天津中考数学培优专题复习二次函数练习题
初中数学天津市中考模拟数学题型专项复习训练含答案二次函数与线段问题.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3).(Ⅰ)求抛物线的解析式及其顶点D的坐标;(Ⅱ)直线CD交x轴于点E,过抛物线上在对称轴右边的点P,作y轴的平行线交x轴于点F,交直线CD于点M,使PM=EF,请求出点P的坐标;(Ⅲ)将抛物线沿对称轴平移,要使抛物线与(Ⅱ)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度?向下最多平移多少个单位长度?试题2:已知抛物线y=(x-3)2-1与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(Ⅰ)试求点A,B,D的坐标;(Ⅱ)连接CD,过原点O作OE⊥CD与抛物线的对称轴交于点E,求OE的长;(Ⅲ)以(Ⅱ)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标.试题3:已知抛物线y=-x2-x+与x轴交于A,C两点(点A在点C的左边),直线y=kx+b(k≠0)分别交x轴,y轴于A,B两点,且除了点A之外,该直线与抛物线没有其他任何交点.(Ⅰ)求A,C两点的坐标;(Ⅱ)求k,b的值;(Ⅲ)设点P是抛物线上的动点,过点P作直线y=kx+b(k≠0)的垂线,垂足为H,交抛物线的对称轴于点D,求PH+DH的最小值,并求出此时点P的坐标.试题4:.已知,一抛物线过原点和点A(1,),与x轴交于点B,△AOB的面积为.(Ⅰ)求过点A、O、B的抛物线解析式;(Ⅱ)在抛物线的对称轴上找到一点M,使得△AOM的周长最小,求△AOM周长的最小值;(Ⅲ)点F为x轴上一动点,过点F作x轴的垂线,交直线AB于点E,交抛物线于点P,是否存在点F,使线段PE=?若存在,直接写出点F的坐标;若不存在,请说明理由.试题5:.已知直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(Ⅰ)求二次函数的表达式;(Ⅱ)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(Ⅲ)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.试题6:已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(-3,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(Ⅲ)点Q是直线BC上方抛物线上的动点,求点Q到直线BC的距离最大时点Q的坐标.试题7:已知,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(Ⅰ)求直线y=kx+b的函数解析式;(Ⅱ)若点P(m,t)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时m的值;(Ⅲ)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.试题8:.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N,若-1≤a≤-,求线段MN长度的取值范围;试题9:已知二次函数的解析式为y=-x2+4x,该二次函数交x轴于O、B两点,A为抛物线上一点,且横纵坐标相等(原点除外),P为二次函数上一动点,过P作x轴垂线,垂足为D(a,0)(a>0),并与直线OA交于点C.(Ⅰ)求A、B两点的坐标;(Ⅱ)当点P在线段OA上方时,过P作x轴的平行线与线段OA相交于点E,求△PCE周长的最大值及此时P点的坐标;(Ⅲ)当PC=CO时,求P点坐标.试题10:已知抛物线y=ax2+bx+c经过点A(-3,0)、B(0,3)、C(1,0)三点.(Ⅰ)求抛物线的解析式和它的顶点坐标;(Ⅱ)若在该抛物线的对称轴l上存在一点M,使MB+MC的值最小,求点M的坐标以及MB+MC的最小值;(Ⅲ)若点P、Q分别是抛物线的对称轴l上两动点,且纵坐标分别为m,m+2,当四边形CBQP周长最小时,求出此时点P、Q 的坐标以及四边形CBQP周长的最小值.试题11:已知二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(Ⅰ)求二次函数的解析式和直线BD的解析式;(Ⅱ)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(Ⅲ)在抛物线上是否存在异于B,D的点Q,使△BDQ中BD边上的高为,若存在,求出点Q的坐标;若不存在,请说明理由.试题1答案:解:(Ⅰ)设抛物线解析式为y=a(x+1)(x-3),把点C(0,-3)代入得:a×1×(-3)=-3,解得a=1,∴抛物线解析式为y=(x+1)(x-3),即y=x2-2x-3,∵y=x2-2x-3=(x-1)2-4,∴顶点D的坐标为(1,-4);(Ⅱ)如解图,设直线CD的解析式为y=kx+b,把点C(0,-3),D(1,-4)代入得,解得,∴直线CD的解析式为y=-x-3,当y=0时,-x-3=0,解得x=-3,则E(-3,0),设P(t,t2-2t-3)(t>1),则M(t,-t-3),F(t,0),∴EF=t+3,PM=t2-2t-3-(-t-3)=t2-t,而PM=EF,∴t2-t=(t+3),整理得5t2-7t-6=0,解得t1=-(舍去),t2=2,当t=2时,t2-2t-3=22-2×2-3=-3,∴点P坐标为(2,-3);第1题解图(Ⅲ)当t=2时,点M的坐标为(2,-5),设平移后的抛物线解析式为y=x2-2x-3+m,当抛物线y=x2-2x-3+m与直线y=-x-3有唯一公共点时,令方程x2-2x-3+m=-x-3,即x2-x+m=0有两个相等的实数解, 则b2-4ac=1-4m=0,解得m=;若抛物线y=x2-2x-3+m经过点M(2,-5),则4-4-3+m=-5,解得m=-2;若抛物线y=x2-2x-3+m经过点E(-3,0),则9-2×(-3)-3+m=0,解得m=-12,∴抛物线向上最多平移个单位长度,向下最多平移12个单位长度.试题2答案:解:(Ⅰ)由y=0得(x-3)2-1=0,解得x1=3-,x2=3+,又∵点A在点B的左侧,∴A点坐标为(3-,0),B点坐标为(3+,0),由抛物线解析式y=(x-3)2-1可得顶点D的坐标为(3,-1);(Ⅱ)如解图①,过点D作DG⊥y轴于点G,设CD与x轴交于点F,ED交x轴于点M,由题意可得,∠DCG+∠COF=90°,∠EOM+∠COF=90°,∴∠DCG=∠EOM,又∵∠CGD=∠OME=90°,∴△CDG∽△OEM,∴=,即=,∴EM=2,∴E点坐标为(3,2),∴OE==;(Ⅲ)如解图②,由⊙E的半径为1,由勾股定理得PQ2=EP2-1,要使切线长PQ最小,只需EP长最小,即EP2最小, 设P点坐标为(x,y),则PQ=x-3,EQ=2-y,∴由勾股定理得EP2=(x-3)2+(2-y)2,∵y=(x-3)2-1,∴(x-3)2=2y+2,∴EP2=2y+2+y2-4y+4=(y-1)2+5,当y=1时,EP2为最小值,将y=1代入y=(x-3)2-1,得x1=5,x2=1, ∴P点坐标为(1,1)或(5,1).∵点P在对称轴右侧的抛物线上,∴x2=1舍去,∴P(5,1).