材料工程基础全复习
材料工程基础复习资料

材料工程基础复习资料1.直接还原铁:将铁矿石在固态还原成海绵铁,即为直接还原,所得产品称为直接还原铁。
2.沉淀脱氧:是将脱氧剂直接加入到钢液中,直接与钢液的氧化亚铁反应进行脱氧。
3.炉外精炼(二次冶金):指对氧气转炉、电弧炉生产的钢也进行处理,使钢水稳定温度、进行成分微调(CAS)、降低其中的H、O、N和夹杂,或使夹杂物变性,提高刚质量的一种高新技术。
4.钢锭的液芯轧制:轧制过程在钢锭凝固尚未完全结束,芯部仍处于液态的条件下进行。
5.火法冶金:经造锍熔炼—转炉吹炼—火法精炼—电解精炼将铜提取出来。
6.变质处理:向熔融液中加入变质剂,细化组织。
7.熔模铸造:指用易熔性材料制作模样,在模样上包覆多层耐火材料,经酸化、干燥制成壳,然后熔失模样再将空心壳高温焙烧后,浇注合金液于其中而获得铸件的一种铸造方法。
8.半固态合金:熔体冷却到液相以下,对合金进行搅拌,在搅拌力的作用下,凝固的树枝晶被破坏,并在熔体的摩擦熔融下,晶粒和破碎的枝晶小块形成卵球状颗粒分布在整个液态金属中,具有一定的流动性,又在剪切力较小或为零时,它具有固体性质,可以搬运、贮藏。
冷却到双相区——搅拌——参有固态的悬液。
9.流变成形:利用半固态金属连续制备器批量制备、或连续制备糊状浆料,并直接加工成形(铸造、挤压、轧制、模锻)的方法。
10.快速凝固:冷却速度大于100K|S的凝固过程称为快速凝固。
11.轧制孔型(孔型轧制?):在二辊或三辊轧机上靠乳辊的轧槽组成的孔型对各类型材的纵轧方法,也叫普通轧制法或常规轧制法。
12.拉拔配模:根据坯料尺寸,成品形状,尺寸与质量要求,确定拉拔道次数及各道次所需模孔形状与尺寸。
13.孔型设计:14.冰铜:冰铜是铜与硫的化合物,有白冰铜(Cu2S含铜80%左右)、高冰铜(含铜60%左右)、低冰铜(含铜40%以下)之分。
15.水热合成:水热合成是指温度为100~1000 ℃、压力为1MPa~1GPa 条件下利用水溶液中物质化学反应所进行的合成。
材料工程基础部分复习参考

材料工程基础部分复习参考 1、矿石准备采掘的矿石含有大量无用的脉石,经过选矿以后的含有较多金属元素的精矿,经过选矿后,还需要对矿石进行焙烧,球化,烧结。
2、 火法冶金:利用高温从矿石中提取金属或其化合物的方法湿法冶金:利用一些溶剂的化学作用,在水溶液或非水溶液中进行包括氧化,还愿,中和,水解和络合等反应,对原料,中间产物或者二次再生资源中的金属进行提取和分离的冶金过程。
电冶金:利用电能从矿石或者其他原料中提取,回收,精炼金属的冶金过程3、炼铁:⑴燃料的燃烧22C O CO +→温度达到1800℃(放热);2CO C CO +→ 1000℃(吸热),热源和还原剂 ⑵ Fe 的还原2FeO+CO Fe+CO →,FeO+C Fe+CO → ⑶熔剂反应32CaCO 700~1000CaO+CO (g)(Slag :CaO40%,Al2O3,15%,SiO2,3.5%,FeO, MnO.)FeS (in iron)+CaO CaS(in slag)+FeO → 3、炼钢:⑴元素的氧化 22F e +O 2F e O→,FeO+C Fe+CO →,FeO+Mn Fe+MnO → 22FeO+Si 2Fe+SiO →,255FeO+2P P O →⑵造渣脱磷,脱硫; ⑶脱氧合金化4、炼铝:氧化铝的制备(湿碱法)(1)铝土矿的浸出(digestion )用NaOH 溶液:2322232·32?4Al O H O NaOH Na O Al O H O +→+;2232SiO ,Fe O ,TiO 不溶解,沉淀,形成红泥(2)过滤(Fitration )(3)铝酸钠溶液分解(Precipitation )22323·4()Na O Al O H O Al OH NaOH +→+(4)3Al(OH)煅烧(Calsination )950-1000 ℃下煅烧,生成23-Al O α,获得99.5%的23-Al O α熔盐电解法制备铝:23Al O 熔点2050℃,采用冰晶石36Na AlF 作为电解质,熔点1010℃2336Al O +Na AlF →共晶物,熔点938℃,密度32.1g/cmAl: 32.3g/cm ,阴极33Al e Al ++→;阳极2-224O C e CO +-→阳极不断消耗;2323432Al O C Al CO +→+99.5~99.7% 5、熔化焊:手工电弧焊,可在室内、室外、高空和各种位置实施焊接,所用设备简单,易于维护,焊钳小,使用灵活。
材料工程基础复习资料

材料工程基础复习资料一、 题型介绍1.填空题(15/15)2.名词解释(4/16)3.简答题(3/21)4.计算题(4/48)二、复习内容1.名词解释(Chapters 2-4)热传导:两个相互接触的物体或同一物体的各部分之间,由于温差而引起的热量传递现象,称为热传导。
(依靠物体微观粒子的热运动而传递热量)热对流:指流体不同部分之间发生相对位移,把热量从一处传递到另一处的现象。
(依靠流体质点的宏观位移而传热)热辐射:物体通过电磁波向外传递能量并能明显引起热效应的辐射现象称为热辐射。
(不借助于媒介物,热量以热射线的形式从高温物体传向低温物体) 温度场:某瞬时物体内部各点温度的集合,称为该物体的温度场。
稳态温度场:温度不随时间变化的温度场。
等温面:温度场中同一瞬间同温度各点连成的面。
导热系数:在一定温度梯度下,单位时间内通过单位垂直面积的热量。
热射线:能被物体吸收并转变成热能的部分电磁波。
光谱辐射强度(E λ):单位时间内物体单位辐射面积表面向半球空间辐射从d λλλ+到波长间隔内的能量。
辐射力(E ):单位时间内物体单位辐射面积向半球空间辐射的全波段的辐射能,称为辐射力。
立体角:以球面中心为顶点的圆锥体所张的球面角。
角系数:任意两表面所组成的体系,其中一个表面(如F 1)所辐射到另一表面上的能量占其总辐射能量的百分数,称为第一表面对第二表面的角度系数,简称角系数,记为12ϕ。
有效辐射:本身辐射和反射辐射之和称为物体的有效辐射。
照度:到达表面单位面积的热辐射通量。
黑度:实际物体的辐射力和同温度下黑体的辐射力之比。
空间热阻:由于物体的尺寸形状和相对位置的不同,以致一物体发射的辐射能不可能全部到达另一物体的表面上,相对于全部接受辐射能来说,有热阻的存在,称为空间热阻。
表面热阻:由于物体表面不是黑体,所以它不可能全部吸收投射到它表面上的辐射能,相对于黑体来说,可以看成是热阻,称为表面热阻。
光带:把具有辐射能力的波长范围称为光带。
材料工程基础复习资料

总复习
1
结晶 塑性变形 热处理
工业用钢 铸铁 有色金属及其合金
纯金属
使用性能 工艺性能
2
合金
第一、二章
