一元一次不等式组重点题型练习题

合集下载

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。

一元一次不等式组应用专项训练(20题)(学生版)

一元一次不等式组应用专项训练(20题)(学生版)

一元一次不等式组应用专项训练(20题)一、单选题1.某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定2.小王网购了一本《好玩的数学》,同学们想知道书的价格,小王让他们猜.喜欢数学的甲同学说:“至少20元.”对数学感觉一般的乙同学说:“至多15元.”讨厌数学的丙同学说:“至多12元.”小王说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.12<x<15B.12<x<20C.15<x<20D.13<x<193.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x的取值范围是()A.8<x≤22B.8≤x<22C.8<x≤64D.22<x≤644.“垃圾分类做得好,明天生活会更好”,学校需要购买分类垃圾桶10个,放在校园的公共区域,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶350元/个,B型分类垃圾桶400元/个,总费用不超过3650元,则不同的购买方式有()A.2种B.3种C.4种D.5种5.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生()A.4人B.5人C.6人D.5人或6人6.已知锐角α,钝角β,赵,钱,孙,李四位同学分别计算14(α+β)的结果,分别为68.5°,22°,51.5°,72°,其中只有一个答案是正确的,那么这个正确的答案是()A.68.5°B.22°C.51.5°D.72°7.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A.2种B.3种C.4种D.5种二、解答题8.一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运输.已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.9.某校七年级学生开展外出研学活动,准备租用45座和60座两种车型,若租用45座车正好坐满,若租用60座车就少租一辆,并且有一辆没坐满,但超过一半,你知道学校七年级有多少学生吗?10.一幢学生宿舍楼有一些空宿舍,现有一批学生要入住,若每间住5人,则有25人无法入住;若每间住10人,则有1间房不空也不满.求空宿舍的间数和这批学生的人数.11.嘉祥中学为加强现代信息技术教学,拟投资建一个初级计算机房和一个高级计算机房,每个计算机房只配置1台教师用机,若干台学生用机.其中初级机房教师用机每台8000元,学生用机每台3500元,高级机房教师用机每台11500元,学生用机每台7000元.已知两机房购买计算机的总钱数相等,且每个机房购买计算机的总钱数不少于20万元也不超过21万元.则该校拟建的初级机房,高级机房各应有多少台计算机?12.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有几种方案?13.某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?14.为鼓励同学们积极参加体育锻炼,学校计划拿出不超过2400元的资金购买一批篮球和排球,已知篮球和排球的单价比为5:1,单价和为90元.(Ⅰ)篮球和排球的单价分别是多少元?(Ⅱ)若要求购买的篮球和排球共40个,且购买的篮球数量多于28个,有哪几种购买方案?如果你是校长,从节约资金的角度来谈谈你会选择哪种方案并说明理由.15.在今年年初,新型冠状病毒在武汉等地区肆虐,为了缓解湖北地区的疫情,全国各地的医疗队员都纷纷报名支援湖北,某方舱医院需要8组医护人员支援,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人,若每组人数比预定人数少分配一人,则总数不够90人,那么预定每组分配的人数是多少人?16.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?(先填写表格,再设计方案)设用A型货厢x节,则用B型货厢(50−x)节货箱号装货量货物种类A B甲35x吨吨乙吨吨17.小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.大笔记本小笔记本价格(元/本)65页数(页/本)10060三、综合题18.2022年冬奥会吉祥物冰墩墩一夜之间火遍全球,各种冰墩墩的玩偶,挂件,灯饰等应运而生.某学校决定购买A,B两种型号的冰墩墩饰品作为纪念品,已知A种比B种每件多25元,预算资金为1700元:其中800元购买A种商品,其余资金购买B种商品,且购买B种的数量是A种的3倍.(1)求A,B两种饰品的单价.(2)购买当日,正逢开学季搞促销,所有商品均按原价八折销售,学校调整了购买方案:不超过预算资金且购买A种饰品的资金不少于720元,A,B两种饰品共100件:问购买A,B两种饰品有哪几种方案?19.“七一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折...预算资..销售,学校调整了购买方案:不超过720元,A,B两种奖品共100件.求购买A,B两种奖品的数量,有哪几种金且购买A奖品的资金不少于...方案?20.为了更安全地开展冰上运动某校决定购进一批护肘及护膝.已知用900元购进护膝的数量比用400元购进护肘的数量多10副,且每副护膝价格是每副护肘价格的1.5倍.(1)每副护肘和护膝的价格分别是多少元;(2)若学校决定用不超过8000元购进两种护具共300副,且护肘数量不多于102副,求有哪几种购买方案;(3)在(2)的条件下,若已知商家每副护肘的进价为15元,每副护膝的进价为20元,为支持学校的冰上运动,该商家准备正好用去方案中的最大利润的10%再次购进两种护具赠送给学校,请直接写出最多可赠送护膝多少副?。