图①图②第2题解图试题3答案:解:(Ⅰ)令y=0,即-x2-x+=0,解得x1=-3,x2=1,∵点A在点C的左边,∴A(-3,0),C(1,0); (Ⅱ)把A(-3,0)代入y=kx+b,得-3k+b=0, 解得b=3k,联立,得-x2-x+=kx+b,即x2+(2+4k)x-3+4b=0,∵直线y=kx+b与抛物线有唯一公共点,∴由根的判别式得(2+4k)2-4(4b-3)=0,把b=3k代入(2+4k)2-4(4b-3)=0,得(2+4k)2-4(12k-3)=0,解得k=1,∴b=3;(Ⅲ)如解图,过点H作HG⊥对称轴于点G,过点P作PF⊥对称轴于点F,设直线AB与抛物线的对称轴交于点E,对称轴与x 轴交于点M,由题意知,抛物线对称轴为x=-1,由(Ⅱ)知,直线AB的解析式为y=x+3,由直线AB知∠EAO=∠EHG=∠AEM=∠FPD=∠PDF=45°.当x=-1时,y=x+3=2,即E(-1,2).设P(x,-x2-x+),则PF=FD=-1-x,ED=EM+MF+FD=2-(-x2-x+)+(-1-x)=x2-x+,PD=FD=(-1-x),∴DH=HE=ED=(x2-x+),∴PH+DH=DH-PD+DH=2DH-PD=(x2-x+)-(-x-1)=x2+x+,当x=-=-1时,PH+DH取得最小值,最小值为=,此时点P的坐标为(-1,1).试题4答案:解:(Ⅰ)过点A作AC⊥x轴于点C,如解图①,∵A(1,),∴AC=,∵S△AOB=BO·AC=BO×=,∴BO=2,∴B(-2,0).由题意可设抛物线解析式为y=ax2+bx,把A、B坐标代入可得,解得,∴过A、B、O三点的抛物线的解析式为y=x2+x; (Ⅱ)由(Ⅰ)可求得抛物线的对称轴为直线x=-1,设直线AB交对称轴于点M,如解图②,连接OM,∵OA长为定值,∴△AOM周长的最小值即为OM+AM的最小值,∵B、O两点关于对称轴对称,∴MO=MB.∴A,M,B三点共线时,OM+AM最小.设直线AB的解析式为y=kx+b,把A、B两点的坐标代入可得,解得,∴直线AB的解析式为y=x+,当x=-1时,y=,∴点M的坐标为(-1,).由勾股定理可求得AB=,AO=,∴△AOM周长的最小值为AM+MO+AO=AB+AO=2+2;(Ⅲ)存在.点F的坐标为(0,0)或(-1,0)或(,0)或(,0).【解法提示】假设存在满足条件的点F,设其坐标为(x,0),则E(x, x+),P(x,x2+x),如解图③,①当-2≤x≤0时,PE=PF+EF=-(x2+x)+x+=x2-x+,由PE=得-x2-x+=,解得x1=0,x2=-1,当x=0时,点P与点F重合,点F的坐标为(0,0);当x=-1时,点F的坐标为(-1,0);②当0<x≤1时,此时PE恒小于;③当x>1或x<-2时,PE=PF-EF=x2+x-(x+)=x2+x-, 由PE=得x2+x-=,解得x1=,x2=,∴点F的坐标为(,0)或(,0).综上所述:点F的坐标为(0,0)或(-1,0)或(,0)或(,0).图①图②图③试题5答案:解:(Ⅰ)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(Ⅱ)如解图①,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得点B的坐标为B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(Ⅲ)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).图①图②试题6答案:解:(Ⅰ)∵抛物线y=-x2+bx+c经过A(-1,0),B(-3,0),∴,解得,∴抛物线的解析式为y=-x2-4x-3;(Ⅱ)由y=-x2-4x-3可得D(-2,1),C(0,-3),∴OB=3,OC=3,OA=1,AB=2,可得△OBC是等腰直角三角形,∴∠OBC=45°,CB=3,如解图①,设抛物线的对称轴与x轴交于点F,∴AF=AB=1,设直线BC与对称轴的交点为E,连接AE,AC,∵EF=1=AF,则有∠BAE=∠OBC=45°, ∴∠AEB=90°,∴BE=AE=,CE=2.在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,∴△AEC∽△AFP,∴,即,解得PF=2.∵点P在抛物线的对称轴上,∴点P的坐标为(-2,2)或(-2,-2);(Ⅲ)设直线BC的解析式为y=kx+b(k≠0),直线BC经过B(-3,0),C(0,-3),∴,解得,∴直线BC的解析式为y=-x-3.如解图②,设点Q(m,n),过点Q作QH⊥BC于点H,并过点Q作QS∥y轴交直线BC于点S,则S点坐标为(m,-m-3), ∴QS=n-(-m-3)=n+m+3.∵点Q(m,n)在抛物线y=-x2-4x-3上,∴n=-m2-4m-3,∴QS=-m2-4m-3+m+3=-m2-3m=-(m+)2+,当m=时,QS有最大值.∵BO=OC,∠BOC=90°,∴∠OCB=45°,∵QS∥y轴,∴∠QSH=∠OCB=45°,∴△QHS是等腰直角三角形,∴当斜边QS最大时,QH最大.∵当m=-时,QS最大,此时n=-m2-4m-3=-+6-3=,即Q(-,),∴当点Q的坐标为(-,)时,点Q到直线BC的距离最大.图①图②试题7答案:解:(Ⅰ)∵直线y=kx+b经过点A(-4,0),B(0,3),∴,解得,∴直线的解析式为y=x+3;(Ⅱ)如解图,过点P作PM⊥AB于点M,作PN∥y轴交直线AB于点N. ∵PN∥y轴,∴∠PNM=∠ABO,∵∠AOB=∠NMP=90°,∴△AOB∽△PMN,∴=,∵OA=4,OB=3,∴AB==5,∴PM=PN,∵点P是抛物线上的点,PN∥y轴,∴P(m,-m2+2m+1),N(m,m+3),∴PN=m+3-(-m2+2m+1)=m2-m+2=(m-)2+,∴PM=d=(m-)2+,∴当m=时,d取得最小值;(Ⅲ)∵抛物线y=-x2+2x+1与y轴交于点C,∴C(0,1),对称轴为x=-=1,点C关于对称轴的对称点为K(2,1),∴点K到直线AB的距离即为CE+EF的最小值,最小值为d=×(2-)2+=.试题8答案:解:(Ⅰ)∵抛物线过点M(1,0),∴a+a+b=0,即b=-2a,∵y=ax2+ax+b=ax2+ax-2a=a(x+)2-,∴抛物线顶点Q的坐标为(-,-);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=-2,把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0①,∴Δ=(a-2)2-4a(-2a+2)=9a2-12a+4,又∵a<b,b=-2a,∴a<0,b>0,∴Δ=9a2-12a+4>0,∴方程①有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0, 即x2+(1-)x-2+=0,∴[x+(-)]2=(-)2,解得x1=1,x2=-2,将x=-2代入y=2x-2得y=-6,∴点N(-2,-6),根据两点间的距离公式得,MN 2=[(-2)-1]2+(-6)2=-+45=20(-)2, ∵-1≤a≤-,则-2≤≤-1,∴-<0,∴MN=2(-)=3-,又∵-1≤a≤-,∴5≤MN≤7.试题9答案:解:(Ⅰ)令y=0,则-x2+4x=0,解得x1=0,x2=4,∴点B坐标为(4,0),设点A坐标为(x,x),把A(x,x)代入y=-x2+4x得,x=-x2+4x,解得x1=3,x2=0(舍去),∴点A的坐标为(3,3);(Ⅱ)如解图①,设点P的坐标为(x,-x2+4x),∵点A坐标为(3,3);∴∠AOB=45°,∴OD=CD=x,∴PC=PD-CD=-x2+4x-x=-x2+3x,∵PE∥x轴,∴△PCE是等腰直角三角形,∴当PC取最大值时,△PCE周长最大.