos 3,2sin 3,2cos3,1sin 3,cos 0,∴90.故选D .二、填空题13.【答案】1,0,02【解析】设,0,0P x ,则1,2,0AP xuu u v ,,1,1BP x uu v,2171224AP BPx x xuu u v uu v ,∴当12x时,AP BPuu u v uu v 取最小值74,此时点P 的坐标为1,0,02.14.【答案】14【解析】设上、下底面中心分别为1O 、O ,则1OO 平面ABCD ,以O 为原点,直线BD 、AC 、1OO 分别为x 轴、y 轴、z 轴建立空间直角坐标系.∵2AB ,111A B ,∴22ACBD,11112A C B D ,∵平面11BDD B ⊥平面ABCD ,∴1B BO 为侧棱与底面所成的角,∴160B BO,设棱台高为h ,则tan60222h,∴62h,∴0,2,0A ,126,0,22D ,126,0,22B ,0,2,0C ,∴126,2,22AD uuuv ,126,2,22B C uuu v ,∴1111111cos ,4AD B C AD B CAD B Cuuu v uuu v uuu v uuu vuuu v uuu v ,故异面直线1AD 与1B C 所成角的余弦值为14.15.【答案】45°【解析】由条件知,AB =AC =1,∠BAC =90°,∴2BC ,∵PB =PC =1,∴∠BPC =90°,取BC 边中点E ,则22PE,22AE,又PA =1,∴∠PEA =90°,故∠PAE =45°,∵E 为BC 中点,∴PE ⊥BC ,AE ⊥BC ,∴BC ⊥平面PAE ,∴平面PAE ⊥平面ABC ,∴∠PAE 为直线PA 与平面ABC 所成角.16.【答案】102【解析】如图,过B 、D 分别向AC 作垂线,垂足分别为M 、N .则可求得12AM 、32BM、12CN、32DN、1MN .由于BDBM MN ND uu u v uuu v uuu v uuu v ,∴22BDBM MNNDuu u v uuu v uuu v uuu v 2222BMMNNDBM MNMN ND BM ND uuu v uuu v uuu v uuu v uuu v uuu v uuu v uuu v uuu v 22233512000222,∴102BDuu u v .三、解答题17.【答案】212333PGuu u vabc .【解析】∵BG =2GD ,∴23BGBD uu u vuuu v .又2BD BA BC PA PB PC PB u uu v u u v uu u v uu v uu v u u u v u u v a c b ,∴221223333PGPBBGu uu v u uv uu u v bacb abc .18.【答案】(1)见解析;(2)3.【解析】(1)如图,连接1B C 交1BC 于点O ,连接OD .∵O 为1B C 的中点,D 为AC 的中点,∴1OD AB ∥.∵1AB 平面1BC D ,OD 平面1BC D ,∴1AB ∥平面1BC D .(2)建立如图所示的空间直角坐标系B -xyz .则0,0,0B 、0,2,0A 、12,0,2C 、10,0,2B .∴10,2,2AB uuu v 、12,0,2BC uuu v.1111110041cos ,22222AB BC AB BC AB BC uuu v uuu v uuu v uuu v uuu v uuu v ,设异面直线1AB 与1BC 所成的角为,则1cos2,∵0,2,∴3.19.【答案】(1)见解析;(2)45°;(3)1.【解析】解法一:(1)∵CD ⊥AB ,CD ⊥BC ,∴CD ⊥平面ABC .又∵CD ?平面ACD ,∴平面ACD ⊥平面ABC .(2)∵AB ⊥BC ,AB ⊥CD ,∴AB ⊥平面BCD ,∴AB ⊥BD .∴∠CBD 是二面角C -AB -D 的平面角.∵在Rt △BCD 中,BC =CD ,∴∠CBD =45°.∴二面角C -AB -D 的大小为45°.(3)过点B 作BH ⊥AC ,垂足为H ,连接DH .∵平面ACD ⊥平面ABC ,∴BH ⊥平面ACD ,∴∠BDH 为BD 与平面ACD 所成的角.∴∠BDH =30°.在Rt △BHD 中,2BD,∴22BH.又∵在Rt △BHC 中,BC =1,∴∠BCH =45°,∴在Rt △ABC 中,AB =1.解法二:(1)同解法一.(2)设ABa ,建立如图所示的空间直角坐标系Bxyz ,则0,0,0B 、0,0,A a 、0,1,0C 、1,1,0D ,1,1,0BDuu u v、0,0,BAa uu v.平面ABC 的法向量1,0,0CDuu u v,设平面ABD 的一个法向量为,,x y z n,则有0BD xyuu u v n ,0BA azuu v n,∴0z,取1y ,则1x ,∴1,1,0n .∴2cos ,2CD CD CD uu u v uu u vuu u v n nn,由图可知二面角C -AB -D 为锐角,∴二面角C -AB -D 的大小为45°.(3)0,1,ACa uuu v 、1,0,0CDuu u v、1,1,0BD uu u v.设平面ACD 的一个法向量是,,x y z m,则0AC yazuuu v m,0CD xuu u v m,令1z ,∴ya ,则0,,1a m .∵直线BD 与平面ACD 所成角为30°,∴2cos cos6012BD a BD BD auu u v uu u v uu u v m mm,解得1a ,∴AB =1.20.【答案】(1)见解析;(2)53.【解析】(1)证明:以D 为原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如图所示空间直角坐标系,则0,0,0D 、2,0,0A 、2,2,0B 、0,2,0C 、10,0,5D 、0,0,1E 、2,2,4F .∴2,2,0ACuuu v 、0,2,4AF uuu v、2,2,1BE uu u v、2,0,1AEuu u v.∵0BE AC uu u v uuu v ,0BE AFuu u v uu u v ,∴BEAC ,BE AF ,且AC AFA I .∴BE ⊥平面ACF .(2)解:由(1)知,BE uu u v为平面ACF 的一个法向量,∴点E 到平面ACF 的距离53AE BE dBE uu u v .故点E 到平面ACF 的距离为53.21.【答案】(1)见解析;(2)33.【解析】建立如图所示的空间直角坐标系D -xyz .设PDDCa ,则0,0,0D 、,0,0A a 、0,0,P a 、,,0B a a 、0,,22a aE 、0,,0C a ,∴,0,APa a uu u v 、,,0DBa a uu u v、0,,22a aDEuuu v、0,,0DC a uuu v .