七年级下一元一次不等式组100题(有答案)

七年级下一元一次不等式组100题(有答案)

解不等式不等式组100题1.3(2x +5)<2(4x +6)2.10-4(x -3)≤2(x -2)3.3x -2(9-x )>3(7+2x )-(11-6x )4.2(3x -1)-3(4x +5)≤x -4(x -7)5.2(x -1)-x >3(x -1)-3x +56.3[y -2(y -7)]≤4y7.15-(7+5x )≤2x +(5-3x )8.2(x -4)-3<1-3(x -2)9.2+≤2-3(y +1)8y -3410.0.5x +3(1+0.2x )>0.4x -0.611.2[x -]≤x 43(x -2312)3412.-≥0.04x +0.090.050.3+0.2x 0.3x -5213.7(4-x )-2(4-3x )<-4x14.2+<3+3(y +1)8y -1415.+<1x 3x -1216.3[x -2(x -2)]>x -3(x -3)17.x ++<1+x 2x +13x +8618.x -4<3243(1+x )(x -216)19.5-≥-x 3122x +1420.+1<+3y +137y -352(y -2)1521.-1<x +523x +2222.{2x -5<3x>x -22x 323.{->-1x 2x 32-3>-6(x -3)(x -2)24.{+4≤1x2x -8>2(x +2)25.{x -3<4(x -2)≥x -12x +1326.{2≤10-4(x -3)(x +8)-<1x -124x +1627.{->x3x -322x +13<112[x -2(x +3)]28.{x -3>1-x x -5>5-x 2x -4>x 229.4≤<73x -2-230.2x -1≤x -5≤4-x 3231.y -≤+13y -832(10-y )732.>(1-)(+1)(1+y 3)(+1y 2)y -22y 233.{3x -2<82x -1>234.{5-7x ≥2x -41-<0.534(x -1)35.2x <1-x ≤x +536.{3<2(x +9)(1-x)-≤-14x -30.5x +40.237.{-3x ≤04x +7>038.{x -1<x122x -4>3x +339.{2x -5<3x >x -22x 340.{->-1x 2x 32-3>-6(x -3)(x -2)41.{+4≤1x 2x -8>2(x +2)42.{5x -3≥2x <43x -1243.{2x +7>3x -1≥0x -2544.{>x -11+2x34<3x -4(x -1)45.-1<<1-2-3x446.{2-1≥3(x +1)4+x <747.{2x -1≥3(x -2)-2x <448.{3x +1>x +32x -1<x +149.{x +3>42x <650.{2x -5≥3(x -1)-<1x 3x -1251.{x<2x +13x -2≤4(x -1)52.{x +3>02+3≥3x(x -1)53.{3x +1<2(x +2)-x ≤x +2135354.{>0x +132≥6(x -1)(x +5)55.{5x -9<3(x -1)1-x ≤x -1321256.{2≤5x +5(x -3)4x <3x +157.{2x +3≤x +6>x +22x +3358.{-3≤4-x(x -2)>x -11+2x359.{4x -3<5x +≤x-42x +261360.{<212(x +4)x -3>5(x -1)61.{x ->-31+3x 25x -12≤2(4x -3)62.{1-2(x -1)≤5<x +3x -221263.{+3>x +1x -321-3≤8-x(x -1)解不等式不等式组100题64.{5x +2>3(x -1)7-x ≥x -1321265.{2<x +4(x +2)≥x 3x +1466.{2x +5≤3(x +2)x -1<x2367.{3≥x +4(x +2)<1x -1268.{2-x >0+1≥5x +122x -1369.{-3x ≤5616(x +5)2-9x >5[x -2(x -3)](x +19)70.