二次函数的图像和性质知识点与练习

合集下载

二次函数的图像与性质专题训练

二次函数的图像与性质专题训练

二次函数的图象与性质专题【知识点1 二次函数的配方法】二次函数y =ax 2+bx +c (a ≠0)配方成顶点式y =a (x +b 2a )2+4ac−b 24a 2, 对称轴为2b x a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,.【题型1 二次函数的配方法】【例1】用配方法将下列函数化成y =a (x -h )2+k 的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y =2x 2+4x -1 (2)y =12x 2﹣2x +3; (3)y =(1﹣x )(1+2x );【知识点2 二次函数的五点绘图法】利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =−+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【题型2 二次函数的五点绘图法】【例2】已知抛物线y =x 2﹣2x ﹣3(1)写出该抛物线的开口方向、顶点坐标、对称轴、与x 、y 轴交点;(2)选取适当的数据填表格,并在直角坐标系内描点画出该抛物线的图象.【知识点3 二次函数的图象与各系数之间的关系】①二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. ②一次项系数b :在a 确定的前提下,b 决定了抛物线对称轴的位置,概括的说就是“左同右异”. ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置.【题型3 二次函数的图象与各系数之间的关系】【例3-1】如图所示的四个二次函数图象分别对应 ①y =ax 2, ②y =bx 2, ③y =cx 2, ④y =dx 2,则a ,b ,c ,d 的大小关系为 .(用“>”连接)【例3-2】二次函数y=ax2+bx+c(a≠0)图像如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.②④B.②⑤C.①②③D.②③⑤【例3-3】函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【知识点4 二次函数图象的平移变换】平移步骤:①将抛物线解析式转化成顶点式()2y a x h k=−+,确定其顶点坐标()h k,;②平移规律概括成八个字“左加右减,上加下减”.【题型4 二次函数图象的平移变换】【例4】要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象()A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【知识点5 二次函数图象的对称变换】2y ax bx c=++关于x轴对称,得到2y ax bx c=−−−;关于y轴对称,得到2y ax bx c=−+;()2y a x h k=−+关于x轴对称,得到()2y a x h k=−−−;关于y轴对称,得到()2y a x h k=++;2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=−+−;()2y a x h k=−+关于原点对称后,得到的解析式是()2y a x h k=−+−;【题型5 二次函数图象的对称变换】【例5】在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为()A.﹣5B.3C.5D.15【变式5-1】抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为.【变式5-2】在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=﹣(x﹣1)2﹣2 B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【题型6 利用二次函数的性质判断结论】【例6】对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【变式6-1】关于抛物线y =x 2﹣(a +1)x +a ﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧【变式6-2】对于二次函数y =x 2﹣2mx ﹣3,有下列结论:③ 它的图象与x 轴有两个交点;②如果当x ≤﹣1时,y 随x 的增大而减小,则m =﹣1;③如果将它的图象向左平移3个单位后过原点,则m =1;④如果当x =2时的函数值与x =8时的函数值相等,则m =5.其中一定正确的结论是 .(把你认为正确结论的序号都填上)【题型7 利用二次函数的性质比较函数值】【例7】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0, 1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【变式7-1】抛物线y =x 2+x +2,点(2,a ),(﹣1,﹣b ),(3,c ),则a ,b ,c 的大小关系是( )A .c >a >bB .b >a >cC .a >b >cD .无法比较大小【变式7-2】已知点A (b ﹣m ,y 1),B (b ﹣n ,y 2),C (b +m+n 2,y 3)都在二次函数y =﹣x 2+2bx +c 的图象上, 若0<m <n ,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 1<y 3<y 2 【题型8 利用二次函数的性质求字母的范围】【例8】已知抛物线y =﹣(x ﹣2)2+9,当m ≤x ≤5时,0≤y ≤9,则m 的值可以是( )A .﹣2B .1C .3D .4【变式8-1】若抛物线y =(x ﹣m )(x ﹣m ﹣3)经过四个象限,则m 的取值范围是( )A .m <﹣3B .﹣1<m <2C .﹣3<m <0D .﹣2<m <1【题型9 利用二次函数的性质求最值】【例9】若实数m 、n 满足m+n =2,则代数式2m 2+mn +m ﹣n 的最小值是_______.【变式9-2】抛物线y =ax 2+bx +3(a ≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d ≤1,则实数m 的取值范围是( )A .m ≤2或m ≥3B .m ≤3或m ≥4C .2<m <3D .3<m <4*【题型10 二次函数给定范围内的最值问题】【例10】若二次函数y =﹣x 2+mx 在﹣1≤x ≤2时的最大值为3,那么m 的值是( )A .﹣4或72B .﹣2√3或72C .﹣4 或2√3D .﹣2√3或2 √3【变式10-1】已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( )A .3B .﹣3或38C .3或−38D .﹣3或−38 【变式10-2】若二次函数y =x 2﹣2x +5在m ≤x ≤m +1时的最小值为6,那么m 的值是 .二次函数的图象与性质— 易错精选 —1. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下面五条信息:①c <0;②ab <0; ③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0.你认为其中正确的个数有( )A .1个B .2个C .3个D .4个2. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①abc >0;②2a ﹣b =0;③4ac ﹣b 2<0;④若点B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2;⑤am 2+bm <a ﹣b (m 为任意实数);其中,正确结论的个数是( )A .1B .2C .3D .43. 在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出以下结论:①abc <0;②c +2a <0;③9a ﹣3b +c =0;④a ﹣b ≥m (am +b )(m 为实数),其中正确的结论有 .(只填序号)4. 已知二次函数y =ax 2+bx+c (a≠0)的图像如图,有下列6个结论:①abc<0;②b<a ﹣c ;③4a+2b+c>0;④2c<3b ;⑤a+b<m (am+b ),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_____.5. 如图是抛物线21(0)y ax bx c a =++≠图像的一部分,抛物线的顶点坐标为(1,3)A ,与x 轴的一个交点为(4,0)B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;②>0abc ;③抛物线与x 轴的另一个交点时(4,0)−;④方程23ax bx c ++=−有两个不相等的实数根;⑤4a b c m n −+<+;⑥不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是_____________.(填写序号即可)6. 在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).。