材料的性能
㈠ 使用性能
1、力学性能(熟悉)
(1 )强度:材料抵抗变形和破坏的能力。指标:
抗拉强度 b—材料断裂前承受的最大应力。
屈服强度 s—材料产生微量塑性变形时的应力。
稳态扩散与非稳态扩散的定义及特点,扩散能量的定义
(熟悉)
两大扩散定律的适用条件(熟悉)
半无限长棒的误差函数解(掌握):熟记公式及推论
(见课件),要求会查误差函数表,会利用内插法处理
数据
13
第七章 扩散
(二)扩散机制(熟悉)
间隙机制、空位机制:柯肯达尔效应(熟悉)、 换位机制
扩散驱动力:化学位梯度,而不是浓度梯度 扩散激活能与扩散系数之间的关系式,即阿累尼乌斯 公式(熟记),并能与半无限长棒的误差函数解结合 起来(掌握)
晶胞:晶格中代表原子排列规律的最小几何单元。
6
⑵ 三种常见纯金属的晶体结构
7
(二) 合金的相结构
合金中的相分为:固溶体和中间相
(1)固溶体
分类(三种分类方法)(熟悉)
影响固溶度的因素(四种)(熟悉)
固溶体的性能:固溶强化(掌握)
⑵ 中间相或化合物(分类与特性,掌握分类)
8
(三) 实际金属 的结构
柯氏气团,用来解释固溶强化现象(熟悉)
10
材料工程基础总复习题及部分参考答案

材料⼯程基础总复习题及部分参考答案材料⼯程基础总复习题及部分参考答案⼀、解释名词1、淬透性:淬透性是指钢在淬⽕时获得马⽒体的能⼒。
2、淬硬性:淬硬性是指钢在正常淬⽕下获得的马⽒体组织所能达到的最⾼硬度。
3、球化退⽕:球化退⽕是将钢中渗碳体球状化的退⽕⼯艺。
4、调质处理:淬⽕加⾼温回⽕的热处理称作调质处理,简称调质。
5、氮化:向钢件表⾯渗⼊N原⼦以形成⾼氮硬化层的化学热处理⼯艺。
6、完全退⽕:将⼯件加热到Ac3+30~50℃保温后缓冷的退⽕⼯艺,主要⽤于亚共析钢。
7、冷处理:钢件淬⽕冷却到室温后,继续在0℃以下的介质中冷却的热处理⼯艺。
8、软氮化:低温⽓体氮碳共渗,以渗氮为主。
9、分级淬⽕:将加热的⼯件放⼊稍⾼于Ms的盐浴或碱浴中,保温适当时间,待内外温度均匀后再取出空冷。
10、等温淬⽕:将⼯件在稍⾼于Ms 的盐浴或碱浴中保温⾜够长时间,从⽽获得下贝⽒体组织的淬⽕⽅法。
11、珠光体:过冷奥⽒体在A1到550℃间将转变为珠光体类型组织,它是铁素体与渗碳体⽚层相间的机械混合物,根据⽚层厚薄不同,⼜细分为珠光体、索⽒体和托⽒体。
12、炉渣碱度:炉渣中碱性氧化物的质量分数总和与酸性氧化物的质量分数总和之⽐,常⽤炉渣中的氧化钙含量与⼆氧化硅含量之⽐表⽰,符号R=CaO/SiO213、偏析:钢锭内部出现化学成分的不均匀性称为偏析。
14、疏松:液态合⾦在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成⼀些细⼩的孔洞。
15、⽩点:当钢中含氢量⾼达了3ml/100g左右时,经锻轧后在钢材内部会产⽣⽩点。
在经侵蚀后的横向低倍断⼝上可见到发丝状的裂纹,在纵向断⼝上呈现圆形或椭圆形的银⽩⾊斑点。
⽩点是⼀种不允许出现的存在的缺陷。
16、镇静钢:钢液在浇注前经过充分脱氧的钢,当钢液注⼊锭模后不发⽣碳氧反应和析出⼀氧化碳⽓体,钢液可较平静地凝固成锭,故称为镇静钢。
17、沸腾钢:沸腾钢是脱氧不完全的钢,⼀般只⽤弱的脱氧剂锰铁脱氧。
材料工程基础考试复习题及答案

