2021年新人教版高二理科数学选修21测试题及答案
高二理科数学选修2-1期末质量检测试题(卷)含答案

高二理科数学选修2-1期末质量检测试题(卷)含答案本试卷分为两部分,第一部分为选择题,第二部分为非选择题. 满分150分,考试时间100分钟.第一部分(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. “46k <<”是“方程22164x y k k +=--表示椭圆”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件2.过点(0,1)作直线,使它与抛物线24y x =仅有一个公共点,这样的直线有( ) A. 1条 B. 2条 C. 3条 D. 4条 3.下列命题:①“在三角形ABC 中,若sin sin A B >,则A B >”的逆命题是真命题; ②命题:2p x ≠或3y ≠,命题:5q x y +≠,则p 是q 的必要不充分条件;③“任意32,10x R x x ∈-+„”的否定是“任意32,10x R x x ∈-+>”;④“若,a b >则221a b >-”的否命题为“若a b „,则221a b -„”; 其中正确的个数是( )A .1B .2C .3D .44.若A ,B ,C 不共线,对于空间任意一点O 都有311488OP OA OB OC =++u u u r u u u r u u u r u u u r,则P ,A ,B ,C 四点( )A .不共面B .共面C .共线D .不共线5.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是边OA 、CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA uu u r 、OB uuu r 、OC uuu r表示向量OG uuu r是( )A .111633OG OA OB OC =++u u u r u u u r u u u r u u u rB .112633OG OA OB OC =++u u u r u u u r u u u r u u u rC .2233OG OA OB OC =++u u u r u u u r u u u r u u u rD .122233OG OA OB OC =++u u u r u u u r u u u r u u u r6.已知(4,2)是直线l 被椭圆221369x y +=所截得的线段的中点,则l 的方程是( ) A. 280x y ++=.280x y +-= C .280x y --= D .280x y -+=7.若椭圆22221x y a b+=过抛物线x y 82=的焦点,且与双曲线122=-y x 有相同的焦点,则该椭圆的方程是( )A .12422=+y x B .1322=+y x C .14222=+y x D .1322=+y x 8.已知直线1+-=x y 与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A. 223 B .423C .2D .29.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A. 3 B. 5 C. 3或5 D. 3或510.设p :211x -?,q :()[(1)]0x a x a --+…,若q 是p 的必要而不充分条件,则实数a 的取值范围是( )11.已知椭圆12222=+by a x )0(>>b a 上一点A 关于原点的对称点为点,B F 为其右焦点,若BF AF ⊥,设α=∠ABF ,且⎥⎦⎤⎢⎣⎡∈4,6ππα,则该椭圆离心率e 的取值范围为( )A. ]13,22[- B. )1,22[ C. ]23,22[ D. ]36,33[120,0)a b >>的左顶点与抛物线22y px =的焦点的距离为4(2,1)--,则双曲线的焦距为( )A. 第二部分(非选择题,共90分)二、填空题:本大题共4小题,每小题6分,共24分.13. 椭圆22259x y +=1的两焦点为1F 、2F ,一直线过1F 交椭圆于P 、Q ,则2PQF ∆的周长为________. 14.已知下列命题:①命题“存在x R ∈,213x x +>”的否定是“任意x R ∈,213x x +<”; ②已知p ,q 为两个命题,若“p 或q ”为假命题,则“(p ⌝)且(q ⌝)为真命 题”;③“2a >”是“5a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中所有真命题的序号是________.15.直线32y x =与椭圆22221(0)+=>>x y a b a b 相交于A 、B 两点,过点A 作x 轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是 .16.已知点P 是抛物线x y 82-=上一点,设P 到此抛物线准线的距离是1d ,到直线010=-+y x 的距离是2d ,则21d d +的最小值是 .三、解答题:本大题共4小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分16分)已知a 为实数,p :点(1,1)M 在圆22()()4x a y a ++-=的内部; q :任意,x R ∈都有21x ax ++0…. (1)若p 为真命题,求a 的取值范围; (2)若q 为假命题,求a 的取值范围;(3)若“p 且q ”为假命题,且“p 或q ”为真命题,求a 的取值范围. 18. (本小题满分17分)已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο底面ABCD ,且1PA AD DC ===,2AB =,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;(3)求面AMC 与面BMC 所成二面角的 余弦值.19. (本小题满分16分)双曲线C 的中心在原点,右焦点为23(,0)3F ,渐近线方程为3y x =±. (1)求双曲线C 的方程;(2)设直线l :1y kx =+与双曲线C 交于A 、B 两点,问:当k 为何值时,以AB 为直径的圆过原点; 20. (本小题满分17分)已知点(0,2)A -,椭圆2222:1x y E a b+=)0(>>b a 的离心率为3,(,0)F c 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P 、Q 两点,当OPQ ∆的面积最大时,求直 线l 的方程.高二理科数学选修2-1期末质量检测试题参考答案一、选择题:1.C 2.C 3.C 4.B 5.A 6.B 7.A 8.B 9.C 10.A 11.A 12.B二、填空题:本大题共4小题,每小题6分,共24分.13.20 14.② 15.1216.2 三、解答题:本大题共4小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分16分)解:(1)由题意得,22(1)(1)4a a ++-<,解得11a -<<, 4分p 为真命题时a 的取值范围为(1,1)-. 5分(2)若q 为真命题,则240a =-≤D ,解得22a -≤≤, 8分故q 为假命题时a 的取值范围(,2)(2,)-∞-+∞U . 10分 (3)由题意得,p 与q 一真一假,从而当p 真q 假时有11,22,a a a -<<⎧⎨<->⎩或 无解; 13分当p 假q 真时有11,22,a a a -⎧⎨-⎩≤或≥≤≤解得2112a a --≤≤或≤≤. 15分∴实数a 的取值范围是[][]2,11,2--U . 16分18. (本小题满分17分) (1)【方法一】证明:PA ⊥Q 底面ABCD ,CD AD ⊥, ∴由三垂线定理得:CD PD ⊥, 2分因而CD 与面PAD 内两条相交直线AD 、PD 都垂直,∴CD ⊥面PAD . 4分又CD ⊂面PCD ,∴面PAD ⊥面PCD . 6分(1)【方法二】证明:由已知得:PA AD ⊥,PA AB ⊥,AD AB ⊥.以A 为坐标原点,AD 长为x 轴,AB 长为y 轴, AP 长为z 轴,建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M . 2分 因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故 4分 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD .又DC 在面PCD 上,故面PAD ⊥面PCD . 6分 (2)解:因),1,2,0(),0,1,1(-==PB AC 7分9分||||AC PB ⋅则AC 与PB 所成的角为 11分 (3)解:平面AMC 的一个法向量设为),,1(11z y n =,),21,1,0(),0,1,1(==AM AC ⎪⎩⎪⎨⎧=+=+∴0211111z y y ∴)2,1,1(-= 13分 平面BMC 的一个法向量设为),,1(22z y =,),21,1,0(),0,1,1(-=-=⎪⎩⎪⎨⎧=+-=-∴02101222z y y ∴)2,1,1(= 15分 3266411,cos=⋅+->=<∴因为面AMC 与面BMC 所成二面角为钝角,所以面AMC 与面BMC 所成二面角的余弦值为32-. 17分19. (本小题满分16分) 解:(12分得2223a b c a b⎧=⎪⎨=+⎪⎩,解得331a b ⎧=⎪⎨⎪=⎩5分 双曲线的方程是231x y -=. 7分(2)① 由221,31,y kx x y =+⎧⎨-=⎩得()223220k x kx ---=, 10分 由20,30k ∆>-≠且,得66,k -<<且 3k ≠±. 12分设()11,A x y 、()22,B x y ,因为以AB 为直径的圆过原点,所以OA OB ⊥,所以 12120x x y y +=.又12223kx x k -+=-,12223x x k =-, 14分 所以 212121212(1)(1)()11y y kx kx k x x k x x =++=+++=, 所以22103k +=-,解得1k =±. 16分 20. (本小题满分17分) 解:(1)设,因为直线的斜率为,,所以,. 2分 又,解得, 5分 ,所以椭圆的方程为. 7分(2)设,由题意可设直线l 的方程为:,联立消去得, 9分当,所以,即或 11分.所以14分点到直线的距离所以,15分设,则,,当且仅当,即,解得时取等号,满足,所以的面积最大时直线的方程为:或. 17分。
高二数学选修21测试题及答案

4.双曲线 的渐近线方程为( )
A. B. C. D.
5.中心在原点的双曲线,一个核心为 ,一个核心到最近极点的距离是 ,则双曲线的方程是( )
A. B. C. D.
6.已知正方形 的极点 为椭圆的核心,极点 在椭圆上,则此椭圆的离心率为( )
A. B. C. D.
6.A
【解析】
试题分析:设正方形 的边长为1,则按照题意知,
,所以椭圆的离心率为
考点:本小题主要考查椭圆中大体量的运算和椭圆中离心率的求法,考查学生的运算求解能力.