二次函数知识点及典型例题

二次函数知识点及典型例题

二次函数一、二次函数的几何变换二、二次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求二次函数的解析式1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。

2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。

3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。

4、顶点在原点,可设解析式为y=ax 2。

5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。

6、顶点在x 轴上,可设解析式为()2h x a y -=。

7、抛物线过原点,可设解析式为y=ax2+bx 。

四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。

2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。

3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。

五、二次函数与一元二次方程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。

要分三种情况:1、 判别式△=b 2-4ac >0⇔抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。

有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。

2、 判别式△=b 2-4ac=0⇔抛物线与x 轴有一个交点(ab 2-,0)。

3、 判别式△=b 2-4ac=0⇔抛物线与x 轴无交点。

六、二次函数与一元二次不等式的关系1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。

二次函数全部知识点及典型例题(全)

二次函数全部知识点及典型例题(全)

二次函数一.复习1.函数的概念:一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.2.函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:二.二次函数的概念一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.例1.下列函数一定是二次函数的是__________.①;②;③;④;⑤y=(x-3)2-x 2 例2.若是221(3)2a a y a x --=--二次函数,则a=__________例 3.中的二次项系数=__________,一次项系数=__________,常数项=__________.例4.边长为12 cm 的正方形铁片,中间剪去一个边长x cm 的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系式为_______________.例 6.某地绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在当地收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)c bx ax y ++=2xy 3-=1342+-=x x y c bx x m y ++-=2)1(2y =(2x -1)-6a b c练习:1.下列函数中是二次函数的有( )个.(1)1y x x=+;(2)y=3(x-1)2+2;(3)y=(x+3)2-2x 2;(4) 21y x x =+ A.4 B.3 C.2 D.1 2.当m= 时,函数y=(m ﹣1)x |m|+1是二次函数.3.若267(1)m m y m x-+=-是二次函数,则m 的值是( ).A.5B.1C.1或5D.以上都不对.4.将化成二次函数的一般式是:________________.5.一个圆柱的高与底面直径相等,试写出它的表面积S 与底面半径r 之间的函数关系式___________________.6.(2014秋·温岭市校级月考) 已知某商品的进价为每件40元,售价是每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件.假设涨价x 元,求每周的利润y (元)与涨价x 之间的函数关系式,并写出自变量的取值范围.(23)(1)3y x x =+--三.二次函数的图像及性质:二次函数y=ax2(a≠0)的图象与性质二次函数y=ax2(a≠0)的图象:二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来. 要点诠释:(1)用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值. (2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数y=ax 2(a ≠0)的图象的性质x y要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴二次函数y=ax 2+c(a ≠0)的图象关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:a 2(0)y ax c a =+≠例1.二次函数y=ax2与直线y=2x﹣1的图象交于点P(1,m)(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.例2.已知y=(m+1)x 2m m +是二次函数且其图象开口向上,求m 的值和函数解析式例3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.例4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.2132y x =-+2y x =-21y x =-+(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________. 练习:1.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A. B. C. D.2.在同一坐标系中,作出,,的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下21y x =-+2y x =-21y x =-+21y x =-+25y x =212y x =-2y x =213y x =22y x =22y x =-212y x =C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点3.抛物线y=2x 2+1的对称轴是( ) A .直线x=B.直线x=﹣ C .y 轴 D . x轴4.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________,当x >0时,y 随x 的增大而________.5.函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.6.抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 .7.已知直线与x 轴交于点A ,抛物线的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;2y x =212y x =23y x=2y ax c =+23y x =1y x =+22y x =-(2)若点B(,),C(,)在抛物线C 上,且,试比较,的大小.8.(2014春·牙克石市校级月考)函数y=ax 2 (a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图象与性质 1.函数2()(0)y a x h a =-≠的图象与性质1x 1y 2x 2y 1212x x -<<1y 2y2.函数2()(0)y a x h k a =-+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移 1.