∵PE与线段OA相交,∴0≤x≤1,由PC=-x2+3x=-(x-)2+可知,抛物线的对称轴为直线x=,且在对称轴左侧PC随x的增大而增大, ∴当x=1时,PC最大,PC的最大值为-1+3=2,∴PE=2,CE=2,∴△PCE的周长为CP+PE+CE=4+2,∴△PCE周长的最大值为4+2,把x=1代入y=-x2+4x,得y=-1+4=3,∴点P的坐标为(1,3);(Ⅲ)设点P坐标为(x,-x2+4x),则点C坐标为(x,x),如解图②,①当点P在点C上方时,P1C1=-x2+4x-x=-x2+3x,OC1=x,∵P1C1=OC1,∴-x2+3x=x,解得x1=3-,x2=0(舍去).把x=3-代入y=-x2+4x得,y=-(3-)2+4(3-)=1+2,∴P1(3-,1+2),②当点P在点C下方时,P2C2=x-(-x2+4x)=x2-3x,OC2=x,∵P2C2=OC2,∴x2-3x=x,解得x1=3+,x2=0(舍去),把x=3+代入y=-x2+4x,得y=-(3+)2+4(3+)=1-2,∴P2(3+,1-2). 综上所述,P点坐标为(3-,1+2)或(3+,1-2).图①图②试题10答案:解:(Ⅰ)将A、B、C的坐标代入抛物线的解析式,得,解得,∴抛物线的解析式为y=-x2-2x+3,配方,得y=-(x+1)2+4,即顶点坐标为(-1,4);(Ⅱ)如解图①,连接AB交对称轴于点M,连接MC,由A、C关于对称轴对称,得AM=MC,∴MB+MC=AM+MB=AB,此时,MB+MC的值最小,由勾股定理,得AB==3,即MB+MC=3,设AB的解析式为y=kx+b,将A、B两点坐标代入,得,解得,∴直线AB的解析式为y=x+3,当x=-1时,y=2,即M(-1,2),此时MB+MC的最小值为3;(Ⅲ)如解图②,将B点向下平移两个单位,得D点,连接AD交对称轴于点P,作BQ∥PD交对称轴于点Q, ∵PQ∥BD,BQ∥PD,∴四边形BDPQ是平行四边形,∴BQ=PD,PQ=BD=2,∴BQ+PC=PD+AP=AD,由勾股定理,得AD===,BC===,∴四边形CBQP周长的最小值=BC+BQ+PQ+PC=BC+PQ+(BQ+PC)=BC+PQ+AD=+2+=2+2,设AD的解析式为y=kx+b,将A、D点坐标代入得,,解得,∴直线AD的解析式为y=x+1,当x=-1时,y=,即P(-1,),由|PQ|=2,且Q点纵坐标大于P点纵坐标得Q(-1,),故当四边形CBQP周长最小时,点P的坐标为(-1,),点Q的坐标为(-1,),四边形CBQP周长的最小值是2+2.图①图②试题11答案:解:(Ⅰ)设二次函数的解析式为y=a(x-1)2+4,∵点B(3,0)在该二次函数的图象上,∴0=a(3-1)2+4,解得a=-1,∴二次函数的解析式为y=-x2+2x+3,∵点D在y轴上,∴令x=0,解得y=3,∴点D的坐标为(0,3),设直线BD的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得k=-1,∴直线BD的解析式为y=-x+3;(Ⅱ)设P点的横坐标为m(0<m<3),则P(m,-m+3),M(m,-m2+2m+3),∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,∴当m=时,PM取最大值,∴PM长度的最大值为;(Ⅲ)存在.如解图,过点Q作QG∥y轴交BD于点G,作QH⊥BD交BD于点H, 设Q(x,-x2+2x+3),则G(x,-x+3)∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,∵△DOB是等腰三角形,∴∠3=45°,∴∠2=∠1=45°,∴sin∠1==,∴QG=4,得|-x2+3x|=4,当-x2+3x=4时,b2-4ac=9-16=-7<0,方程无实数根,当-x2+3x=-4时,解得x1=-1,x2=4,∴Q1(-1,0),Q2(4,-5),综上所述,存在满足条件的点Q,点Q的坐标为(-1,0)或(4,-5).。
天津市东丽中学九年级数学上册第二十二章《二次函数》测试题(培优练)

一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( )A .5122x -<<B .7122x -<<- C .30x -<< D .41x -<<-3.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个4.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩5.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个6.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-7.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<8.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =9.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .410.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>11.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)1y x =++ C .21y x =+D .2(1)1y x =-+12.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+13.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .14.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---15.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.有一个二次函数的图象,三位同学分别说了它的一些特点: 甲:与x 轴只有一个交点; 乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.17.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.18.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______. 19.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________20.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).21.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23y831-3则在实数范围内能使得成立的x 取值范围是_______.22.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.23.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.24.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”) 25.