点评:求椭圆的离心率关键是求出 ,而没必要别离求出
7.A
【解析】
试题分析:因为椭圆 与双曲线 有相同的核心,所以 ,且椭圆的核心应该在 轴上,所以 因为 ,所以
12.C
【解析】
试题分析:按照题意,由于直线 与圆 相切,则圆心(0,0)到直线x+y=m的距离为 ,则可知取得参数m的值为2,故答案为C.
考点:直线与圆的位置关系
点评:主如果考查了直线与圆的位置关系的运用,属于基础题。
13.
【解析】
试题分析:由弦心距、半径、弦长的一半组成的直角三角形,应用勾股定理得,直线 被圆 截得的弦长为 。
考点:空间向量与立体几何.
14.已知椭圆 的核心重合,则该椭圆的离心率是.
15.已知方程 表示椭圆,则 的取值范围为___________
16.在正方体 中, 为 的中点,则异面直线 和 间的距离.
三、解答题
17.求过点(-1,6)与圆x +y +6x-4y+9=0相切的直线方程.
18.求渐近线方程为 ,且过点 的双曲线的标准方程及离心率。
高中数学选修2-1综合测试卷带答案

高中数学选修2-1综合测试卷带答案解析:p是q的必要不充分条件,即p成立时q一定成立,但q成立时p不一定成立。
根据题目中的条件,当a=3,b=2,c=5,d=4时,q成立但p不成立。
因此选项A不成立,选项B、C、D均成立。
答案:BCD8.若f(x)=x3-3x2-9x+19,则f(x)的最小值为()A.-5B.-6C.4D.5解析:f(x)=x3-3x2-9x+19=(x-1)3-9(x-1)+10,令x-1=t,则f(x)=t3-9t+10,f'(x)=3t2-9=0,解得t=±1,代入f(x)得f(0)=10,f(2)=-5,所以f(x)的最小值为-5.答案:B9.已知等差数列{an}的公差为d,若a1+a2+a3+a4=10,a2+a3+a4+a5=20,则d的值为()A.2B.4C.6D.8解析:将等式a1+a2+a3+a4=10两边同时加上a5-a1,得a5+a2+a3+a4=a1+a2+a3+a4+a5-2a1=20-2a1.因为a2+a3+a4+a5=20,所以a5+a2+a3+a4=20-a1.联立以上两式,得2a1=10,所以a1=5.又因为a1+a2+a3+a4=10,所以2a1+3d=10,解得d=2.答案:A10.已知函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,则必存在ξ∈(0,1),使得f(ξ)=ξ。
()A.正确B.错误解析:考虑函数g(x)=f(x)-x,g(0)=0,g(1)=0,因此在区间[0,1]上必存在一点ξ,使得g'(ξ)=0,即f'(ξ)-1=0,即f(ξ)=ξ。
答案:A11.已知圆锥的底半径为R,高为H,若圆锥的体积为底面积的三倍,则圆锥的母线长为()A.3RB.4RC.5RD.6R解析:设圆锥的母线长为l,则圆锥的底面积为πR2,体积为(1/3)πR2H,根据题意得(1/3)πR2H=3πR2,解得H=9R/π,根据勾股定理得l2=H2+R2,代入H的值,得l=(82+π2)R/π,约等于5R。
最新人教A版高中数学选修2-1测试题全套及答案

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p ∨q 与命题p ⌝都是真命题,则( )A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .⌝p :∀x ∈A ,2x ∉B B .⌝p :∀x ∉A ,2x ∉BC .⌝p :∃x 0∉A ,2x 0∈BD .⌝p :∃x 0∈A ,2x 0∉B4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值X 围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .⌝p 为假命题D .⌝q 为假命题9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 311.已知A :13x -<,B :(2)()0x x a ++<,若A 是B 的充分不必要条件,则实数a 的取值X 围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x -1)(x -2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值X 围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.14.若命题“∪x ∪R ,ax 2-ax -2≤0”是真命题,则实数a 的取值X 围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值X 围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值X 围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若,0≥ac 则二次方程02=++c bx ax 没有实根.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =φ”是假命题,XX 数m 的取值X 围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∪P 是x ∪S 的充要条件,若存在,求出m 的X 围;若不存在,请说明理由;(2)是否存在实数m ,使x ∪P 是x ∪S 的必要条件,若存在,求出m 的X 围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若命题p ∧q 为假,命题p ∨q 为真,XX 数c 的取值X 围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值X 围.24.(10分)已知数列{a n }的前n 项和为S n ,数列{S n +1}是公比为2的等比数列. 证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案一、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“p ⌝”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则⌝p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 7.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⎩⎪⎨⎪⎧a ≤0,a +2≥1,⇒a ∈[-1,0]. 8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题. 10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知1324x x -<⇔-<<,当2a <时,(2)()02x x a x a ++<⇔-<<-,若A 是B 的充分不必要条件,则有A B ⊆且B A ≠,故有4a ->,即4a <-;当2a =时,B=φ,显然不成立;当2a >时,(2)()02x x a a x ++<⇔-<<-,不可能有A B ⊆,故(),4a ∈-∞-.12.不等式(x -1)(x -2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15.⎣⎡⎦⎤-2,9416.①② 17.(-∞,-2]∪{1} 18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0得-8≤a <0, 所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-2≤a ≤2;当有两个非负实根时,⎩⎪⎨⎪⎧Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0⇔⎩⎪⎨⎪⎧4a ≤9,a >12,a ≤-2或a ≥ 2.即2≤a ≤94.综上,得-2≤a ≤94. 16.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若,0<ac 则二次方程02=++c bx ax 有实根.(2)命题p 的否命题是真命题. 证明如下: ,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程02=++c bx ax 有实根.故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥32}. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值X 围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3. 又1+m ≥1-m,所以m ≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以⌝p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1, 所以⌝q :c >12且c ≠1. 又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∪. 综上所述,实数c 的取值X 围是⎩⎨⎧⎭⎬⎫c |12<c <1. 23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =a 2或x =-a , 所以当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,所以|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值X 围为{a |a >2或a <-2}.24.证明: 因为数列{S n +1}是公比为2的等比数列,所以S n +1=S 1+1·2n -1,即S n +1=(a 1+1)·4n -1.因为a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2, 所以a n =⎩⎪⎨⎪⎧a 1,n =1,3(a 1+1)·4n -2,n ≥2,显然,当n ≥2时,a n +1a n =4. ①充分性:当a 1=3时,a 2a 1=4,所以对n ∈N *,都有a n +1a n=4,即数列{a n }是等比数列. ②必要性:因为{a n }是等比数列,所以a 2a 1=4, 即3(a 1+1)a 1=4,解得a 1=3. 综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或73.已知椭圆x 225+y 29=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N 是MF 1的中点,则|ON |的长为( )A .1B .2C .3D .44.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则双曲线的离心率e 等于( )A .2B .3C .32D .26.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(3,-26)D .