平移步骤:2()+(0y a x h k a =-≠)⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或例1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;()2y a x h k =-+()h k ,2y ax =()h k,h k c bx ax y ++=2y m c bx ax y ++=2m c bx ax y +++=2m c bx ax y -++=2c bx ax y ++=2m c bx ax y ++=2c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(222(1)3y x =-+(2)顶点不动,将原抛物线开口方向反向; (3)以x 轴为对称轴,将原抛物线开口方向反向.例2.二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.例3.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,抛物线解析式为______________.例4.已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线; (1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出与的图象; (3)观察的图象,当________时,y 随x 的增大而增大;当________时,函数y 有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y 的取值范围吗?21(3)42y x =-+212y x=212y x =-2()y a x h k =-+2()y a x h k =-+212y x =-2()y a x h k =-+x x y =2()y a x h k =-+x例5.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点.(1)确定二次函数与直线AB 的解析式.(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.练习:1.抛物线的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=(x -1)2+2 B.y=(x -1)2+ C.y=(x -1)2-3 D.y=(x+2)2-1 3.抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )2(2)3y x =-+-21212121212121A.y=(x+3)2-2 B.y=(x -3)2+2 C.y=(x -3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为( )A .B .C .D .5.由二次函数,可知( )A .其图象的开口向下B .其图象的对称轴为直线C .其最小值为1D .当时,y 随x 的增大而增大6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.7. 把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.21212121122--=x x y 2)1(-=x y 2)1(2--=x y 1)1(2++=x y 2)1(2-+=x y 22(3)1y x =-+3x =-3x <2()y a x h k =-+21(1)12y x =-+-2()y a x h k =-+二次函数与之间的相互关系:1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式.对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:1.抛物线的对称轴是直线,顶点坐标是2(0)y ax bx c a =++≠=-+≠2()(0)y a x h k a 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭2()y a x h k =-+2b h a=-244ac b k a -=2y ax bx c =++2bx a=-24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2bx a=-,可以当作公式加以记忆和运用. 2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠2y ax bx c =++二次函数的图象与性质2(0)=++≠y ax bx c aa<a>02.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系20()y ax bx c a =++≠要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,时y 值的情况.例1.求抛物线的对称轴和顶点坐标.例2.把一般式化为顶点式.2(0)y ax bx c a =++≠2b x a =-244ac b y a-=最值2ba-2bx a=-244ac b y a-=最值222y ax bx c =++最大值211y ax bx c =++最小值2bx a=-2142y x x =-+-2286y x x =-+-(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标.例3.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).例4.求二次函数的最小值.例5.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值.例6. 抛物线与y 轴交于(0,3)点:211322y x x =++21y x bx c =+++24c b =--2(1)y x m x m =-+-+(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小练习:1. 将二次函数化为的形式,结果为( ).A .B .C .D . 2.已知二次函数的图象,如图所示,则下列结论正确的是( ).A .B .C .D . 3.若二次函数配方后为,则b 、k 的值分别为( ).A .0,5B .0,1C .-4,5D .-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b 、c 的值为( ). A .b=2,c=2 B . b=2,c=0 C . b= -2,c= -1 D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+223y x x =-+2()y x h k =-+2(1)4y x =++2(1)4y x =-+2(1)2y x =++2(1)2y x =-+2y ax bx c =++0a >0c <240b ac -<0a b c ++>25y x bx =++2(2)y x k =-+2y x bx c =++223y x x =--的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D.7.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是__________第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_________8.如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.例1. 已知抛物线c bx ax y 2++=经过A ,B ,C 三点,当x ≥0时,其图象如图所示.求抛物线的解析式,写出顶点坐标.例2. 形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为 . 例3. 已知抛物线c bx ax y 2++=的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.例4.已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.2.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是.当x时,y>0.4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.5.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