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.26.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.三、解答题27.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克. (1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.28.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元). (1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润等于6000元时,应如何确定销售价格. 29.已知二次函数2(21)3y x m x m =-+-.(1)若2m =,写出该函数的表达式,并求出函数图象的对称轴.(2)已知点()1,P m y ,()24,Q m y +在该函数图象上,试比较1y ,2y 的大小. (3)对于此函数,在13x -≤≤的范围内函数最大值为-2,求m 的值. 30.有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A、B两种方案的面积.(2)若设地基的面积为S,宽为x,写出方案C(或D)中S与x的关系式.(3)根据(2)完成下表x506070757879808182地基的宽()m地基的面积(2m)(5)用配方法对(2)中的S与x之间的关系式进行分析,并检验你的猜测是否正确.(6)你认为A、B、C、D中哪一种方案合理?。
天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题3(共5专题)

天津市中考数学能力提升分类专题训练试卷(带答案带解析)分类之二次函数--专题3(共5专题)源自天津历年真题整理21.如图中实线所示,函数y=|a(x﹣1)2﹣1|的图象经过原点,小明同学研究得出下面结论:①a=1;②若函数y随x的增大而减小,则x的取值范围一定是x<0;③若方程|a(x﹣1)2﹣1|=k有两个实数解,则k的取值范围是k>1;④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函数图象的四个不同点,且m1<m2<m3<m4,则有m2+m3﹣m1=m4.其中正确的结论有()A.4个B.3个C.2个D.1个【答案】C【分析】①根据函数图像经过原点|a(x﹣1)2﹣1|=0,可得a=1;②由函数的图像可知:顶点坐标(1,1),与x轴的交点坐标(0,0),(2,0),当x<0或1<x<2时,函数y随x的增大而减小;③若方程|a(x﹣1)2﹣1|=k有两个实数解,k>1或k=0;④由函数的图像可知,直线y=n(0<n<1)与函数y=|a(x﹣1)2﹣1|的图像有四个交点,由m1<m2<m3<m4可知m1+m4=m2+m3,移项可得m4=m2+m3−m1.【详解】解:(1)∵函数y=|a(x﹣1)2﹣1|图像经过原点,∴|a(0﹣1)2﹣1|=0,解得:a=1,故①正确;(2)由函数图像可知顶点坐标(1,1),与x轴的交点坐标(0,0),(2,0),∵函数y随x的增大而减小,∴x<0或1<x<2,故②错误;(3)∵方程|a(x﹣1)2﹣1|=k有两个实数解,∴k>1或k=0,故③错误;(4)∵M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函数图象的四个不同点,∴直线y=n自变量取值范围为(0<n<1)∴m1与m4,m2与m3关于x=1对称,∴m1+m4=m2+m3,即m4=m2+m3−m1,故④正确;故答案为C.【点睛】本题考查函数图像与性质.关键利用数形结合的思想,将函数解析式与图像结合分析,利用一次函数与二次函数的相关知识解题.二、解答题22.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(−1,0)和点B,与直线y=−x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A′,连接A′C,A′F,当△FA′C是直角三角形时,直接写出点F的坐标.23.已知抛物线y=ax2+bx+5(a,b为常数,a≠0)与x轴交于点A(−5,0),B(−1,0)顶点为D,且过点C(−4,m).(1)求抛物线解析式和点C,D的坐标;(2)点P在该抛物线上(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②连接BD ,当∠PCB =∠CBD 时,求点P 的坐标. 【答案】(1)y =x 2+6x +5,D (−3,−4),C (−4,−3)(2)①278,②点P 的坐标为P (−32,−74)或(0,5).【分析】(1)把点A (−5,0),点B (−1,0)代入y =ax 2+bx +5,求出抛物线解析式,进一步可求出D (−3,−4),C (−4,−3);(2)①由题意可知点P 坐标为(t,t 2+6t +5),过点P 作PH ⊥x 轴于点H ,交直线BC 于点E ,求出直线BC 的解析式为y =x +1.利用点P 的坐标可知−4<t <−1,故点E 的坐标为(t,t +1).进一步可求出S △PBC =−32(t +52)2+278,所以当t =−52时,△PBC 的面积的最大值为278;②分情况讨论:当点P 在直线BC 的上方,求出直线BD 的解析式为y =2x +2,和直线PC 的解析式为y =2x +5.即可求出点P 的坐标为(0,5);当点P 在直线BC 的下方时,设直线PC 与BD 交于点M ,设M (m,2m +2),求出m =−2.求出直线CM 的解析式为y =12x −1,进一步可求出P (−32,−74).【详解】(1)解:把点A (−5,0),点B (−1,0)代入y =ax 2+bx +5,可得:{a −b +5=025a −5b +5=0,解得{a =1b =6 ∴抛物线解析式为y =x 2+6x +5,y =x 2+6x +5=(x +3)2−4,∴顶点D (−3,−4).把C (−4,m )代入在y =x 2+6x +5,得m =−3,∴点C (−4,−3).(2)解:由题意可知点P 坐标为(t,t 2+6t +5),①如图,过点P 作PH ⊥x 轴于点H ,交直线BC 于点E ,设直线DB 的解析式为y =k 1x +b 1(k 1≠0),将B (−1,0),点D (−3,−4)代入,得{−k 1+b 1=0−3k 1+b 1=−4 ,解得{k 1=2b 1=2. ∴直线BD 的解析式为y =2x +2.∵PC ∥BD ,∴设直线PC 的解析式为y =2x +n .∵C (−4,−3),∴−3=−8+n .∴n =5.∴直线PC 的解析式为y =2x +5.∴x 2+6x +5=2x +5.解得x 1=0,x 2=−4(舍).当x =0时,y =2x +5=5.∴点P 的坐标为(0,5).如图②,当点P 在直线BC 的下方时,设直线PC 与BD 交于点M ,∵∠PCB=∠CBD,∴MB=MC.设M(m,2m+2),∵MC=√(m+4)2+(2m+2+3)2,MB=√(m+1)2+(2m+2−0)2,∴(m+4)2+(2m+5)2=(m+1)2+(2m+2)2解得m=−2.∴点M的坐标为(−2,−2).由点C(−4,−3)和点M(−2,−2)可得直线CM的解析式为y=12x−1,由x2+6x+5=12x−1,解得x1=−32,x2=−4(舍).