{3x -2≤x +6+1>x 5x -2271.{2x +2≥3x +3-<-2x-13x +4272.{5x +3(x -2)≤10>x -11+3x273.{+2≥xx -241-3<9-x (x -2)74.{5x -2>3(x +1)x -1≤7-x 123275.{4x -10<05x +2>3x11-2x ≥1+3x 76.{-≤12x -135x +125x -1<3(x +1)77.{2x -3<1+2≥-x x -1278.{3+4<5x (x -2)-x ≥3x +1x -1279.{x -3(x -2)≥4<2x -15x +1280.{>2+x 22x -135-2≤x -1(x -3)81.{5x -2<3x +4>-x x +8382.{10-4(x -3)≥2(x -1)x -1>1-2x383.{5x -2<3(x +1)≤x -222x +3384.{3>2(x +9)(1-x)-≤-14x -30.5x +40.285.{2-x >0+1≥5x +122x -1386.{-3-<8(x +1)(x -3)-≤12x +131-x287.{5x -2≤3(x +1)x -1≤7+x 123288.{1-≤x +2x +12x >x (x +3)(x +1)89.{-≤12x -135x +125x -1<3(x +1)90.{5x +4<3(x +1)≥x -122x -1591.{2x +7>3x -1≥0x -2592.{1-2(x -1)≤5<x +3x -221293.{2≤3x +3(x +2)<x 3x +1494.{3x -1<2(x +1)≥1x +3295.{3x -2>x +2x -1≤7-x 123296.{3x -1<2x +11-2≤3+5(x -1)(x +1)97.{x -(2x -1)≤432>2x -11+3x298.{+3<x -1x -231-3≥6-x(x +1)99.{2x -1≥03x +1>03x -2<0100.≤5|-2x +13|解不等式不等式组100题答案12345678910x >32x ≥133x <-4x ≥-15x >4y ≥6x ≥34x <185y ≤35x >-36711121314151617181920x ≥35x ≤9x <-203y <3x <95x <3x <65x >152x ≥-572y >33821222324252627282930x >12x >6-6<x <6x <-121<x ≤4-10<x ≤1无解x >8-4<x ≤-2x ≤-431323334353637383940y ≤256y >65<x <32103无解-2≤x <13x >-3x ≥0无解x >6-6<x <641424344454647484950x <-121≤x <32≤x <8x <0-2<x <231≤x <3-2<x ≤51<x <21<x <3-3<x ≤-251525354555657585960-1<x ≤2-3<x ≤1-1≤x <3-1<x ≤41≤x <3-<x <11130<x ≤31≤x <4-3<x ≤3X <-161626364656667686970-2≤x <5-1≤x <3-2≤x <1-<x ≤452无解-1≤x <31≤x <3-1≤x <20≤x <40<x ≤471727374757677787980-2<x ≤-1-3<x ≤8-<x ≤212<x ≤452-1<x ≤2-1≤x <2-1≤x <2-1<x ≤-37-7<x ≤14≤x <881828384858687888990-2<x <3<x ≤445-12≤x <52-4≤x <-3-1≤x <2-2<x ≤1-8≤x ≤52-1≤x <0-1≤x <2无解9192939495969798991002≤x <8-1≤x <31≤x <3-1≤x <32<x ≤4﹣1≤x <2﹣≤x <354无解≤x <1223-7≤x ≤8。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)1、选择题1、选B。