九年级数学二次函数的图像与性质知识点讲解及练习

九年级数学二次函数的图像与性质知识点讲解及练习

九年级数学二次函数的图像与性质知识点讲解及练习一、知识结构1.任意抛物线y a x h k =-+()2可以由抛物线y ax =2经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

2.在画y ax bx c =++2的图象时,可以先配方成y a x h k =-+()2的形式,然后将y ax =2的图象上(下)左(右)平移得到所求图象,即平移法; 基础演练:1、抛物线y=-4x 2-2的开口向 ,对称轴是 ,顶点坐标是 。

2、抛物线y=3(x+1)2的开口向 ,对称轴是 ,顶点坐标是 ,最 值为3、二次函数y=-2(x-1)2+3的开口向 ,对称轴是 ,顶点坐标是 ,当x 时,函数y 随x 的值的增大而增大;当x= 时,函数有最大值为 。

4、将抛物线y=-2x 2 向右平移1个单位,再向上平移3个单位,所得抛物线是 。

5、抛物线y=-4(x-2)2+3 可由抛物线y=-4x 2向 平移 个单位,再向 平移 个单位得到的。

二、典型例题:1、已知二次函数y=ax 2+bx+c(a≠0)的图像如图所示,有下列5个结论:xy33221141-1-2-O ①abc >0 ②b <a+c ③4a+2b+c >0 ④2c <3b ⑤a+b >m(am+b)(m≠1的实数) 其中哪些正确的结论是2、二次函数y=ax 2+bx+c 的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx+c=0的两个根. (2)写出不等式ax 2+bx+c >0的解集.(3)若方程ax 2+bx+c=k 有两个不相等的实数根,求k 的取值范围. 题组二: 1.抛物线21(1)22y x =--+的顶点坐标是 ,对称轴是 ,开口向 。

当x时,y 随x 的增大而减小,当x 时,y 有最 值 ;抛物线与x 轴的交点坐标为 与 ,抛物线与y 轴的交点坐标为2.抛物线如图所示:当x =________时,y =0,当x <-1,或x >3时,y _______0; 当-1<x <3时,y ______0;当x =_______时,y 有最______值。