所以点P(−32,−74).综上,点P的坐标为P(−32,−74)或(0,5).【点睛】本题考查二次函数与一次函数的综合,解题的关键是掌握待定系数法求函数解析式,会求两直线的交点坐标,掌握二次函数的图象及性质.24.如图,抛物线y=−x2+bx+c与x轴交于A(1,0),B(−3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?若存在,求出△PBC 面积的最大值.若没有,请说明理由. 【答案】(1)抛物线的解析式为:y =−x 2−2x +3(2)存在,点Q 的坐标为(−1,2)(3)存在,S △PBC 最大值为278【分析】(1)根据题意可知,将点A 、B 的坐标代入函数解析式,列出方程组即可求得b 、c 的值,求得函数解析式;(2)根据题意可知,边AC 的长是定值,要想△QAC 的周长最小,即是AQ +CQ 最小,所以此题的关键是确定点Q 的位置,找到点A 的对称点B ,求得直线BC 的解析式,求得与对称轴的交点即是所求;(3)设P(x ,−x 2−2x +3)(−3<x <0),过点P 作PE ⊥x 轴交于点E ,连接BP 、CP 、BC ,根据S △PBC =S 四边形BPCO −S △BOC =S 四边形BPCO −12×3×3=S 四边形BPCO −92,将S △PBC 表示成二次函数,再根据二次函数的性质,即可求得S △PBC 的最大值.(1)解:将A(1,0),B(−3,0)代入y =−x 2+bx +c 中,可得:{−1+b +c =0−9−3b +c =0, 解得:{b =−2c =3,∴抛物线的解析式为:y =−x 2−2x +3;(2)解:存在,理由如下:如图,∵A 、B 两点关于抛物线的对称轴x =−1对称,∴直线BC 与x =−1的交点即为Q 点,此时△AQC 周长最小,连接AC 、AQ , ∵点C 是抛物线与y 轴的交点,∴C 的坐标为(0,3),又∵B(−3,0),∴直线BC 解析式为:y =x +3,∴Q 点坐标即为{x =−1y =x +3, 解得:{x =−1y =2, ∴Q(−1,2);(3)解:存在,理由如下:如图,设P(x ,−x 2−2x +3)(−3<x <0),过点P 作PE ⊥x 轴交于点E ,连接BP 、CP 、BC , ∵S △PBC =S 四边形BPCO −S △BOC =S 四边形BPCO −12×3×3=S 四边形BPCO −92, 若S 四边形BPCO 有最大值,则S △PBC 就最大,∴S 四边形BPCO =S △BPE +S 直角梯形PEOC ,∵S △BPE =12BE ⋅PE =12(x +3)(−x 2−2x +3),两点,与y轴交于点N,其顶点为D(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,且H1A2取得最小值时,求n的值【答案】(1)y=﹣x2+2x+3;D(1,4)(2)S △APC 最大=278;P (12,154) (3)2+√142【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b ,c 的值,从而得到抛物线的解析式, 在配成顶点式即可;(2)设直线AC 的解析式为y =kx+b .将点A 和点C 的坐标代入可求得k 、b 的值,从而得到直线AC 的解析式;设点P 的坐标,进而表示出PQ ,进而得出S △APC =-32(m -12)2+278,即可得出结论;(3)用n 表示出H 1的坐标,从而表示出H 1A 2,利用二次函数的性质可求得其最大值时n 的值.【详解】(1)∵将点A 和点C 的坐标代入抛物线的解析式得:{−1−b+c=0−4+2b+c=3,解得:b =2,c =3.∴抛物线的解析式为y =-x 2+2x+3 . ∴y =-x 2+2x+3=-(x -1)2+4 ∴抛物线的顶点坐标为,(2)设直线AC 的解析式为y =kx+b .∵将点A 和点C 的坐标代入得{−k+b=02k+b=3,解得k =1,b =1.∴直线AC 的解析式为y =x+1.如图,设点P (m ,-m 2+2m+3) , ∴Q (m ,m+1),∴PQ=(-m2+2m+3)-(m+1)=-m2+m+2=-(m-12)2+94,∴S△APC=12PQ×|x C-x A|S△APC=12[-(m-12)2+94]×3=-32(m-12)2+278,∴当m=12时,S△APC最大=278,y=-m2+2m+3=154,∴P(12,154);(3)∵H1落在第二象限内,H关于y轴的对称点为H1∴点H(n,t)在第一象限,即n>0,t>0.y=-x2+2x+3=-(x-1)2+4∵抛物线的顶点坐标为(1,4),∴0<t≤4,∵H(n,t)在抛物线上,∴t=-n2+2n+3,∴n2-2n=3-t,∵A(-1,0),H1(-n,t),∴H1A2=(-n+1)2+(t)2=n2-2n+1+t2=t2-t+4=(t-12)2+154;∴当t=12时,H1A2有最小值,即H1A2有最小值,∴12=-n2+2n+3,解得n=2-√142或n=2+√142,∵n>0,∴n=2-√142不合题意,舍去,∴n的值为2+√142.【点睛】此题是二次函数综合题,主要考查的了待定系数法求一次函数、二次函数的解析式、轴对称路径最短、关于原点对称的点的坐标,难度较大,综合性较强.26.如图,已知抛物线y=a(x-3)(x+6)过点A(-1,5)和点B(-5,m),与x轴的正半轴交于点C.(1)求a,m的值和点C的坐标;(2)若点P是x轴上的点,连接PB,PA,当P A=PB时,求点P的坐标;(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.27.已知抛物线y=ax2+bx+4(a,b为常数,a≠0)经过点A(−4,0),B(1,0),与y轴交于点C.点P为第二象限内抛物线上一点,连接BP,与y轴相交于点D.(1)求该抛物线的解析式;(2)连接BC,当∠ODB=2∠BCO时,求直线PB的解析式;(3)连接AC,与PB相交于点Q,当PQQB取得最大值时,求点P的坐标.【答案】(1)y=−x2−3x+4(2)y=−158x+158(3)点P的坐标为 (−2,6) 【分析】(1)利用待定系数法即可求出答案;(2)由∠ODB =2∠BCO 以及三角形外角的性质可得∠CBD =∠BCO ,则BD =CD ,设OD =a ,则CD =4−a ,BD =4−a ,运用勾股定理可求得a =158,得出D(0,158),再利用待定系数法即可求出答案;(3)过点P 作PE ⊥x 轴于E ,与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,利用待定系数法求出直线AC 表达式,再利用BM//PN ,可得ΔPNQ ∽ΔBMQ ,进而得出PQQB =PNBM =PN 5,设P(t ,−t 2−3t +4)(−4<t <0),则N(t,t +4),从而得到PQQB=−t 2−3t+4−(t+4)5=−(t+2)2+45,利用二次函数的性质即可求得答案.(1)根据题意,{a ⋅(−4)2+b ⋅(−4)+4=0,a +b +4=0, 解得{a =−1,b =−3. ∴ 抛物线的解析式为y =−x 2−3x +4. (2)如图.当x =0时,y =4,得C (0,4 ),有OC =4.∵∠ODB =2∠BCO ,∠ODB =∠BCO +∠DBC , ∴ ∠BCD =∠CBD . ∴ DC =DB .设OD =m ,则CD =4−m , ∴ BD =4−m .在Rt △OBD 中,由勾股定理得BD 2=OD 2+OB 2, ∴ (4−m )2=m 2+12. 