材料的液态成形技术1. 影响液态金属充型能力的因素有哪些?如何提高充型能力?答:①第一类因素,属于金属性质方面的,主要有金属的密度、比热、导热系数、结晶潜热、动力黏度、表面张力及结晶特点等。
②第二类因素属于铸型性质方面的主要有铸型的蓄热系数、密度、比热、导热系数、温度、涂料层和发气性、透气性等。
③第三类因素,属于浇注条件方面的,主要有液态金属的浇注温度、静压头,浇注系统中压头的损失及外力场拯力、真空、离心、振动勘的影响等。
④第四类因素,属于铸件结构方面的,主要有铸件的折算厚度,及由铸件结构所规定的型腔的复杂程度引起的压头损失。
常用提高充型能力的措施针对影响充型能力的因素提出改善充型能力的措施,仍然可以从上述四类因素入手:①合金设计方面,在不影响铸件使用性能的情况下,可根据铸件大小、厚薄和铸型性质等因素,将合金成分调整到共晶成分附近;采取某些工艺措施,使合金晶粒细化,也有利于提高充型能力由于夹杂物影响充型能力,故在熔炼时应使原材料清洁,并采取措施减少液态金属中的气体和非金属夹杂物②铸型方面,对金属铸型、熔模型壳等提高铸型温度,利用涂料增加铸型的热阻,提高铸型的排气能力,减小铸型在金属填充期间的发气速度,均有利于提高充型能力③浇注条件方面,适当提高浇注温度,提高充型压头,简化浇注系统均有利于提高充型能力④铸件结构方面能提供的措施则有限2. 铸件的凝固方式有哪些?其主要的影响因素?答:铸件的凝固方式:逐层凝固,糊状凝固,中间凝固主要影响因素:合金的凝固温度范围和铸件凝固期间固、液相界面前沿的温度梯度。
通常,合金的凝固温度范围越小,铸件凝固期间固、液相界面前沿的温度梯度越大,则铸件凝固时越趋于逐层凝固;反之,则越趋于糊状凝固。
3. 什么是缩松和缩孔?其形成的基本条件和原因是什么?答:金属液在铸型中冷却和凝固时,若液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件的厚大部位及最后凝固部位形成一些孔洞。
其中,在铸件中集中分布且尺寸较大的孔洞称为缩孔;分散且尺寸较小的孔洞称为缩松。
材料工程基础全复习资料

材料⼯程基础全复习资料材料⼯程基础复习资料⼀、绪论1、概念:科学:对于现象的观察、描述、确认、实验研究及理论解释。
技术:泛指根据⽣产实践经验和⾃然科学原理⽽发展成的各种⼯艺操作⽅法与技能。
⼯艺:使各种原材料、半成品加⼯成为产品的⽅法和过程。
⼯程:将科学原理应⽤到实际⽬标,如设计、组装、运转经济⽽有效的结构、设备或系统。
材料⼯程:是⼯程的⼀个领域,其⽬的在于经济地,⽽⼜为社会所能接受地控制材料的结构、性能和形状。
2、材料科学与⼯程的任务?材料科学与⼯程是关于材料成分、结构、⼯艺和它们的性能与⽤途之间有关的知识和应⽤的科学。
3、传统材料加⼯包括哪⼏个⽅⾯?①传统的⾦属铸造②塑性加⼯③粉末材料压制、烧结或胶凝固结为制品④材料的焊接与粘接材料的切除,材料的成型,材料的改性,材料的连接⼆、材料的熔炼1、钢铁冶⾦1)、⾼炉炼铁⽣产过程:①还原:矿⽯中的铁被还原;②造渣:⾼温下⽯灰⽯分解形成的氧化钙与酸性脉⽯形成炉渣;③传热和渣底反应:被还原的矿⽯降落使温度升⾼加速反应将全部氧化铁还原成氧化亚铁,风⼝区残余的氧化亚铁还原成铁,与炉渣⼀起进⼊炉缸。