(2,4)7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则椭圆x 2a 2+y 2b 2=1的离心率为( )A .12B .33C .32D .228.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .489.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是( )A .22B .2C .322D .2210.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32B .26C .27D .712.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±22xC .y=±(1+3)xD .y=±(3-1)x 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是_____.17.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为3的直线与该抛物线交于A ,B 两点,A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为103,则p=_____. 三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.20.(10分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.22.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B . (1)求双曲线C 的离心率e 的取值X 围;(2)设直线l 与y 轴的交点为P ,且PA →=512PB →,求a 的值.24.(10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且经过点(32,12). (1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C 9.B 10.A 11.C 12.C 提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 4.若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件. 5.依题意,得c =2,a =1,所以e =ca =2.6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,在椭圆中,e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1-14=34,所以椭圆的离心率e =32.8.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.9.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d =|1-0+1|2=2.10.由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20,因为P 为椭圆上一点,所以x 204+y 203=1,所以OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2,因为-2≤x 0≤2,所以OP →·FP →的最大值在x 0=2时取得,且最大值等于6.11.根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,因为椭圆与直线x +3y +4=0有且仅有一个交点,所以Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以b 2=3,长轴长为2b 2+4=27.12.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=c a ,那么cos ∠BF 1F 2=cb,根据余弦定理有cos ∠BF 1F 2=c b =ca a c a 222)4()2()2(222⨯⨯-+,整理有b 2-2ab -2a 2=0,即(a b)2-2a b -2=0,解得a b =1+3(a b =1-3<0舍去),故双曲线的渐近线方程为y=±abx=±(1+3)x .二、填空题13.1814.x 281+y 272=115.10 16.9217.82318.3 提示:13.由x 2=14y 知,p =18,所以焦点到准线的距离为p =18.14.依题意知:2a =18,所以a =9,2c =13×2a ,所以c =3,所以b 2=a 2-c 2=81-9=72,所以椭圆方程为x 281+y 272=1.15.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12,又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.17.设点A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 22+y 2=1,y =x -1,消去y 整理得3x 2-4x =0,解得x 1=0,x 2=43,易得点A (0,-1)、B (43,13).又点F 1(-1,0),因此|F 1A |+|F 1B |=12+(-1)2+(73)2+(13)2=823.18.由抛物线y 2=2px (p>0)得其焦点F (2p ,0),直线AB 的方程为y=3(x -2p ),设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立⎪⎩⎪⎨⎧=-=px y p x y 2)2(32,整理有3y 2-2py -3p 2=0,可得y 1+y 2=32p,y 1y 2=-p 2,则有x 1+x 2=35p ,而梯形ABCD的面积为S=21(x 1+x 2)(y 2-y 1)=65p212214)(y y y y -+=103,整理有p 2=9,而p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576, 所以双曲线的方程为x 236-y 264=1和y 264-x 236=1. 20.解:(1)因为P 点在椭圆上,所以9a 2+16b 2=1,① 又PF 1⊥PF 2,所以43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③ 由①②③得a 2=45,b 2=20,则椭圆方程为x 245+y 220=1; (2)S 21F PF ∆=12|F 1F 2|×4=5×4=20.21.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x ,解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ; 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513, 所以⎝⎛⎭⎫p24+p 2+(64p 2+16p 2)=325, 所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p2, 设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8, 所以x 1+p 2+x 2+p2=8,即x 1+x 2=8-p ,因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y 21=(x 2-6)2+y 22,又y 21=2px 1,y 22=2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0, 因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4, 所以所求抛物线方程是y 2=8x .23.解:(1)联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a 2.因为与双曲线交于两点A 、B ,所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,可得0<a 2<2且a 2≠1,所以e 的取值X 围为(62,2)∪(2,+∞); (2)由(1)得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a2.因为P A →=512PB →,所以x 1=512x 2,则1712x 2=-2a 21-a 2,①512x 22=-2a 21-a 2,② 由①2②得,a 2=289169,结合a >0,则a =1713. 24.解:(1)由e 2=a 2-b 2a 2=1-b 2a 2=23,得b a =13,①由椭圆C 经过点(32,12),得94a 2+14b 2=1,②联立①②,解得b =1,a =3, 所以椭圆C 的方程是x 23+y 2=1;(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0, 令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,所以S △AOB =|S △POB -S △POA |=12×2×|x 1-x 2|=|x 1-x 2|,因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-12k 1+3k 2)2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0), 则(x 1-x 2)2=36t(3t +4)2=369t +16t+24≤3629t ×16t+24=34, 当且仅当9t =16t ,即t =43时等号成立,此时k 2=73,△AOB 面积取得最大值32.第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是(). A .5B .5C .9 D .32.化简AB +CD -CB -AD ,结果为().A .0B .ABC .ACD .3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是(). A .(a +b )+c =a +(b +c )B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )·c =a ·(b ·c )4.已知+=(2,-1,0),a -b =(0,3,-2),则cos<,>的值为(). A .31B .-32C .33D .375.若P 是平面α 外一点,A 为平面α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面α 所成的角为().A .40ºB .50ºC .