解得m =158. ∴ D (0,158 ).设直线PB 的解析式为y =kx +e (k ≠0). ∴ {e =158,k +e =0, 解得{k =−158,e =158. ∴ 直线PB 的解析式为y =−158x +158.(3)如图,过点P 作PE ⊥x 轴于E ,与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,设直线AC 表达式为y =mx +n , ∵A(−4,0),C(0,4), ∴{−4m +n =0n =4,解得:{m =1n =4,∴直线AC 表达式为y =x +4, ∴M 点的坐标为(1,5), ∴BM =5, ∵BM//PN , ∴ΔPNQ ∽ΔBMQ ,28.已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(−1,0)和点B.(1)若b=−2,c=−3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(2)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【答案】(1)①(1,−4);②点M的坐标为(2,−3),点G的坐标为(2,−2);(2)点E(57,0)和点F(0,−2021);【分析】(1)①将b、c的值代入解析式,再将A点坐标代入解析式即可求出a的值,再用配方法求出顶点坐标即可;②先令y=0得到B点坐标,再求出直线BP的解析式,设点M的坐标为(m,m2−2m−3),则点G的坐标为(m,2m−6),再表示出MG的长,配方求出最值得到M、G的坐标;(2)根据3b=2c,解析式经过A点,可得到解析式:y=ax2−2ax−3a,再表示出P点坐标,N点坐标,接着作点P关于y轴的对称点P′,作点N关于x轴的对称点N′,再把P′和N′的坐标表示出来,由题意可知,当PF+FE+EN取得最小值,此时PF+FE+EN=P′N′= 5,将字母代入可得:P′N′2=P′H2+HN′2=9+49a2=25,求出a的值,即可得到E、F 的坐标;(1)①∵抛物线y=ax2+bx+c与x轴相交于点A(−1,0),∴a−b+c=0.又b=−2,c=−3,得a=1.∴抛物线的解析式为y=x2−2x−3.∵y=x2−2x−3=(x−1)2−4,∴点P的坐标为(1,−4).②当y=0时,由x2−2x−3=0,解得x1=−1,x2=3.∴点B的坐标为(3,0).设经过B,P两点的直线的解析式为y=kx+n,有{3k+n=0,k+n=−4.解得{k=2,n=−6.∴直线BP的解析式为y=2x−6.∵直线x=m(m是常数,1<m<3)与抛物线y=x2−2x−3相交于点M,与BP相交于点G,如图所示:∴点M的坐标为(m,m2−2m−3),点G的坐标为(m,2m−6).∴MG=(2m−6)−(m2−2m−3)=−m2+4m−3=−(m−2)2+1.∴当m=2时,MG有最大值1.此时,点M的坐标为(2,−3),点G的坐标为(2,−2).(2)由(1)知a−b+c=0,又3b=2c,∴b=−2a,c=−3a.(a>0)∴抛物线的解析式为y=ax2−2ax−3a.∵y=ax2−2ax−3a=a(x−1)2−4a,∴顶点P的坐标为(1,−4a).∵直线x=2与抛物线y=ax2−2ax−3a相交于点N,∴点N的坐标为(2,−3a).作点P关于y轴的对称点P′,作点N关于x轴的对称点N′,如图所示:得点P′的坐标为(−1,−4a),点N′的坐标为(2,3a).当满足条件的点E,F落在直线P′N′上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P′N′=5.延长P′P与直线x=2相交于点H,则P′H⊥N′H.在Rt△P′HN′中,P′H=3,HN′=3a−(−4a)=7a.∴P′N′2=P′H2+HN′2=9+49a2=25.解得a1=47,a2=−47(舍).∴点P′的坐标为(−1,−167),点N′的坐标为(2,127).则直线P′N′的解析式为y=43x−2021.∴点E(57,0)和点F(0,−2021).【点睛】本题考查二次函数的几何综合运用,熟练掌握待定系数法求函数解析式、配方法求函数顶点坐标、勾股定理解直角三角形等是解决此类问题的关键.29.如图,抛物线y=−x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y 轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最大值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,直接写出满足条件的点P的坐标;如果不存在,请说明理由.30.将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(1)如图①,当OP=1时,求点P的坐标;(2)如图②,折叠该纸片,使折痕PH所在的直线经过点P,并与x轴垂直,点O的对应点为O′,设OH=t.△PHO′与△OAB重叠部分的面积为S.①若折叠后△PHO′与△OAB重叠部分的面积为四边形时,PO′与AB相交于点C,试用含有t 的式子表示S,并直接写出t的取值范围;②当23≤t≤53时,求S的取值范围(直接写出结果即可).。
天津中考数学培优专题复习二次函数练习题

天津中考数学培优专题复习二次函数练习题一、二次函数1.(6分)(2015•牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长.注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长.试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE==.∵点F 是AE 中点,点H 是抛物线的对称轴与x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×=.∴线段FH 的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. 综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.3.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD 是直角时,点P 与点B 重合,此时,点P (1,0),②∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A (3,0),∴点P 为在抛物线顶点时,∠PAD =45°+45°=90°,此时,点P (2,﹣1).综上所述:点P (1,0)或(2,﹣1)时,△APD 能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB ,∴MA =MB ,由三角形的三边关系,|MA ﹣MC |<BC ,∴当M 、B 、C 三点共线时,|MA ﹣MC |最大,为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),则03k b b +=⎧⎨=⎩,解得:33k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣3x +3.