2)、炼钢过程中的理化过程:①脱碳:碳被氧⽓直接氧化:在温度⾼于1100℃条件下2C+O2→2CO间接氧化:在温度低于1100℃条件下2Fe+O2→2FeOC+FeO→Fe+CO②硅、锰的氧化:a.直接氧化反应:Si+O2 →Si022Mn+O2 →2MnOb.间接氧化,但主要是间接反应:Si+2FeO →Si02+2FeMn+FeO →MnO+Fe③脱磷:磷是以磷化铁(Fe2P)形态存在,炼钢利⽤炉渣中FeO及CaO与其化合⽣成磷酸钙渣去除Fe2P+5FeO+4CaO→(CaO)4·P2O5+9Fe④脱硫:硫是以FeS形式存在,利⽤渣中⾜够的CaO,把其中FeS去除。
反应式为FeS + CaO-->FeO + CaS⑤脱氧(再还原):通常采⽤的脱氧剂有:锰铁、硅铁和铝等。
材料工程基础全

材料工程基础复习资料熔炼部分1、简述液态金属的结构。
答:液态金属的短程有序、长程无序结构(1)原子团(由十几到几百个原子组成)内,原子间仍然保持较强的结合力和原子排列的规律性,既短程有序;(2)原子团间的距离增大(产生空穴),结合力减小,原子团具有流动性质;(3)存在能量起伏和结构起伏;(4)随温度的提高,原子团尺寸减小、流动速度提高。
2、液态金属的有哪些重要的性质。
答:1.液态金属的结构,短程有序、长程无序2.液态金属的粘度:表征液态金属和合金的流动性,充型、除气、除渣的能力有关。
3.液态金属的表面张力:表面层原子处于力不平衡状态,产生了垂直于液体表面、指向液体内部的力,该力总是力图使表面减小。
第二项与基体润湿4.金属凝固时的体积变化:液态金属凝固时会收缩,有缩孔和缩松现象,造成金属的性能下降,应设法控制。
(①液态金属具有短程有序、长程无序结构。
②温度、化学成分及固态颗粒物含量对液体金属的粘度有很大的影响。
③液态金属和气体组成的体系中,由于表面层原子处于力不平衡状态,产生了垂直于液体表面、指向液体内部的力,即表面张力,该力总是力图使表面减小。
④金属的密度随温度的提高而降低;工程上,液态金属凝固时会收缩,有缩孔和缩松现象,造成金属的性能下降。
)3、影响金属熔体粘度的因素有哪些?答:(1)温度,粘度随温度的提高而降低。
(2)化学成分,共晶成分的液态合金的粘度最低。
(3)固态颗粒含量,粘度随颗粒体积百分含量的提高而提高。
4、金属氧化的热力学判据是什么?答:①在标准状态下,金属的氧化趋势、氧化顺序和可能的氧化烧损程度,一般可用氧化物的标准生成自由焓变量△G0,分解压Po2或氧化物的生成热△H0作判据。
通常△G0、Po2或△H0越小,元素氧化趋势越大,可能的氧化程度越高。
②在实际熔炼条件下,元素的氧化反应不仅与△G0有关,反应物的活度和分压也起很大作用。
气相氧的分压PO2实高,组元含量[i%]多及活度系数大,则氧化反应趋势大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料工程基础复习资料一、绪论1、概念:科学:对于现象的观察、描述、确认、实验研究及理论解释。
技术:泛指根据生产实践经验和自然科学原理而发展成的各种工艺操作方法与技能。
工艺:使各种原材料、半成品加工成为产品的方法和过程。
工程:将科学原理应用到实际目标,如设计、组装、运转经济而有效的结构、设备或系统。
材料工程:是工程的一个领域,其目的在于经济地,而又为社会所能接受地控制材料的结构、性能和形状。
2、材料科学与工程的任务?材料科学与工程是关于材料成分、结构、工艺和它们的性能与用途之间有关的知识和应用的科学。