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且 = + 3+ 2+ x ,则x 的值是().A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .85D .528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥c ,则x 等于().A .4B .-4C .21D .-6 9.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(A A 1+11D A +11B A )2=3(11B A )2;②A 1·(11B A -A A 1)=0;③向量1AD 与向量A 1的夹角为60º;④正方体ABCD —A 1B 1C 1D 1的体积为|··|. 错误命题的个数是().A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·>0,则该四边形为().A .平行四边形B .梯形C .任意的平面四边形D .空间四边形 二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b =.1AA12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |=. 13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小.14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为.15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量n A A 1=2a ,a 与b 夹角为30º,且|a |=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为.三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形, O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是11B A 、的中点.A A 1ABA 1B 1D CD 1C 1O(第17题)(1)求BN ·M C 1;(2)求cos<1BA ,1CB >.19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.ACBA 1C 1B 1N M(第18题)(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4.20.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,E ,F 分别为PC 、CD 中点.ABA 1D B 1C D 1C 1E(第19题)(1)试证:CD ⊥平面BEF ;(2)设PA =k ·AB ,且二面角E —BD —C 的平面角大于30º,求k 的取值X 围.参考答案一、选择题 1.D2.A3.D 4.B解析:两已知条件相加,得 a =(1,1,-1),再得 b =(1,-2,1),则cos<a ,b >=||||b a •=-32. 5.B6.D7.C8.B9.B 10.D解析:由AB ·BC >0得∠ABC >90º,同理,∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12.14. 13.90°.BACPE FD(第20题)14.60º或120º. 15.4x +4y -6z +3=0. 16.3. 三、解答题17.提示:∵C B 1=D A 1=11C A +D C 1=21OC +D C 1. ∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1. 18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0. (2)1030. 提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得1·E D 1=0.(2)31. 提示:平面ACD 1的一个法向量为n 1=(2,1,2),d =11n n | |1·E D =31. (3)2-3.提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =x ),利用 cos 4x =2-3.20.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >15152.提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><23,其中n 1,n 2分别为面EBD ,面BDC 的一个法向量.。
高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。
高中数学选修21课后习题答案[人教版].docx
![高中数学选修21课后习题答案[人教版].docx](https://img.taocdn.com/s3/m/62734b7b08a1284ac9504365.png)
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、略 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称.这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:若 a b 1,则a2b22a 4b3( a b)( a b) 2( a b) 2b3a b 2 2b3a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则a,b都是偶数.这是假命题.否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数.这是假命题.逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b不都是偶数.这是真命题.(2)逆命题:若方程 x2 x m 0 有实数根,则m 0. 这是假命题 . 否命题:若 m 0 ,则方程x2x m 0没有实数根.这是假命题.逆否命题:若方程x2x m 0 没有实数根,则m 0 .这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是e O的两条互相平分的相交弦,交点是 E ,若 E 和圆心 O 重合,则AB,CD是经过圆心 O 的弦,AB,CD是两条直径.若 E 和圆心 O 不重合,连结AO, BO,CO 和DO,则OE是等腰AOB , COD 的底边上中线,所以,OE AB ,OE CD .AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的.所以, E 和 O 必然重合.即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1).3( 1) .4、(1)真;(2)真;( 3)假;( 4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;( 3)p是q的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc 0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形.(2)必要性:如果ABC是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a 所以 a 2b2c2ab ac bc 0 2b2c2ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假 .2、(1)真;(2)假 .3、(1)225,真命题;( 2)3 不是方程 x290的根,假命题;( 3)( 1)21,真命题.习题 1.3 A组( P18)1、(1) 4{2,3}或 2 {2,3},真命题;(2) 4{2,3}且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;( 4) 2 是偶数且 3 不是素数,假命题 .2、(1)真命题;( 2)真命题;(3)假命题 .3、(1) 2 不是有理数,真命题;( 2)5 是 15 的约数,真命题;(3)2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组( P18)(1)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(2)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(3)假命题 . 因为p为假命题,q为假命题,所以p q为假命题;(4)假命题 . 因为p为假命题,q为假命题,所以p q为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .练习( P26)1、(1) n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数 .2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数 .习题 1.4 A 组( P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .3、(1) x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3) x R, x2x 10 ;(4)所有四边形的对角线不互相垂直 .习题 1.4 B组( P27)(1)假命题 . 存在一条直线,它在y轴上没有截距;(2)假命题 . 存在一个二次函数,它的图象与 x 轴不相交;(3)假命题 . 每个三角形的内角和不小于180;(4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1) n N ,n20 ;(2)P { P P 在圆x2y2r 2上 } ,OP r (O 为圆心);(3)( x, y) {( x, y) x, y 是整数},2x 4y 3;( 4)x0{ x x 是无理数}, x03{ q q 是有理数} .6、(1)32,真命题;(2)5 4 ,假命题;( 3) x0R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1)p q;(2) ( p) (q) ,或 ( p q) .2、(1)Rt ABC,C90 ,A, B, C 的对边分别是 a, b, c ,则 c2a2b2;(2)ABC ,A,B,a b cC 的对边分别是 a, b,c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a32 ,b 18 .25253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率2 02kCAt2 t2所以, k CB1 t 2k CA2由直线的点斜式方程,得直线CB 的方程为 y2t2( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t ) .