∵抛物线y =x 2﹣4x +3的对称轴为直线x =2,∴当x =2时,y =﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M (2,﹣3),使|MA ﹣MC |最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD 的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M 的位置是解题的关键.4.如图所示,抛物线2y ax bx c =++的顶点为()2,4M --,与x 轴交于A 、B 两点,且()6,0A -,与y 轴交于点C .()1求抛物线的函数解析式;()2求ABC V 的面积;()3能否在抛物线第三象限的图象上找到一点P ,使APC V 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.【答案】()1 2134y x x =+-;()212;()27334APC x S =-V 当时,有最大值,点P 的坐标是153,4P ⎛⎫-- ⎪⎝⎭. 【解析】【分析】 (1)设顶点式并代入已知点()6,0A -即可;(2)令y=0,求出A 、B 和C 点坐标,运用三角形面积公式计算即可;(3)假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F ,线段PF 的长度即为两函数值之差,将APC V 的面积计算拆分为APF CPF S S +V V 即可.【详解】()1设此函数的解析式为2()y a x h k =++,∵函数图象顶点为()2,4M --,∴2(2)4y a x =+-,又∵函数图象经过点()6,0A -,∴20(62)4a =-+-解得14a =, ∴此函数的解析式为21(2)44y x =+-,即2134y x x =+-; ()2∵点C 是函数2134y x x =+-的图象与y 轴的交点, ∴点C 的坐标是()0,3-,又当0y =时,有21304y x x =+-=, 解得16x =-,22x =,∴点B 的坐标是()2,0,则11831222ABC S AB OC =⋅=⨯⨯=V ; ()3假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F .设(),0E x ,则21,34P x x x ⎛⎫+- ⎪⎝⎭,设直线AC 的解析式为y kx b =+,∵直线AC 过点()6,0A -,()0,3C -,∴603k b b -+=⎧⎨-=⎩, 解得123k b ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为132y x =--, ∴点F 的坐标为1,32F x x ⎛⎫-- ⎪⎝⎭, 则221113332442PF x x x x x ⎛⎫=---+-=-- ⎪⎝⎭, ∴1122APC APF CPF S S S PF AE PF OE =+=⋅+⋅V V V 2221113393276(3)22424244PF OA x x x x x ⎛⎫=⋅=--⨯=--=-++ ⎪⎝⎭, ∴当3x =-时,APC S V 有最大值274, 此时点P 的坐标是153,4P ⎛⎫-- ⎪⎝⎭. 【点睛】本题第3问中将所求三角形拆分为两个小三角形进行求解,从而将面积最大的问题转化为PF 最大进行理解.5.如图,抛物线y =﹣x 2﹣2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求点A 、B 、C 的坐标;(2)点M(m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG =,求点F 的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S =12AM×EM =12. (4)∵M(﹣2,0),抛物线的对称轴为x =﹣l ,∴N 应与原点重合,Q 点与C 点重合,∴DQ =DC ,把x =﹣1代入y =﹣x 2﹣2x+3,解得y =4,∴D(﹣1,4),∴DQ =DC =2.∵FG =22DQ ,∴FG =4.设F(n ,﹣n 2﹣2n+3),则G(n ,n+3),∵点G 在点F 的上方且FG =4,∴(n+3)﹣(﹣n 2﹣2n+3)=4.解得n =﹣4或n =1,∴F(﹣4,﹣5)或(1,0).【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.6.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32或32+或32-;(3)13. 【解析】【分析】 (1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1). ∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3. 若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x =或x = 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上. 设O 'C '与x 轴交于点E ,与直线OD 交于点P ; 设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.7.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+, ∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则CM =,AC ==AM =分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.8.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x +a ﹣3,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B . (1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (0,﹣3),B (4,﹣3);(2)﹣3<a ≤0; 【解析】 【分析】(1)由题意直接可求A ,根据平移点的特点求B ;(2)图形M 与线段AB 恰有两个公共点,y =a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点; 【详解】解:(1)A (0,﹣3),B (4,﹣3); (2)当函数经过点A 时,a =0, ∵图形M 与线段AB 恰有两个公共点, ∴y =a 要在AB 线段的上方, ∴a >﹣3 ∴﹣3<a ≤0; 【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.9.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则430 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC =PE ,∴x 2+(3+2x ﹣6)2=(x ﹣1)2+(﹣2x +6)2, 解得,x =2, 则y =﹣2×2+6=2, ∴点P 的坐标为(2,2).【点睛】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.10.