3、传统材料加工包括哪几个方面?①传统的金属铸造②塑性加工③粉末材料压制、烧结或胶凝固结为制品④材料的焊接与粘接材料的切除,材料的成型,材料的改性,材料的连接二、材料的熔炼1、钢铁冶金1)、高炉炼铁生产过程:①还原:矿石中的铁被还原;②造渣:高温下石灰石分解形成的氧化钙与酸性脉石形成炉渣;③传热和渣底反应:被还原的矿石降落使温度升高加速反应将全部氧化铁还原成氧化亚铁,风口区残余的氧化亚铁还原成铁,与炉渣一起进入炉缸。
2)、炼钢过程中的理化过程:①脱碳:碳被氧气直接氧化:在温度高于1100℃条件下 2C+O2→2CO间接氧化:在温度低于1100℃条件下 2Fe+O2→2FeOC+FeO→Fe+CO②硅、锰的氧化:a.直接氧化反应:Si+O2 → Si022Mn+O2 → 2MnOb.间接氧化,但主要是间接反应:Si+2FeO → Si02+2FeMn+FeO → MnO+Fe③脱磷:磷是以磷化铁(Fe2P)形态存在,炼钢利用炉渣中FeO及CaO与其化合生成磷酸钙渣去除 Fe2P+5FeO+4CaO→(CaO)4·P2O5+9Fe④脱硫:硫是以FeS形式存在,利用渣中足够的CaO,把其中FeS去除。
反应式为 FeS + CaO-->FeO + CaS⑤脱氧(再还原):通常采用的脱氧剂有:锰铁、硅铁和铝等。
Me +FeO-->MeO +Fe3)、高炉炼铁原料:铁矿石、燃料和熔剂焦炭:它是把炼焦的煤粉或是几种煤粉的混合物装在炼焦炉内,隔绝空气加热到1000~1100度,干馏后留下的多孔块状产物。
作用是提供热量和还原剂。
4)、直接还原炼铁方法:用煤或天然气等还原剂直接将铁矿石在固态还原成海绵铁熔融还原炼铁方法:用铁矿石和普通烟煤作原料,在汽化炉的流化床中,将直接、还原得到海绵铁进一步加热熔化,在熔融汽化炉的炉底形成铁水与炉渣的熔池。
2、铜冶金造锍熔炼:目的在于首先使炉料中的铜尽可能全部进入冰铜,部分铁以FeS形式也进入冰铜(Cu2S+FeS此熔体亦称为锍),使大部分铁氧化成FeO与脉石矿物造渣;其次使冰铜与炉渣分离。
为了达到这两个目的,造锍熔炼必须遵循两个原则。
一是必须使炉料中有足够的硫来形成冰铜,其次是炉渣中含二氧化硅接近饱和,以便使冰铜炉渣不至混熔。
3、单晶材料制备熔体中生长单晶应满足那些热力学、动力学条件?热力学:要使熔体中晶体生长,必须使体系的温度低于平衡温度。
体系温度低于平衡温度的状态称为过冷,所以,过冷是熔体中晶体生长的必要条件。
△T的绝对值称为过冷度,表示体系过冷程度的大小。
过冷度是熔体法晶体生长的驱动力,一般情况下,过冷度越大,晶体生长越快,过冷度为零时,晶体生长速度为零。
动力学:晶体生长速度f与晶体的温度梯度以及熔体的温度梯度有关。
远离生长界面的熔体温度最高,越趋近于生长界面,熔体温度趋于降低,这样便形成了由晶体到熔体方向(即Z向)的温度梯度。
温度梯度的存在是热量输运的必要条件。
要提高晶体生长速度,就要增大晶体的温度梯度和减小熔体的温度梯度,要降低晶体生长速度则采取相反措施。
三、金属的液态成型与半固态成型1、液态成型1)、从工艺方面列举如何获得等轴晶:①适当降低浇注温度:②合理运用铸型对液态合金的强烈激冷作用:③孕育处理:④动态晶粒细化:在合金凝固初期,直接对合金液施以振动、搅拌或旋转,都可以在液相中产生大量的游离晶体,细化等轴晶。