二次函数图像与性质运用练习题

二次函数图像与性质运用练习题

二次函数图像与性质运用练习题1、二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的是 。

2、已知一元二次方程230x bx +-=的一根为3-,在二次函数23y x bx =+-的图象上有三点14 5,y ⎛⎫- ⎪⎝⎭、25 4,y ⎛⎫- ⎪⎝⎭、31 6,y ⎛⎫⎪⎝⎭,1y 、2y 、3y 的大小关系是 。

3、若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( ) A .x 1<x 2<a <b B .x 1<a <x 2<b C .x 1<a <b <x 2 D .a <x 1<b <x 2 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系是 。

4、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,且关于x 的一元二次方程ax 2+bx +c ﹣m =0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的是 。

5、抛物线y =ax 2+bx +c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a +b +c <0;③c ﹣a =2;④方程ax 2+bx +c ﹣2=0有两个相等的实数根.其中正确结论的个数为 。

6、“如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A . m <a <b <nB . a <m <n <bC . a <m <b <nD . m <a <n <b7、二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则t 的取值范围是 。

二次函数图像与性质练习题及参考答案

二次函数图像与性质练习题及参考答案

二次函数图像与性质练习题及参考答案二次函数是高中数学中一个重要的概念,在学习这一部分知识的过程中掌握二次函数的图像和性质是非常关键的。

本文将提供二次函数图像与性质的练习题及参考答案,帮助学生加深对这方面知识的理解和掌握。

第一题:给定函数 $f(x)=x^2+2x-3$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\ge -4$。

3. 对称轴方程为 $x=-1$。

4. 顶点坐标为 $(-1,-4)$。

5. 图像有对称轴对称性。

第二题:给定函数 $f(x)=-\frac{1}{2}x^2+4$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\le 4$。

3. 对称轴方程为 $x=0$。

4. 顶点坐标为 $(0,4)$。

5. 图像有对称轴对称性。

第三题:给定函数 $f(x)=3x^2-12x+7$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\ge -2$。

3. 对称轴方程为 $x=2$。

4. 顶点坐标为 $(2,-5)$。

5. 图像有对称轴对称性。

第四题:给定函数 $f(x)=-2x^2+8x+3$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 二次函数的图像与性质
1.能够利用描点法做出函数y =ax 2
,y=a(x-h)2,y =a(x-h)2
+k 和c bx ax y ++=2
图象,
能根据图象认识和理解二次函数的性质;
2.理解二次函数c bx ax y ++=2
中a 、b 、c 对函数图象的影响。

一、二次函数2y ax bx c =++图象的画法
五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定
其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们
选取的五点为:顶点、与y 轴的交点()0c ,
、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,
,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.
例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2
,y
=-2x 2 ,y =2(x-1)2 的图像。

一、二次函数的基本形式
1. y =ax 2
的性质:
x
y
O
2. y=ax2+k的性质:(k上加下减)
3. y=a(x-h)2的性质:(h左加右减)
4. y=a (x-h)2+k的性质:
5. y=ax2+bx+c的性质:
二、二次函数图象的平移
1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式()
2
y a x h k =-+,确定其顶点坐标()h k ,;
⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:
【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位
2. 平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字
“左加右减,上加下减”.
方法二:
⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2
变成
m c bx ax y +++=2(或m c bx ax y -++=2)
⑵c bx ax y ++=2
沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2
变成
c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)
四、二次函数()2y a x h k =-+与2y ax bx c =++的比较
从解析式上看,()2
y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2
2424b ac b y a x a a -⎛
⎫=++ ⎪⎝
⎭,其中2424b ac b h k a a -=-=
,. 六、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称
2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;
()2
y a x h k =-+关于x 轴对称后,得到的解析式是()2
y a x h k =---;
2. 关于y 轴对称
2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;
()2
y a x h k =-+关于y 轴对称后,得到的解析式是()2
y a x h k =++;
3. 关于原点对称
2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2
y a x h k =-+关于原点对称后,得到的解析式是()2
y a x h k =-+-;
根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.
例1、
例2、已知直线y=-2x +3与抛物线y=ax 2
相交于A 、B 两点,且A 点坐标为(-3,m ).
(1)求a 、m 的值;
(2)求抛物线的表达式及其对称轴和顶点坐标;
(3)x 取何值时,二次函数y=ax 2
中的y 随x 的增大而减小;
(4)求A 、B 两点及二次函数y=ax 2
的顶点构成的三角形的面积.
例3、求符合下列条件的抛物线y=ax 2
的表达式:
(1)y=ax 2
经过(1,2);
(2)y=ax 2
与y=2
1x 2
的开口大小相等,开口方向相反; (3)y=ax 2
与直线y=2
1
x +3交于点(2,m ).
例4、试写出抛物线y=3x 2
经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移2
3 个单位;(3)先左移1个单位,再右移4个单位。