解集为2<x<3的不等式组是x<3且x>2.2、选B。

根据题意可列出不等式组:a<1+a,1+a<-a,-a<a,解得a<0.3、选D。

将不等式组化简可得x≤1或x>2,所以解集在数轴上表示为(-∞,1]∪(2,+∞)。

4、选C。

将不等式组化简可得2<x<5/3,所以整数解的个数是3个。

5、选C。

根据题意可列出不等式组:2x-6>0,x-5<0,解得-5<x<3.6、选D。

将每个不等式化简,得到①x>1,②x>4,③x <2,④x<3,所以选项D符合条件。

7、选B。

根据题意可得2-b<a<2-a,即b-2<x<a-2.8、选A。

将方程组化简可得x=(3m-2)/7,y=(8x-m)/3,代入x>y中得到4m<25,即m>9/4,所以m的取值范围是m>xxxxxxx。

二、填空题9、解得y<1或y>3,所以取值范围为y<1或y>3.10、将不等式组化简可得x<2或x≥3,所以解集是(-∞,2)∪[3,+∞)。

11、将不等式组化简可得x≤-0.25或x≥0.8333,所以解集是(-∞,-0.25]∪[0.8333,+∞)。

12、将不等式组化简可得m≤0.5或m≥1.5,所以取值范围是m≤0.5或m≥1.5.13、解得x≥2,所以解集为[2,+∞)∩(-∞,5)=[2,5)。

14、将不等式组化简可得x>a且x>2,所以解得a<2.15、将不等式组化简可得x<2b-1且x>(x+3)/2,所以解得b>3/2且a<1/2,所以(a+1)(b-1)=ab+a-b+1=(3/2)a+1/2.16、将不等式组化简可得x<4a-1且x>x-2b-3,所以解得a<(x+1)/4且b<(x-3)/2,所以(a+1)(b-1)<(x+1)/4·(x-3)/2=(x²-2x-3)/8.1)解不等式组begin{cases}3x-2<8\\2x-1>2end{cases}化简得begin{cases}x<10/3\\x>3/2end{cases}因此解集为$(3/2,10/3)$。

一元一次不等式(组)专题训练

一元一次不等式(组)专题训练

1、某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1)需租用48座客车多少辆?解:设需租用48座客车x辆.则需租用64座客车辆.当租用64座客车时,未坐满的那辆车还有个空位(用含x的代数式表示).由题意,可得不等式组:解这个不等式组,得:.因此,需租用48座客车辆.(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?2、某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?3、某部门为了给员工普及电脑知识,决定购买A、B两种电脑,A型电脑单价为4800元,B型电脑单价为3 200元,若用不超过160000元去购买A、B型电脑共36台,要求购买A型电脑多于25台,有哪几种购买方案?4、为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?5、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.6、某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?7、为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的1/2 ,八年级学生占合唱团总人数的1 /4 ,余下的为七年级学生.请求出该合唱团中七年级学生的人数.8、在“五?一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?9、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.10、某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?11、王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.12、为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.13、小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m的钢管及长2.5m的钢管.﹙余料作废﹚(1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.14、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?15、义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的1/3 .请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?16、某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?17、为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?18、某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?19、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?20、2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?21、黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?22、某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?23、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?24、某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?25、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?26、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?27、2010年1月1日,全球第三大自贸区-中国-东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?28、某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.29、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?30、师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?31、某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?32、为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?33、东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)初三(1)班学生的人数是50人,如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.34、为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?35、去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?36、君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案?37、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?38、某儿童服装店欲购进A、B两种型号的儿童服装,经调查:B型号童装的进货单价是A型号童装进货单价的2倍,购进A型号童装60件和B型号童装40件共用2100元.(1)求A、B两种型号童装的进货单价各是多少元?(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过63 00元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元,问应该怎样进货,才能使总获利最大,最大获利为多少元?39、某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.40、今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过92 00元,则可购买甲、乙两种设备各多少台?41、初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.42、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?43、玉柴一分厂计划一个月(按30天计)内生产柴油机500台.(1)若只生产一种型号柴油机,并且每天生产量相同,按原先的生产速度,不能完成任务;如果每天比原先多生产1台,就提前完成任务.问原先每天生产多少台?(2)若生产甲,乙两种型号柴油机,并且根据市场供求情况确定:乙型号产量不超过甲型号产量的3倍.已知:甲型号出厂价2万元,乙型号出厂价5万元,求总产量ω最大是多少万元?44、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?45、某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?46、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.47、迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?48、某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9个,乙品牌的书包1 0个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.(1)求甲、乙两种品牌的书包每个多少元?(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元.根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?49、某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?。