2)、合金的充型能力与流动性的概念极其关系:充型能力:液态金属充满型腔,获得形状完整,轮廓清晰铸件的能力。
流动性:指合金本身的流动能力。
关系:一般流动性好的合金,其充型能力也强,合金的流动性是影响合金充型能力的内在因素。
流动性是合金本身的性能之一,与合金成分、温度、杂质含量及其物理性能有关。
影响合金的充型能力的因素有合金的流动性、浇注条件以及铸型性质及结构。
3)、为什么金属型铸造未能广泛取代砂型铸造?和砂型铸造相比,金属型铸造有许多优点:(1)组织致密,力学性能较高。
(2)铸件的尺寸精度高、表面粗糙度低,铝合金铸件的尺寸公差等级可达CT7—CT9,表面粗糙度可达Ra3.2—12.5μm。
(3)浇冒口尺寸较小,金属耗量减少,一般可节约金属15%~30%。
(4)多次浇注、工序简化、生产率高,易于实现机械化、自动化。
而砂型铸造:(1)可以生产形状复杂的零件,尤其复杂内腔的毛坯;(2)工艺灵活性大,适应性广,工业常用的金属材料均可铸造。
几克~几百吨,壁厚0.3mm~1m;(3)铸造成本较低:原材料来源广泛,价格低廉;(4)铸件的形状尺寸与零件非常接近,减少切削量,属少无切削加工。
但金属型制造成本高,周期长,工艺要求严,易出现白口。
不适合单件、小批生产零件,不适宜铸造形状复杂的薄壁未能广泛取代砂型铸造。
铸件,否则易产生浇不足等缺陷。
铸造高熔点合金,金属型寿命较低。
因此金属型铸造未能广泛取代砂型铸造4)、简述顺序凝固原则和同时凝固原则,并说明各自适用的场合(合金及铸件结构条件)。
顺序凝固原则:在铸件上从远离冒口或浇口到冒口或浇口之间建立一个递增的温度梯度,从而实现由远离冒口的部分向冒口的方向顺序地凝固。
顺序凝固原则适用于收缩大或壁厚差别较大,易产生缩孔的合金铸件。
同时凝固原则:即采用相应工艺措施使铸件各部分温度均匀,在同一时间内凝固。
同时凝固适用于各种合金的薄壁铸件。
5)、了解各种铸造方法的特点及应用2、半固态成型流变成型:指利用半固态金属制备器批量制备或连续制备糊状浆料,直接进行加工成型(铸造、挤压、轧制、锻模等)的方法。
触变成型:指将用浆料连续制备器生产的半固态浆料铸成一定形状的铸锭的成型方法。
3、快速凝固成型实现快速凝固成型的基本条件及三项技术:基本条件:①金属溶液必须被分散成液流或液滴,而且至少在一个方向上的尺寸极小,以便散热;②必须有能带走热量的冷却介质。
三项技术:大冷却速度凝固、大生长速度快速凝固、大过冷度快速凝固四、金属塑性加工1、塑性加工的特点并与铸造进行比较:优点:(1)结构致密、组织改善、性能提高、强、硬、韧↑;(2)少无切削加工,材料利用率高;(3)可以获得合理的流线分布;(4)生产效率高。
缺点:(1)一般工艺表面质量差;(2)不能成型形状复杂件;(3)设备庞大、价格昂贵;(4)劳动条件差。
2、工艺基础:①基本工艺:轧制、挤压、拉拔、锻造、冲压成型②金属塑性变形的性能变化:加工硬化,回复与再结晶③金属塑性变形的类型:冷变形、热变形和温变形④影响塑性变形的因素:材料性质、加工条件、应力状态3、求任一点的主应力和主方向:解法如下例:设某点应力状态为:,试求其主应力和主方向.