例5、把抛物线y=x 2
+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2
-3x+5,试求b 、c 的值。

_______________________________________________________________________________ _______________________________________________________________________________
训练题:
1.抛物线y=-4x 2
-4的开口向 ,当x= 时,y 有最 值,y= .
2.当m= 时,y=(m -1)x
m
m +2-3m 是关于x 的二次函数.
3.抛物线y=-3x 2
上两点A (x ,-27),B (2,y ),则x= ,y= . 4.当m= 时,抛物线y=(m +1)x
m
m +2+9开口向下,对称轴是 .在对称轴左
侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 5.抛物线y=3x 2
与直线y=kx +3的交点为(2,b ),则k= ,b= .
6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为

7.在同一坐标系中,图象与y=2x 2
的图象关于x 轴对称的是( )
A .y=2
1x 2
B .y=-2
1x 2
C .y=-2x 2
D .y=-x 2
8.抛物线,y=4x 2
,y=-2x 2
的图象,开口最大的是( )
A .y=4
1x 2
B .y=4x 2
C .y=-2x 2
D .无法确定
9.对于抛物线y=31x 2和y=-3
1x 2
在同一坐标系里的位置,下列说法错误的是( ) A .两条抛物线关于x 轴对称 B .两条抛物线关于原点对称 C .两条抛物线关于y 轴对称
D .两条抛物线的交点为原点
10.二次函数y=ax 2
与一次函数y=ax +a 在同一坐标系中的图象大致为( )
11.已知函数y=ax 2
的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一象限内的交点相同,则a 的值为( )
A .4
B .2
C .2
1
D .4
1 12.已知二次函数y=41x 2-2
5
x +6,当x= 时,y 最小= ;当x 时,y 随
x 的增大而减小.
13.抛物线y=2x 2
向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为

14.若二次函数y=3x 2
+mx -3的对称轴是直线x =1,则m = 。

15.当n =______,m =______时,函数y =(m +n)x n
+(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.
16.已知二次函数y=x 2
-2ax+2a+3,当a= 时,该函数y 的最小值为0.
17.二次函数y=3x 2
-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ;当x=1时,函数有最 值是 。

18.如果将抛物线y=2x 2
-1的图象向右平移3个单位,所得到的抛物线的关系式为 。

19.将抛物线y=ax 2
+bx+c 向上平移1个单位,再向右平移1个单位,得到y=2x 2
-4x -1则a = ,b = ,c = .
20.将抛物线y =ax 2
向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为 _.
21、右图是二次函数y 1=ax 2
+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.
22、函数y=ax 2
(a ≠0)的图像与直线y=-2x-3交于点(1,b ) (1)求a 和b 的值
(2)求抛物线y=ax 2
的解析式,并求出顶点坐标和对称轴; (3)x 取何值时,二次函数y=ax 2
中的y 随x 的增大而增大
1.根据公式法指出下列抛物线的开口方向、顶点坐标,对称轴、最值和增减性。

①422
+-=x x y ②1422
++-=x x y
③2
21y x x =-++ ④2
516y x x =-+
2.函数y= x 2
的图象向 平移 个单位得到y=x 2
+3的图象;再向 平移 个单位得到y =(x-1)2+3的图象。

相关文档
最新文档