人教版数学七年级上册一元一次不等式(组)专项训练50题

人教版数学七年级上册一元一次不等式(组)专项训练50题

方程与不等式(组)计算练习1.﹣=2﹣2.3.解方程:(I)4x+3(2x﹣3)=12﹣(x﹣4)(II)2x﹣(x+3)=﹣x+3(III)4.解方程组:5.解方程组:(1)(2)(3)(4)6.(Ⅰ)﹣=﹣1(Ⅱ)7.解下列方程组:(1)(2)8.解方程(组):(1)﹣=2﹣(2)9.解下列方程组:(1)(2)10.解下列方程组(1)(2)11.解下列方程组:(1)(2)12.解方程组(1)(2)13.解下列方程组:(1)(2)14.解下列方程组:(1)(2)15.解方程组(1)(2)(3)(4)16.解方程组:(1)(2)17.解方程组:(1)(2)18.解下列方程组(1)(2)19.(1)计算:(2)(3)20.解方程.(1)(2)21.解方程组(1)(2)22.解方程组:(1)(2)23.解方程(1)(2)24.解方程组:(1)(2)(3)25.解不等式组26.(1)解不等式5x+15>3x﹣1(2)解不等式组27.解方程(组)或不等式(组)并把第(4)的解集表示在数轴上(1)(2)(3)(4)28.解不等式组29.解不等式组30.解不等式组:,并把它的解集在数轴上表示出来31.解方程(组)或不等式(组)(1)(2)(3)并把解在数轴上表示出来并把解在数轴上表示出来(4)32.解不等式组(1)(2)33.解不等式和不等式组并用数轴表示其解集(1)(2)34.解不等式或不等式组,并把解集在数轴上表示出来(1)﹣(x﹣1)<1(2)(3)35.解下列不等式:(1)7x﹣2<9x+4(2)不等式组并将其解集在数轴上表示出来36.解下列方程组或不等式组37.求下列不等式(组)的解集(1)(2)+2<3﹣38.解下列方程组或不等式组,并将不等式组的解集表示在数轴上(1)(2)39.解不等式组40.解不等式组:,并把它的解集在数轴上表示出41.解不等式组(在数轴上表示解集)42.解不等式组,并在数轴上表示出解集43.不等式组的解集是0<x<2,求ab的值44.解不等式(组)(1)﹣(x﹣3)>4(2)45.解不等式组,并把解集表示在数轴上46.解不等式组:(1)3x﹣3≤2(2x﹣1)(2)46.解不等式组,并把解集在如图所示的数轴上表示出来47.解不等式组,并把解集在数轴上表示出来49.(1)解方程组:(2)解不等式组(并把解集在数轴上表示出来)50.解下列不等式(组),并把解集在数轴上表示出来(1)1﹣(2)。

解一元一次不等式专项练习50题(有答案)ok(最新整理)

解一元一次不等式专项练习50题(有答案)ok(最新整理)

29. (2)在不等式的左右两边同乘以 12 得, 6(2x﹣1)﹣4(2x+5)<3(6x﹣7), 解得:x
30.解:不等式两边都乘以 8 得,32﹣2(3x﹣1)≤5(x+3)+8,
去括号得,32﹣6x+2≤5x+15+8, 移项得,11≤6x+5x, ∴x≥1
36. 去分母,得 5(3x+1)﹣3(7x﹣3)≤30+2(x﹣2), 去括号,得 15x+5﹣21x+9≤30+2x﹣4, 移项,得 15x﹣21x﹣2x≤30﹣4﹣5﹣9, 合并同类项,得﹣8x≤12, 系数化为 1,得 x≥﹣1.5 37.解:原不等式的两边同时乘以 4,并整理得
系数化为 1 得,x<﹣8
23.解:
≥1﹣