由于点 M 是线段 AB 的中点,由中点坐标公式得 xt, y4 t .t4 t ,22由 x得 t 2x ,代入 y 22 得 y42x,即 x y 20 ①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A 组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点M 的轨迹方程为 x 2y 2 4 .4、解法一:设圆 x 2y 2 6x 50 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CM AB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]yy1 (x 3, x 0)所以,3 xx化简得 x 2y 23x 0 (x 3, x 0)当 x 3 时, y 0 ,点 (3,0) 适合题意;当 x 0 时, y 0 ,点 (0,0) 不合题意 .解方程组x 2 y 23x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 23x 0 ,5x3.3解法二:注意到OCM 是直角三角形,利用勾股定理,得 x 2 y 2(x 3)2y 2 9 ,即 x 2y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为xy 1.a b因为直线 l 经过点 P(3,4) ,所以341因此, ab 4a 3bab由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3 y 0 .2、解:如图,设动圆圆心M 的坐标为 (x, y) .y由于动圆截直线 3xy0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD 4 . 过点 M 分别CMFE作直线 3x y0 和 3x y0 的垂线,垂足分别为E ,DF ,则 AE4 , CF2 . A3xy, MF3x yME1010 .Ox连接 MA , MC ,因为 MAMC ,(第 2 题)2ME 2CF 2MF 2 则有, AE(3 x y) 2(3 x y) 210 .所以, 1610410,化简得, xy因此,动圆圆心的轨迹方程是 xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1PF220 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1 ;(2) y2x21;(3) x2y21,或 y2x2 1616361636163、解:由已知,a 5, b 4 ,所以 c a2b2 3 .(1)AF1B 的周长AF1AF2BF1BF2.由椭圆的定义,得 AF1AF22a, BF1BF22a .所以, AF1B 的周长4a20.(2)如果AB不垂直于 x 轴, AF1B 的周长不变化 .这是因为①②两式仍然成立,AF1 B 的周长20,这是定值 .4、解:设点M的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x1)kAM;x1直线 BM 的斜率y(x1) ;kBMx1由题意,得kAM2,所以y2y( x1, y0) kBM x 1x1化简,得 x3( y0)因此,点 M 的轨迹是直线 x 3 ,并去掉点( 3,0) .练习( P48)yB2 1、以点 B2(或 B1)为圆心,以线段 OA2(或 OA1)为半径画圆,圆与 x 轴的两个交点分别为F1 , F2 .A 1F1O点 F1 , F2就是椭圆的两个焦点 .B 1这是因为,在 Rt B2OF2中,OB2 b , B2 F2OA2 a ,(第 1 题)所以, OF2 c .同样有 OF1 c .2、(1)焦点坐标为(8,0) , (8,0) ;14.1.F2 A 2x(2)焦点坐标为 (0,2) , (0, 2) .3、(1)x2y 21;(2) y2x2 1 . 363225164、(1)x2y21(2) x2y 21,或 y2x2 1. 9410064100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x2y2 1 的离心率是 1 ,316122因为221 ,所以,椭圆x2y2 1 更圆,椭圆 9x2y236 更扁;321612(2)椭圆 x29 y236 的离心率是22 ,椭圆 x2y2 1 的离心率是10 ,36105因为2210 ,所以,椭圆x2y2 1 更圆,椭圆 x29 y 236 更扁 . 356106、(1)(3,8(2) (0,2) ;( 3)(487082 ) ;,) .7、. 537377习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x2( y3)2x2( y3)210 以及椭圆的定义得,点 M 的轨迹是以F1(0,3) , F2 (0,3) 为焦点,长轴长为10 的椭圆 .它的方程是y2x21. 25162、(1)x2y 21;( 2)y2x2 1 ;(3) x2y21,或 y2x2 1. 3632259494049403、(1)不等式2x 2 , 4 y 4 表示的区域的公共部分;(2)不等式25x25 ,10y10表示的区域的公共部分 .图略 . 334、(1)长轴长2a8 ,短轴长 2b 4 ,离心率e 3 ,2焦点坐标分别是 (23,0), (23,0),顶点坐标分别为 (4,0), (4,0), (0,2) , (0,2) ;(2)长轴长2a18 ,短轴长 2b 6 ,离心率e 2 2 ,3焦点坐标分别是 (0, 62),(0,62),顶点坐标分别为 (0, 9) ,(0,9) , (3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2y21,或 y2x2 1 ;859819(3) x2y21,或 y 2x2 1 .2592596、解:由已知,椭圆的焦距F1F2 2 .因为PF1F2的面积等于1,所以,1F1F2y P1,解得y P1. 2代入椭圆的方程,得x211,解得 x15 .P54215l所以,点 P 的坐标是(1),共有 4个 .,2QA 7、解:如图,连接 QA .由已知,得 QA QP .O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以 OA OP(第 7 题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点, r 为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x m 代入椭圆方程x2y2 1 ,得 9x26mx2m218 0 .249这个方程根的判别式36m236(2 m 218)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 32,32) 时,直线与椭圆相交 .( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为M (x, y) .则 x x1x2m .23因为点 M 在直线y 3 x m 上,与 x m联立,消去 m ,得 3x 2 y0 .23这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .x2y29、3.5252 2.8752 1 .10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km.习题 2.2 B 组( P50)1、解:设点M的坐标为 ( x, y) ,点P的坐标为 ( x0 , y0 ) ,则 x x0, y 3 y0 .所以 x0x , y0 2 y① . 23因为点 P(x0, y0 ) 在圆上,所以 x02y02 4 ② .将①代入②,得点 M 的轨迹方程为x2 4 y24,即 x2y21949所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P(x, y) ,半径为R,两已知圆的圆心分别为O1, O2 .分别将两已知圆的方程x2y26x 50 , x2y 26x 910配方,得 (x 3)2y2 4 ,( x3) 2y2100当 e P 与e O1:( x3)2y2 4 外切时,有O1P R2①当 e P 与e O2:( x3)2y2100 内切时,有O2P10R ②①②两式的两边分别相加,得O1P O2 P12即, ( x 3)2y2(x 3)2y212③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2y212x ④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⑥3627由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12, 6 3 .解法二:同解法一,得方程( x 3)2y2( x 3)2y 212①由方程①可知,动圆圆心P(x, y) 到点 O1 ( 3,0) 和点 O2 (3,0)距离的和是常数12,所以点 P 的轨迹方程是焦点为( 3,0) 、 (3,0) ,长轴长等于 12 的椭圆 .并且这个椭圆的中心与坐标原点重合,焦点在 x 轴上,于是可求出它的标准方程 .因为 2c 6 , 2a 12 ,所以 c 3 , a 6所以 b 2 36 927 .于是,动圆圆心的轨迹方程为x 2y2361.273、解:设 d 是点 M 到直线 x8 的距离,根据题意,所求轨迹就是集合PMF 1 M2d( x2)2y 2 1由此得x28将上式两边平方,并化简,得3x24 y248 ,即x 2y 2 11612所以,点 M 的轨迹是长轴、短轴长分别为8, 4 3 的椭圆 .4、解:如图,由已知,得E(0, 3) , F (4,0) , G (0,3) , H ( 4,0) .DyGLC因为 R,S,T 是线段 OF 的四等分点,R'MR , S ,T 是线段 CF 的四等分点,S' 所以, R(1,0), S(2,0), T (3,0) ;HN T'O RSTF xR (4, 9 ), S (4, 3),T (4, 3) .424直线 ER 的方程是 y 3x 3 ;直线 GR 的方程是 y3.AEBx 31632 , y 45 .(第 4 题)联立这两个方程,解得x17 17所以,点 L 的坐标是 (32 ,45) .17 17同样,点 M 的坐标是 (16 , 9) ,点 N 的坐标是 ( 96 , 21) .5 525 25由作图可见,可以设椭圆的方程为x 2y 21 (m 0, n 0) ①nm 22把点 L, M 的坐标代入方程①,并解方程组,得11,11m 22232.4 n高中数学选修 2-1 课后习题答案 [ 人教版 ]所以经过点 L, M 的椭圆方程为x 2y 21 .16 9把点 N 的坐标代入x 2y 2 ,得 1( 96 ) 2 1 ( 21)2 1,169 16 259 25所以,点 N 在x 2y 2 1 上 . 169因此,点 L, M , N 都在椭圆x 2y 2 1 上.1692.3双曲线练习( P55)1、(1)x 2y 21 .