(1)设平面BDE 的一个法向量为1111,,x y z n ,则有110DB DE uu u v uuu vn n ,即11110022ax ay a a y z ,∴111111x y z .∴11,1,1n .100AP aauu u vn ,∴1APuu u vn ,又∵AP平面BDE ,∴AP ∥平面BDE .(2)设平面CDE 的一个法向量为21,0,0n .1213cos ,331n n ,∴二面角B -DE -C 的余弦值为33.22.【答案】(1)见解析;(2)31010;(3)72.【解析】如图,以A 为原点建立空间直角坐标系,依题意可得0,0,0A 、0,1,0B 、2,0,0C 、1,2,0D 、10,0,2A 、10,1,2B 、12,0,2C 、11,2,2D ,又因为M 、N 分别为1B C 和1D D 的中点,得11,,12M 、1,2,1N .(1)依题意,可得0,0,1n 为平面ABCD 的一个法向量,50,,02MNuuu v ,由此可得,0MN uuu vn,又因为直线MN平面ABCD ,所以MN ∥平面ABCD .(2)11,2,2AD uuuv、2,0,0ACuuu v,设1111,,x y z n 为平面1ACD 的法向量,则11100AD AC uuu v uuu vn n ,即111122020x y z x ,不妨设11z ,可得10,1,1n .设2222,,x y z n 为平面1ACB 的一个法向量,则2120AB AC uuu v uuu vn n ,又10,1,2AB uuu v ,得22222020y z x ,不妨设21z ,可得20,2,1n .因此有12121210cos ,10n n n n n n ,于是12310sin ,10n n ,所以二面角11D AC B 的正弦值为31010.(3)依题意,可设111A E A B uuu v uuu u v,其中0,1,则0,,2E ,从而1,2,1NE uu u v,又0,0,1n为平面ABCD 的一个法向量,由已知得22211cos 3121NE NE NE uu u v uu u vuu u v n ,nn,整理得2430,又因为0,1,解得72,所以线段1A E 的长为72.。

人教版数学选修2—1第三章测试题

人教版数学选修2—1第三章测试题

数学选修2—1第三章测试题考试时间:120分钟 总分:150分第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、在下列命题中:①若向量a 、b 共线,则a 、b 所在的直线平行;②若向量a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 ( )A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a AB ===则=CD ( )A .c b a -+B.c b a --C .c b a +--D .c b a ++-3、已知平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),则顶点D 的坐标为( )A .)1,4,27(-B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4、a =(-1,-5,-2),b =(2,2,+x x ),若b a ⊥,则x =( )A .0B .314-C .-6D .±65、设a =(2,1,-m ),b =(n ,4,3-),若b a //,则m ,n 的值分别为( )A .43,8 B .43-,—8 C .43-,8 D .43,-8 6、已知向量a (0,2,1),b (-1,1,-2),则a 与b 的夹角为( )A .0°B .45°C .90°D .180°7、若斜线段AB 是它在平面α 内的射影长的2倍,则AB 与α 所成的角为( )A .60°B .45°C .30°D .120°8、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( )A .627 B. 637 C. 647 D. 6579、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 21=,这时二面角B -AD -C 的大小为( )A .60°B .45°C .90°D .120°10、矩形ABCD 中,AB =1,2=BC ,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所成的角是( ) A .30°B .45°C .60°D .90°11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB则△BCD 是 ( ) A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,则直线PC 与平面APB所成角的余弦值为( )A .21B .36C .33D .23二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13、已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )²a =____________.14、已知)1,1,2(),2,0,1(==AC AB ,则平面ABC 的一个法向量为____________. 15、平面α的一个法向量为(1,0,-1),平面β的一个法向量为(0,-1,1),则平面α与平面β所成二面角的大小为____________.16、下列命题中:(1)0=⋅b a 则a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a2)(q p ⋅;(4)若a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,则它们必垂直.其中真命题的序号是____________.数学选修2—1第三章测试题第II 卷班级: 姓名: 总分:一、选择题(本大题共12小题,每小题5分,满分60分) 123456789101112二、填空题(本大题共4小题,每小题5分,满分20分)13. 14.15. 16.三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤) 17、(满分14分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示.MN18、(满分14分)如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求MN的长;(2)求异面直线AN与CM夹角的余弦值.19、(满分14分)在正方体ABCD-A1B1C1D1中,E,F分别为AA1, AB的中点,求EF和平面ACC1A1的夹角大小.20、(满分14分)已知棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是BB1,DD1的中点.求证:(1) FC1∥平面ADE(2)平面ADE∥平面B1C1F21、(满分14分)如图,长方体ABCD-A1B1C1D1中, AB= AA1=1,BC=错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修2—1第三章测试题