去分母得:2(2x﹣1)≥6﹣3(5﹣x), 去括号得:4x﹣2≥6﹣15+3x, 移项合并得:x≥﹣7 24.解:原不等式可变为: 2(x+4)﹣3(3x﹣1)>6, 2x+8﹣9x+3>6, ﹣7x>﹣5,
x<
25.解:原不等式可化为,6(2x﹣1)≥10x+1, 去分母得,12x﹣6≥10x+1, 合并同类项得,2x≥7, 把系数化为 1 得,x≥ 26.解:去分母得,2(2x﹣1)﹣6≤3(5x﹣1), 去括号得,4x﹣2﹣6≤15x﹣3, 移项得,4x﹣15x≤﹣3+2+6, 合并同类项得,﹣11x≤5, 化系数为 1 得,x≥﹣ 27.解:去分母,得 32﹣2(3x﹣1)≥5(x+3)+8; 去括号,得 32﹣6x+2≥5x+15+8; 移项,得﹣6x﹣5x≥15+8﹣32﹣2; 合并同类项,得﹣11x≥﹣11; 系数化为 1,得 x≤1 28.解:(1)在不等式的左右两边同乘以 2 得, (3﹣x)﹣6≥0, 解得:x≤﹣3,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式组练习题
1、已知方程⎩⎨⎧-=++=+②①
m 1y 2x m 31y x 2满足0y x <+,则( )
A. 1m ->
B. 1m >
C. 1m -<
D. 1m <
2、若不等式组⎩
⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m >
3、若不等式组⎩
⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( ) A. 1a -≤ B. 1a -≥ C. 1a -< D. 1a -> 4、如果不等式组⎩
⎨⎧<->-m x x x )2(312的解集是x <2,那么m 的取值范围是( ) A 、m=2 B 、m >2 C 、m <2 D 、m≥2 5、如果不等式组2223
x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
6、若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a <
7、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = . 8、已知关于x 的不等式组0521
x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____
9、若不等式组530,0x x m -⎧⎨-⎩
≥≥有实数解,则实数m 的取值范围是( ) A.m ≤53 B.m <53 C.m >53 D.m ≥53
10、关于x 的不等式组⎩⎨⎧x +
152>x -32x +23<x +a
只有4个整数解,则a 的取值范围是 ( ) A. -5≤a ≤-143 B. -5≤a <-143 C. -5<a ≤-143 D. -5<a <-143
11、已知关于x 的不等式组0
321x a x -≥⎧⎨->-⎩
有五个整数解,这五个整数是____________,a 的取值范围是________________。

12、若m<n ,则不等式组12
x m x n >-⎧⎨<+⎩的解集是
13.若不等式组2113
x a x <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 . 14.已知方程组2420x ky x y +=⎧⎨-=⎩
有正数解,则k 的取值范围是 . 15.若关于x 的不等式组61540
x x x m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围是 . 16、若关于x 的不等式组⎩
⎨⎧>>m x x 2的解集是2>x ,则m 的取值范围是 . 17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩
的解集是( )
.1.0.01.21A x B x C x D x >-><<-<<
18、如果关于x 、y 的方程组322
x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( )
A.-4<a<5
B.a>5
C.a<-4
D.无解
19.已知关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩
,,无解,则a 的取值范围是( )
A.1a ≤- B.12a -<< C.a ≥0 D.2a ≤
20. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩
的解集为 .
21. 不等式组⎩⎨⎧-<+<6
32a x a x 的解集是32+<a x ,则a 的取值 .
22.已知关于x 的不等式组⎩⎨
⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

23、已知不等式组⎩⎨
⎧>-<-3
212b x a x 的解集为11x -<<,则)1)(1(-+b a 的值等于多少?
24、已知关于x 、y 的方程组⎩⎨
⎧-=-+=+3
42122m y x m y x 的解是一对正数。

(1)试确定m 的取值范围;(2)化简|2||13|-+-m m
25、已知关于x ,y 的方程组⎩
⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.
26、已知关于x ,y 的方程组⎩
⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.
27、已知⎩
⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
28、k 取哪些整数时,关于x 的方程5x +4=16k -x 的解大于2且小于10?。

相关文档
最新文档