(2) x 2y21.16 93(3)解法一:因为双曲线的焦点在y 轴上y 2x 21 ( a 0,b0)所以,可设它的标准方程为2b 2a将点 (2, 5) 代入方程,得254 1 ,即 a 2b 24a 2 25b 2 0a 2b 2又 a 2b 236解方程组a 2b 2 4a 2 25b 2 0a2b 236令 m a 2,nmn 4m 25n 0 b 2,代入方程组,得n 36m m 20 m 45 解得16,或9nn第二组不合题意,舍去,得a 2 20,b 2 16y 2x 2所求双曲线的标准方程为 120 16解法二:根据双曲线的定义,有 2a4 (5 6)24 (5 6)2 4 5 .所以, a 2 5高中数学选修2-1 课后习题答案 [ 人教版 ]又 c6,所以 b23620 16由已知,双曲线的焦点在y2x2y 轴上,所以所求双曲线的标准方程为 1 .20162、提示:根据椭圆中a2b2c2和双曲线中 a2b2c2的关系式分别求出椭圆、双曲线的焦点坐标 .3、由 (2 m)( m 1) 0 ,解得m 2 ,或 m1练习( P61)1、(1)实轴长 2a8 2 ,虚轴长2b 4 ;顶点坐标为(4 2,0),(42,0);焦点坐标为 (6,0),(6,0);离心率 e3 2 .4(2)实轴长2a 6 ,虚轴长 2b18 ;顶点坐标为(3,0),(3,0) ;焦点坐标为 (310,0),(310,0) ;离心率 e10 .(3)实轴长2a 4 ,虚轴长 2b 4 ;顶点坐标为(0,2),(0,2);焦点坐标为 (0,22),(0,22) ;离心率 e 2 .(4)实轴长2a10,虚轴长2b14;顶点坐标为(0,5),(0,5) ;焦点坐标为 (0,74),(0,74) ;离心率 e74 .52、(1)x2y 2 1 ;(2) y2x2 1.3、 x2y21169362835 4、 x2y2 1 ,渐近线方程为y x .18185、(1) (6,2),( 14,2) ;( 2) (25,3) 334习题 2.3 A组( P61)y2x21 . 因为a 8,由双曲线定义可知,点P 到两焦点距1、把方程化为标准方程,得1664离的差的绝对值等于16. 因此点P到另一焦点的距离是17.2、(1)x2y2 1 .(2) x2y2120162575高中数学选修 2-1 课后习题答案 [ 人教版 ]3、(1)焦点坐标为 F 1 ( 5,0), F 2 (5,0) ,离心率 e5 ;3 (2)焦点坐标为 F 1 (0, 5), F 2 (0,5) ,离心率 e5 ;44、(1)x 2y 21.( 2) y2x 2 1 2516916(3)解:因为 ec2 ,所以 c 22a 2 ,因此 b 2c 2 a 22a 2 a 2a 2 .a设双曲线的标准方程为x 2 y 21 ,或 y 2x 2 1.a 2 a 2a 2a 2将 ( 5,3) 代入上面的两个方程,得25 9 1 ,或 925 1 .a 2a 2 a 2a 2解得 a 216 (后一个方程无解) .所以,所求的双曲线方程为x 2 y 21 .16 165、解:连接 QA ,由已知,得 QA QP .所以, QA QO QP QO OP r .又因为点 A 在圆外,所以 OA OP .根据双曲线的定义,点Q 的轨迹是以 O, A 为焦点, r 为实轴长的双曲线 .6、 x 2 y 2 1 .8 8习题 2.3 B组( P62)1、 x 2y 2116 92、解:由声速及 A, B 两处听到爆炸声的时间差,可知A, B 两处与爆炸点的距离的差,因此爆炸点应位于以 A, B 为焦点的双曲线上 .使 A, B 两点在 x 轴上,并且原点 O 与线段 AB 的中点重合,建立直角坐标系 xOy .设爆炸点 P 的坐标为 ( x, y) ,则 PA PB 340 3 1020 .即 2a 1020 , a 510.又 AB1400,所以 2c 1400 , c 700 , b 2 c 2 a 2229900 .因此,所求双曲线的方程为x 2y22601001.2299003、 x 2y 2 1 a 2b 24、解:设点 A( x 1 , y 1) , B( x 2 , y 2 ) 在双曲线上,且线段 AB 的中点为 M ( x, y) .设经过点 P 的直线 l 的方程为 y 1 k ( x 1) ,即 ykx 1 k把 ykx1 k 代入双曲线的方程 x 2y 2 1得2(2 k 2 )x 2 2k(1 k )x (1 k 2 ) 20 ( 2 k 2 0 ) ①所以, x x 1 x 2 k(1 k)22 k2由题意,得k (1k) 1,解得 k 2 .2k 2当 k 2 时,方程①成为 2x 2 4x 3 0 .根的判别式16 24 8 0 ,方程①没有实数解 .所以,不能作一条直线 l 与双曲线交于 A, B 两点,且点 P 是线段 AB 的中点 .2.4 抛物线练习( P67)1、(1) y 2 12x ; ( 2) y 2x ;(3) y 24x, y 2 4x, x 2 4 y, x 24y .2、(1)焦点坐标 F (5,0) ,准线方程 x5 ; ( 2)焦点坐标 F (0, 1) ,准线方程 y1 ;88(3)焦点坐标 F ( 5 ,0) ,准线方程 x5; ( 4)焦点坐标 F (0, 2) ,准线方程 y 2 ; p . 8 83、(1) a , a ( 2) (6,6 2) , (6, 6 2)2提示:由抛物线的标准方程求出准线方程 . 由抛物线的定义,点 M 到准线的距离等于 9,所以 x 39 , x 6, y 6 2 .yy 2= 4x练习(P72)y 2= 2x1、(1) y216 x ; ( 2) x220 y ;y 2=x52 1=(3) y 216 x ;( 4) x 232 y .yx22、图形见右, x 的系数越大,抛物线的开口越大 .Ox3、解:过点 M (2,0) 且斜率为 1 的直线 l 的方程为 yx 2与抛物线的方程 y24x 联立y x 2y24x解得x 142 3 x 24 2 3,y 1 2 2 3y 2 2 2 3设 A(x 1, y 1 ) , B(x 2 , y 2 ) ,则 AB( x 2 x 1) 2( y 2 y 1 )2( 4 3) 2( 4 3) 2 4 6 .4、解:设直线 AB 的方程为 xa ( a 0) .将 x a 代入抛物线方程 y 2 4x ,得 y 24a ,即 y 2 a .因为AB 2 y 2 2 a 4 a 4 3 , 所以, a3因此,直线 AB 的方程为 x3 .习题 2.4 A 组( P73)1、(1)焦点坐标 F (0, 1) ,准线方程 y1 ;22(2)焦点坐标 F (0,3) ,准线方程 y3 ;1616(3)焦点坐标 F ( 1 ,0) ,准线方程 x1 ;8 8 (4)焦点坐标 F ( 3 ,0) ,准线方程 x3 .222、(1) y 28x ;( 2) (4,4 2) ,或 (4, 42)3、解:由抛物线的方程 y 2 2 px ( p0) ,得它的准线方程为 xp .2根据抛物线的定义,由 MF 2 p ,可知,点 M 的准线的距离为 2 p .设点 M 的坐标为 ( x, y) ,则xp 2 p ,解得 x3p .3 p 代入 y 222将 x2 px 中,得 y3 p .2因此,点 M 的坐标为 (3 p,3 p) , (3 p,3 p) .224、(1) y 2 24 x , y 2 24x ;(2) x 212 y (图略)5、解:因为xFM 60 ,所以线段 FM 所在直线的斜率 k tan 603 .因此,直线 FM 的方程为 y3( x 1)高中数学选修2-1 课后习题答案 [ 人教版 ]与抛物线 y 24xy3( x1)L L 1联立,得y 24xL L 2将 1 代入 2 得, 3x210 x 3 0 ,解得, x 11, x 2 33把 x 11, x 2 3 分别代入①得y 12 3, y 2 2 333由第 5 题图知 (1 ,2 3) 不合题意,所以点 M 的坐标为 (3,2 3) .33因此, FM(3 1)2 (2 3 0) 246、证明:将 y x2 代入 y 22x 中,得 ( x2) 2 2x ,化简得 x 2 6x 4 0 ,解得 x35则 y 3 5 2 15因为 k OB1 5, k OA 1 535 35所以 k OB k OA1 5 1 5 153535 915所以 OA OB7、这条抛物线的方程是 x217.5 yy8、解:建立如图所示的直角坐标系,Ox设拱桥抛物线的方程为 x 22 py ,2l因为拱桥离水面 2 m ,水面宽 4 m所以222 p( 2) , p 1因此,抛物线方程为 x 2 2y4①(第 8 题)水面下降 1 m ,则 y 3 ,代入①式,得 x 22 ( 3) , x6 .这时水面宽为 2 6 m.习题 2.2 B 组( P74)1、解:设垂线段的中点坐标为( x, y) ,抛物线上相应点的坐标为(x 1, y 1 ) .根据题意, x 1x , y 1 2 y ,代入 y 122 px 1 ,得轨迹方程为 y21px .2由方程可知,轨迹为顶点在原点、焦点坐标为( p,0) 的抛物线 .82、解:设这个等边三角形 OAB 的顶点 A, B 在抛物线上,且坐标分别为( x 1 , y 1 ) , (x 2 , y 2 ) ,则 y 12 2 px 1 , y 22 2 px 2 .又 OAOB ,所以 x 12 y 12 x 22 y 22即 x 12 x 22 2 px 1 2 px 2 0, (x 12 x 22 ) 2 p( x 1 x 2 ) 0因此, ( x 1 x 2 )( x 1 x 2 2 p)因为 x 1 0, x 2 0,2 p 0 ,所以 x 1 x 2由此可得 y 1y 2 ,即线段 AB 关于 x 轴对称 .因为 x 轴垂直于 AB ,且AOx 30 ,所以y 1tan303 .x 13因为 x 1y 12 ,所以 y 1 2 3p ,因此 AB2 y 14 3 p .2 p3、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x1) .x 1直线 BM 的斜率 k BMy ( x 1) .x 1由题意,得 k AMkBM2 ,所以,yy2( x1) ,化简,得 x 2( y 1)(x1)x 1 x 1第二章复习参考题 A 组( P80)1、解:如图,建立直角坐标系, 使点 A, B, F 2 在 x 轴上, F 2 为椭圆的右焦点 (记 F 1 为左焦点) .因为椭圆的焦点在 x 轴上,所以设它的标准方程为x 2 y 2.a2b 21(a b0)y则 a c OAOF 2 F 2 A 6371 439 6810,a c OBOF 2F 2B 6371 2384 8755 ,解得 a 7782.5 , c 8755BF 1OF 2A x所以 ba 2c 2(a c)( ac)8755 6810用计算器算得 b 7722因此,卫星的轨道方程是x 2y 2 1.77832772222R r 1 r 2a cR r 1 a 22、解:由题意,得,解此方程组,得a c Rr 2r 1r 2c2因此卫星轨道的离心率 ecr 2 r 1 .a2R r 1r 23、(1) D ; ( 2) B .4、(1)当0 时,方程表示圆 .(2)当 090 时,方程化成 x 2y 21. 方程表示焦点在 y 轴上的椭圆 .1cos(3)当 90 时, x 2 1,即 x1,方程表示平行于 y 轴的两条直线 .