(应力单位:10MPa)解:将各应力分量代入式:得:)(2)(222322221xyzzxyyzxzxyzxyzyxzxyzxyxzzyyxzyxJJJτστστστττσσστττσσσσσσσσσ++-+=+++++-=++=代入:分解因式:为求主方向,可将应力分量代入式:0)(0)(0)(=-++=+-+=++-n m l n m l n m l z zy xz zx y xy zx yx x σστστσσσττσσ0)5(30)6(2032)4(=-++=+-+=++-n m l n m l n m l σσσ4、屈服条件及两个屈服准则:屈服准则(塑性条件、塑性方程):在复杂应力状态下,只有当各应力分量满足一定的关系时,质点才能进入塑性状态。
这种关系称为屈服准则。
屈服准则是判断材料从弹性状态进入塑性状态的判据。
两个屈服准则:Tresca屈服准则:当材料(质点)中的最大剪应力达到某一临界值时,则材料发生屈服;该临界值取决于材料在变形条件下的性质,而与应力状态无关。
设σ1>σ2>σ3, 则τmax 1=(σ1-σ3)/2 = C, C可通过实验求得。
其值与应力状态无关。
当拉伸试样屈服时,σ2=σ3=0、σ1=σs,代入上式得C=1/2σs。
于是,屈雷斯加屈服准则的数学表达式为σ1-σ3=σs若不知道主应力大小顺序,屈雷斯加屈服准则:三个式子只要满足一个,该点即进入塑性状态.Misses 屈服准则:当材料质点单位体积的弹性形状变化能达到某一临界值;该临界值只取决于材料在变形条件下的性质,而与应力状态无关。
密塞斯屈服准则表达式为: 或5、应力状态(静水压力)对金属塑形的影响:主应力图中,压应力个数越多,数值越大,即静水压力越大,则金属的塑性越好;拉应力个数越多,数值越大,即静水压力越小,则金属的塑性越低。
五、材料的连接1、焊接1)、焊接的概念(实质):使两个分离的物体通过加热或加压,或两者并用,在用或不用填充材料的条件下借助于原子间或分子间的联系与质点的扩散作用形成一个整体的过程。
2)、焊缝的外延生长:熔池中液态金属开始凝固时,熔池边界未熔的母材晶粒可作为非自发形核的现成基底,在很小的过冷度下,依附于母材晶粒逆热流方向生长,形成方向性很强的柱状晶,这种凝固特征就叫焊缝的外延生长。
3)、焊接热影响区:指受焊接热循环的影响,焊缝附近的母材金属组织或性能发生变化的区域。
4)、焊缝凝固特点:①外延生长(联生结晶)②形成弯曲柱状晶5)、焊接变形的基本形式:主要有收缩变形、角变形、弯曲变形、波浪变形、扭曲变形等。
6)、常用焊接方法比较:自行查看课件与课本7)、电阻焊:焊件组合后通过电极施加压力,利用电流流过接头的接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之在压力条件下形成接头的焊接方法。
2、粘接:粘接是借助于物理—化学过程形成两种固态物体永久性连接的一种技术。
粘接作用仅发生在表面及薄层,其实质是一种界面现象。
六、金属材料的常规热处理1、概念及其分类:金属材料的常规热处理是一种在固态下加热、保温和冷却,通过改变金属材料内部的组织结构,使其获得所需性能的工艺。
普通热处理可分成退火、正火、淬火和回火四种工艺类型。
表面热处理分为表面淬火及化学热处理。
即金属热处理分为整体处理、表面热处理和化学热处理。
()()()22132322212s σσσσσσσ=-+-+-222222)(6)()()(s zx yz xy x z x y y x στττσσσσσσ=+++-+-+-2、基本原理1)、加热可分为等温加热和连续加热。