考试时间:120分钟 总分:150分
第I 卷
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、在下列命题中:
①若向量a 、b 共线,则a 、b 所在的直线平行;
②若向量a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;
④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 ( )
A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a A
B ===则=CD ( )
A .c b a -+
B.c b a --
C .c b a +--
D .c b a ++-
3、已知平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),则顶点D 的坐标为( )
A .)1,4,2
7(-
B .(2,3,1)
C .(-3,1,5)
D .(5,13,-3)
4、a =(-1,-5,-2),b =(2,2,+x x ),若b a ⊥,则x =( )
A .0
B .3
14
-
C .-6
D .±6
5、设a =(2,1,-m ),b =(n ,4,3-),若b a //,则m ,n 的值分别为( )
A .
4
3,8 B .43-
,—8 C .4
3-,8 D .
4
3
,-8 6、已知向量a (0,2,1),b (-1,1,-2),则a 与b 的夹角为( )
A .0°
B .45°
C .90°
D .180°
7、若斜线段AB 是它在平面α 内的射影长的2倍,则AB 与α 所成的角为( )
A .60°
B .45°
C .30°
D .120°
8、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,
则实数λ等于 ( )
A .627 B. 637 C. 647 D. 657
9、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 2
1
=,这时二面角B -AD -C 的大小为( )
A .60°
B .45°
C .90°
D .120°
10、矩形ABCD 中,AB =1,2=
BC ,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所
成的角是( ) A .30°
B .45°
C .60°
D .90°
11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB
则△BCD 是 ( ) A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定
12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,则直线PC 与平面APB
所成角的余弦值为( )
A .
2
1 B .36 C .33
D .
2
3
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相
应位置.
13、已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =____________.
14、已知)1,1,2(),2,0,1(==AC AB ,则平面ABC 的一个法向量为____________. 15、平面α的一个法向量为(1,0,-1),平面β的一个法向量为(0,-1,1),则平面α与平面β所成二面角的大小为____________.
16、下列命题中:(1)0=⋅b a 则a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a
2)(q p ⋅;(4)若a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,则它们必垂直.其中真命题的序号是
____________.
数学选修2—1第三章测试题
第II 卷
班级: 姓名: 总分:
一、选择题(本大题共12小题,每小题5分,满分60分) 1
2
3
4
5
6
7
8
9
10
11
12
二、填空题(本大题共4小题,每小题5分,满分20分)
13. 14.
15. 16.
三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤) 17、(满分14分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,
1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示
.MN
18、(满分14分)如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,
点M、N分别是AB、CD的中点.
(1)求MN的长;
(2)求异面直线AN与CM夹角的余弦值.
19、(满分14分)在正方体ABCD-A1B1C1D1中,E,F分别为AA1, AB的中点,求EF和平面ACC1A1的夹角大小.
20、(满分14分)已知棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是BB1,DD1的中点.求证:(1) FC1∥平面ADE
(2)平面ADE∥平面B1C1F
21、(满分14分)如图,长方体ABCD-A1B1C1D1中, AB= AA1=1,BC=,M是AD中点,N是B1C1中点.
(1)求证: NA1∥CM.
(2)求证:平面A1MCN⊥平面A1BD1。

相关文档
最新文档