(4)当 90180 时,因为 cos0,所以 x 2y 2 cos1 表示双曲线,其焦点在 x 轴上. 而当180 时,方程表示等轴双曲线 .5、解:将 ykx 1代入方程 x 2y 2 4得 x 2k 2 x 2 2kx 1 4 0即 (1 k 2 ) x 2 2kx 5 0 ①4k 2 20(1k 2 ) 20 16k 2令0 ,解得 k5,或 k522因为0 ,方程①无解,即直线与双曲线没有公共点,所以, k 的取值范围为 k5,或 k5226、提示:设抛物线方程为y 2 2 px ,则点 B 的坐标为 ( p, p) ,点 C 的坐标为 ( p, p)2 2 设点 P 的坐标为 ( x, y) ,则点 Q 的坐标为 ( x,0) .因为, PQ y2px , BC 2 p , OQ x .所以, PQ 2BC OQ ,即 PQ 是 BC 和 OQ 的比例中项 .7、解:设等边三角形的另外两个顶点分别是A, B ,其中点 A 在 x 轴上方 .高中数学选修2-1 课后习题答案 [ 人教版 ]3 p直线 FA 的方程为 y( x)32与 y 22 px 联立,消去 x ,得 y 2 23 py p 2解方程,得 y 1 ( 3 2) p , y 2 ( 3 2) p把 y 1( 3 2) p 代入 y3( xp ) ,得 x 1(72 3) p .322把 y 2( 3 2) p 代入 y3(xp) ,得 x 2 (72 3) p .322所以,满足条件的点 A 有两个 A 1 ((72 3) p,(3 2) p) , A 2 ((72 3) p,(3 2) p) .22根据图形的对称性,可得满足条件的点B 也有两个B 1(( 72 3) p, (3 2) p) ,2 7( 32) p)B 2 ((2 3) p,2所以,等边三角形的边长是A 1B 12( 3 2) p ,或者 A 2 B 22(23) p .8、解:设直线 l 的方程为 y 2xm .把 y2x m 代入双曲线的方程 2x 23y 2 6 0 ,得 10x 2 12mx 3m 2 6 0 .x 1 x 26m, x 1x 2 3m 2 6 ①5 10由已知,得(1 4)[( x 1 x 2 ) 2 4x 1x 2 ] 16②210 把①代入②,解得m3210 所以,直线 l 的方程为 y2x39、解:设点 A 的坐标为 (x 1, y 1 ) ,点 B 的坐标为 ( x 2 , y 2 ) ,点 M 的坐标为 (x, y) .并设经过点 M 的直线 l 的方程为 y1 k (x 2) ,即 ykx 1 2k .22y把 y kx 1 2k 代入双曲线的方程 x1 ,得(2 k 2 )x 22k (1 2k )x(1 2k)2 2 0 (2 k 2 0) . ①高中数学选修 2-1 课后习题答案 [ 人教版 ]x 1 x 2 k (1 2k)所以, x22 k 2由题意,得k(12k) 2 ,解得 k42 k 2当 k4 时,方程①成为 14 x 2 56x 51根的判别式56 256 51 2800 ,方程①有实数解 .所以,直线 l 的方程为 y4x 7 .10、解:设点 C 的坐标为 (x, y) .由已知,得 直线 AC 的斜率 k ACy (x5)x 5直线 BC 的斜率kBCy 5 ( x 5)x 由题意,得 k AC k BCm . 所以, y y m( x5)5 x 5x化简得,x 2y 2 1(x 5)2525m当 m 0 时,点 C 的轨迹是椭圆 (m 1) ,或者圆 ( m 1) ,并除去两点 ( 5,0),(5,0) ;当 m 0 时,点 C 的轨迹是双曲线,并除去两点( 5,0),(5,0) ;11、解:设抛物线 y 2 4x 上的点 P 的坐标为 ( x, y) ,则 y 24x .点 P 到直线 yx 3 的距离 dx y 3y 2 4y 12 ( y 2)2824 24 2.当 y 2时, d 的最小值是2 .此时 x1,点 P 的坐标是 (1,2) .12、解:如图,在隧道的横断面上,以拱y顶为原点、拱高所在直线为y 轴Ox(向上),建立直角坐标系 .抛物线设隧道顶部所在抛物线的方程6 mE为 x 22 py因为点 C (4, 4) 在抛物线上DC所以 422 p( 4) 2 mFA3 m3 m2 p 4B解得高中数学选修2-1 课后习题答案 [ 人教版 ]为 x 2 4 y .设 EFh 0.5. 则 F (3, h 5.5)把点 F 的坐标代入方程 x 24y ,解得 h3.25 .答:车辆通过隧道的限制高度为3.2 m.第二章复习参考题 B 组( P81)1、SPF 1F 224 3 .2、解:由题意,得 PF 1x 轴.把 xc 代入椭圆方程,解得yb 2 . 所以,点 P 的坐标是 ( c, b 2)aa 直线 OP 的斜率 k 1b 2 .直线 AB 的斜率 k 2b .aca由题意,得b 2b,所以, b c , a2c .ac a由已知及 F 1A a c ,得 ac 105所以 (1 2) c 105 ,解得 c5所以, a10 , b5因此,椭圆的方程为x 2 y 2 1.1053、解:设点 A 的坐标 (x 1, y 1 ) ,点 B 的坐标 ( x 2 , y 2 ) .由 OA OB ,得 x 1x 2y 1y 2 0 .由已知,得直线 AB 的方程为 y2x 5 .则有 y 1 y 25( y 1 y 2 ) 25 0 ①由 y2x 5 与 y 22px 消去 x ,得 y 2py 5 p0 ②y 1y 2p , y 1 y 25 p ③把③代入①,解得 p54高中数学选修 2-1 课后习题答案 [ 人教版 ]当 p5时,方程②成为 4 y 25y 25 0 ,显然此方程有实数根 .所以, p5444、解:如图,以连接 F 1 , F 2 的直线为 x 轴,线段 F 1 F 2 的中点为原点,建立直角坐标系 .对于抛物线,有p1763 529 2292 ,2所以, p4584 , 2 p 9168 .对于双曲线,有c a 2080c a 529解此方程组,得 a 775.5, c 1304.5因此, b 2 c 2 a 2 1100320 .(第 4 题)所以,所求双曲线的方程是x 2y 2 601400.31 ( x 775.5) .1100320因为抛物线的顶点横坐标是 (1763 a)(1763 775.5)987.5所以,所求抛物线的方程是y 2 9168( x987.5)答:抛物线的方程为 y 29168( x 987.5) ,双曲线的方程是x 2y 21 ( x 775.5) .601400.311003205、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x 1)x 1直线 BM 的斜率 k BMy ( x 1)x1由题意,得 kAMk2 ,所以y y 2( x1),化简,得 xy x 2 1(x1)BMx1 x 1所以,点 M 轨迹方程是 xy x 21(x1) .6、解:(1)当 m 1时,方程表示 x 轴;( 2)当m3 时,方程表示 y 轴;(3)当 m1,m 3 时,把方程写成x 2 y23 mm 1.1①当 1 m 3, m 2 时,方程表示椭圆;② m 2 时,方程表示圆;③当 m 1,或 m3时,方程表示双曲线 .7、以 AB 为直径的圆与抛物线的准线 l 相切 .高中数学选修2-1 课后习题答案 [ 人教版 ]垂线,垂足分别为 D , E .由抛物线的定义,得AD AF , BE BF .所以, AB AF BF AD BE .设 AB 的中点为 M ,且过点 M 作抛物线y22px ( p0) 的准线l的垂线,垂足为C .显然 MC ∥x轴,所以, MC 是直角梯形 ADEB 的中位线.于是, MC 1( AD BE )1AB .因此,点 C 在以 AB 为直径的圆上.22又 MC l ,所以,以 AB 为直径的圆与抛物线的准线l 相切.类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离;对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.高中数学选修 2-1 课后习题答案 [ 人教版 ]第三章空间向量与立体几何3.1空间向量及其运算练习( P86)1、略 .2、略 .uuuur uuuruuur uuur uuuur uuur uuur uuur uuuur uuur uuur uuur 3、 A C ABAD AA , BD AB AD AA , DB AA AB AD .练习( P89)uuuruuuruuuur1、(1) AD ; (2) AG ;(3) MG .2、(1) x 1; (2) x y1; (3) x y1 .3、如图 .22A CPB QRSO(第 3 题)练习( P92)1、 B .uuuur uuur uuuruuur2、解:因为 ACABADAA ,uuuur2uuur uuur uuur 所以 AC( AB AD AA )2uuur 2 uuur 2 uuur 2uuur uuur uuur uuur uuur uuurABADAA2( AB AD AB AA AD AA )uuuur 42 32 52 2 (0 10 7.5)8585所以 AC3、解:因为 AC所以 AC BD , AC AB ,又知 BD AB .uuur uuur uuur uuur 0uuur uuur 0 .所以 AC BD 0 , AC AB ,又知 BD AB uuur 2 uuur uuur CD CD CDuuur uuur uuuruuur uuuruuur(CA AB BD ) (CA ABBD )uuur 2 uuur 2uuur2CAAB BDa 2b 2c 2所以 CDa 2b 2c 2 .高中数学选修 2-1 课后习题答案 [ 人教版 ]r r r r rr r r r r 1、向量 c 与 a b , a b 一定构成空间的一个基底 . 否则 c 与 ab , a b 共面,r r r2、共面于是 c 与 a , b 共面,这与已知矛盾 .uuur uuuruuur uuur uuur uuur uuur uuur uuuur r r r 2、(1)解: OB OBBB OA AB BB OA OC OO a b c ;uuur uuur uuur uuur uuuur r rBA BABBOC OOc buuur uuur uuur uuur uuur uuuur r r rCA CA AA OA OC OO a bcuuur uuur uuuruuur1 uuur r 1 rr 1rr1r(2) OGOC CGOCCBb (ac)ab2 c .222练习( P97)1、(1) ( 2,7,4) ; (2) ( 10,1,16); (3) ( 18,12,30) ; ( 4)2.2、略 .3、解:分别以 DA ,DC , DD 1 所在的直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系 .则 D (0,0,0) , B 1 (1,1,1), M (1,1,0) , C(0,1,0) 2uuuur uuuur 1所以, DB 1 (1,1,1), CM (1, ,0) .2uuuur uuuur 1 1uuuur uuuurDB 1 CM 015所以, cos2.DB 1, CMuuuur uuuur 1 15DB 1 CM31D'4C'习题 3.1 A 组( P97)A'B' Muuuruuur uuur D GC1、解:如图,(1) ABBC AC ;uuur uuur uuuruuur uuur uuur uuuur uuuur(2) AB AD AAACAA AC CC AC ;A(第 1 题) Buuur uuur1 uuuur uuur uuuuruuuur(3)设点 M 是线段 CC 的中点,则 ABADCCACCMAM ;1 uuur 21 uuuur(4)设点 G 是线段 AC 的三等分点,则uuur uuuruuur ( AB AD AA ) AC AG .uuur uuuur uuuur uuur33向量 AC , AC , AM , AG 如图所示 .2、 A .uuuur 2 uuur uuur uuur3、解: AC ( AB AD AA )2高中数学选修 2-1 课后习题答案 [ 人教版 ]uuur 2 uuur 2 uuur 2 uuur uuur uuur uuur uuur uuurAB AD AA 2( AB AD AB AA AD AA ) 52 32 722(5 3 1 5 72 3 7 2 )2 2298 56 2所以, AC13.3 .uuur uuuruuur uuur 1a2;4、(1) AB ACAB AC cos60uuur uuuruuur uuur21a 2;(2) AD DBAD DB cos120uuur uuur uuur uuur 2 uuur uuur1 a2 1 1(3) GF AC GF AC cos180 2 ( GF AC a) ;2 2 uuur uuur uuur uuur 1 a 2 uuur 1 uuur 1(4) EF BC EF BC cos60 4 ( EF 2 BD a) ; uuur uuur uuur uuur uuur uuur 21 2 1 1; (5) FG BA FG BA cos120 a ( FG2 AC a)4 2uuur uuur uuur uuur 1 uuur 1 uuur(6) GE GF(GCCB2 BA)CA21 uuuruuur1 uuur 1 uuur( DCCB2 BA)2 CA21 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA 2 CB CA 4 BA CA1 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA cos120 2 CB CA cos604 BA CA cos601 a 245、(1) 60 ; (2)略 .r rr6、向量 a 的横坐标不为 0,其余均为 0;向量 b 的纵坐标不为 0,其余均为 0;向量 c 的竖坐标不为 0,其余均为 0.7、(1)9; (2) (14, 3,3) .rr r r 0 ,即 82 3x0 ,解得 x10 . 8、解:因为 ab ,所以 a buuuruuur3(5,1, 10)9、解: AB ( 5, 1,10) , BAuuuur1 uuur uuur1 9 2) ,设 AB 的中点为 M , OM2(OAOB )( , ,uuur 2 2所以,点 M 的坐标为 (1 , 9 ,( 5)2( 1)21021262) , AB2 210、解:以 DA , DC , DD 1 分别作为 x 轴、 y 轴、 z 轴建立空间直角坐标系 O xyz .高中数学选修 2-1 课后习题答案 [ 人教版 ]则 C ,M , D 1 , N 的坐标分别为:uuuur 1 uuuur CM (1, 1, ) , D 1 N2 uuuur12 ( 1)2 ( 1) 2 所以 CM2C (0,1,0) , M (1,0, 1 1 ) ,D 1(0,0,1) , N (1,1, ) .122(1,1, )23uuuur 121)23, D 1 N12 ( 22 2uuuur uuuur1 1 11 cos CM , D 1N9 4 94由于异面直线 CM 和 D 1N 所成的角的范围是 [0,]2因此, CM 和 D 1 N 所成的角的余弦值为 1.31911、 ( , ,3)2 2 习题 3.1 B组( P99)1、证明:由已知可知,uuur uuur uuur uuurOA BC , OB ACuuur uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA BC 0 , OB AC 0 ,所以 OA (OC OB ) 0 , OB (OC OA) 0 .uuur uuur uuur uuur uuur uuuruuur uuur∴ OA OC OA OB , OB OCOB OA .uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA OC OB OC 0 , (OAOB) OC 0 , BA OC 0 .∴ OC AB .2、证明:∵点 E, F ,G , H 分别是 OA,OB, BC ,CA 的中点 . uuur1 uuuruuur1 uuuruuuruuur ∴ EFAB , HGAB ,所以 EFHG22∴四边形 EFGH 是平行四边形 .uuur uuur 1 uuur 1 uuur 1 uuur uuur uuur 1 uuur uuuruuur uuurEFEHABOC4 (OBOA) OC4(OB OCOA OC )2 2∵ OA OB , CA CB (已知), OC OC .∴ BOC ≌ AOC ( SSS )∴ BOC AOCuuur uuur uuur uuur∴ OB OC OA OCuuur uuur ∴ EF EH 0uuur uuur ∴ EF EH∴ 平行四边形 □ EFGH 是矩形 .。
(2021年整理)高二理科数学选修2-1测试题(一)

高二理科数学选修2-1测试题(一)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高二理科数学选修2-1测试题(一))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高二理科数学选修2-1测试题(一)的全部内容。
高二理科数学选修2—1测试题一、选择题(每小题5 分,共12小题,满分60分)1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( )(A) tan 1p x R x ⌝∃∈≠:,使 (B) tan 1p x R x ⌝∃∉≠:,使 (C ) tan 1p x R x ⌝∀∈≠:,使 (D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是 ( )(A)(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a )3. 设a R ∈,则1a >是11a < 的 ( )(A )充分但不必要条件 (B)必要但不充分条件 (C )充要条件(D )既不充分也不必要条件4。
已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )(A )2 (B )3 (C)4 (D )5 5.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C 一定共面; ③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-1参考答案2011.1
命题: 吴晓英(区教研室) 检测:张新会(石油中学)
一、选择题:本大题共10小题,每小题6分,共60分。
1. D.(教材习题改)
2. B .
3.A .(教材例题改)
4. A.(教材复习题改)
5. B.(西关中学牛占林供题改)
6. A.(西关中学牛占林供题改)
7. C.(教材习题改)
8. C.
9. A .(实验中学秦天武供题改) 10.C.(实验中学秦天武供题改)
二、填空题:本大题共6小题,每小题5分,共30分。
11.2
x y =或28y x =-(十二厂中学司秦霞供题改)
12.2(教材习题改) 13. 1,⎧⎪--⎨⎪⎪⎩⎭
(教材习题改) 14.1(教材复习题改) 15.-2(教材复习题改) 16.±1(教材习题改)
三、解答题:本大题共4小题,共60分。
17. (本小题满分15分)(教材例题改)
解:(Ⅰ)该命题是全称命题,(2分)
该命题的否定是:存在末尾数是偶数的数,不能被4整除;(2分) 该命题的否定是真命题. (1分)
(Ⅱ)该命题是全称命题,(2分)
该命题的否定是:存在实数,x 使得2230x x --≥;(2分) 该命题的否定是真命题. (1分)
(Ⅲ)该命题是特称命题,(2分)
该命题的否定是:方程2
560x x --=的两个根都不是奇数;(2分) 该命题的否定是假命题. (1分)
18. (本小题满分15分)(教材复习题改)
解:设双曲线的方程为 22
221x y a b
-= (3分)
椭圆22
1259
x y +=的半焦距4c ==,离心率为45,(6分) 两个焦点为(4,0)和(-4,0) (9分) ∴双曲线的两个焦点为(4,0)和(-4,0),离心率144255e =
-= ∴42c a a
== ∴2a = (12分) ∴22212b c a =-= (14分) ∴双曲线的方程为 22
1412
x y -= (15分) 19.(本小题满分15分)(教材习题改)
解:(Ⅰ)以A 为坐标原点,分别以射线AB 、AD 、AS 为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系,则A(0,0,0), B(1,0,0),C(1,1,0), D(0,2,0), S(0,0,1) (2分)∵(1,1,1)SC =-, (1,2,0)BD =- (6分)
∴15cos ,15
35SC BD
SC BD SC BD <>==
= (8分) ∴直线SC 与BD 夹角的余弦值为
15
(9分) (Ⅱ)设平面SCD 的一个法向量为(,,)n x y z = ∵(1,1,1)SC =-,(1,1,0)CD =-
则00
n SC n CD ⎧=⎪⎨=⎪⎩ 即00x y z x y +-=⎧⎨-+=⎩ 取(1,1,2)n = (12分) 30cos ,65n BD
n BD n BD <>===∴设直线BD 与平面SCD 的夹角为θ
则30sin |cos ,|n BD θ=<>=
(14分) 故直线BD 与平面SCD (15分) 20. (本小题满分15分)(教材例题、复习题改编)
解:(Ⅰ)设椭圆的标准方程为22
221x y a b
+=(2分) 由已知有22222591444
a b a b ⎧+=⎪⎨⎪-=⎩ (6分) 解得22106a b ⎧=⎨=⎩ (8分) ∴椭圆的标准方程为22
1106
x y += (9分) (也可利用椭圆定义求出a ,再求c ,b ,请参照以上标准给分) (Ⅱ)设1,1()A x y ,2,2()B x y ,
∵22111106x y +=,22221106x y +=, (11分) 两式相减,得1
2121212()()()()0106
x x x x y y y y +-+-+= ∵AB 的中点为P(-1,1),∴12122,2x x y y +=-+= 代入上式,得121235y y x x -=- 即AB 的斜率为35
, (13分) ∴所求直线l 的方程为31(1)5y x -=
+, 化简得3580x y -+= (15分) (如用其它方法求解,请参照以上标准给分)。