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180o ,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:-. 【解析】 【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180o ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=o ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可. 【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩ 解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -;(2)∵抛物线C 绕点O 旋转180o ,得到新的抛物线'C . ∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a = ∴新抛物线'C 的解析式为:22(2)44y x x x =--=- 将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称, ∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++,∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴∴//DH EK ∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-,∵2m <-∴m 的值为:﹣3; (3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=o ,∴1tan3BG GAB AB ∠===, ∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE == 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -, ∴45EOT ∠=o∵90EOH ∠=o ∴45HOT ∠=o∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:773+-或737-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.11.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t 2+5t+,∴当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8, ∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门. 考点:二次函数的应用.12.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由; (3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点.13.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M . (1)求该抛物线所表示的二次函数的表达式; (2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似. 【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M(m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ=,即214 132222mm m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=-12,则抛物线解析式为y=-12(x+1)(x-4)=-12x2+32x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:402k bb+⎧⎨-⎩==,解得:122kb⎧⎪⎨⎪-⎩==,∴直线BD解析式为y=12x-2,∵QM⊥x轴,P(m,0),∴Q(m,--12m2+32m+2)、M(m,12m-2),则QM=-12m2+32m+2-(12m-2)=-12m2+m+4,∵F(0,12)、D(0,-2),∴DF=52,∵QM∥DF,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM ∥DF , ∴∠ODB=∠QMB , 分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB ∽△MBQ ,则21=42DO MB OB BQ ==, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ , ∴△MBQ ∽△BPQ ,∴BM BP BQ PQ=,即214 132222mm m -=-++,解得:m 1=3、m 2=4,当m=4时,点P 、Q 、M 均与点B 重合,不能构成三角形,舍去, ∴m=3,点Q 的坐标为(3,2);②当∠BQM=90°时,此时点Q 与点A 重合,△BOD ∽△BQM′, 此时m=-1,点Q 的坐标为(-1,0);综上,点Q 的坐标为(3,2)或(-1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.14.如图,已知抛物线2(0)y ax bx a =+≠过点,-3) 和,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标; (3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)213322y x x =-;(2)P 点坐标为(3)或(833,- 43);(3)Q 点坐标(30)或(315) 【解析】 【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P 坐标为2133,2x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】(1)把3A 3)-和点(33B 0)代入抛物线得:33327330a b a b ⎧+=-⎪⎨+=⎪⎩,解得:12a =,332b =-, 则抛物线解析式为213322y x x =-; (2)当P 在直线AD 上方时,设P 坐标为2133,22x x x ⎛⎫- ⎪ ⎪⎝⎭,则有3AD x =2133322PD x x =-+, 当OCA ADP ∆∆∽时,OC CA AD DP =2331333x x x =--+, 整理得:239318236x x x -+=-,即23113240x x -+=, 解得:11353x ±=,即83x =或3x =此时83(3P ,4)3-;当OCA PDA ∆∆∽时,OC CA PD AD =,即2313333x x x =--+, 整理得:23963663x x x -+=-,即253120x x -+=, 解得:5333x ±=,即43x =或3(舍去), 此时(43P ,6);当点()0,0P 时,也满足OCA PDA ∆∆∽; 当P 在直线AD 下方时,同理可得:P 的坐标为43(3,10)3-,综上,P 的坐标为83(,4)3-或(43,6)或43(,10)3-或()0,0;(3)在Rt AOC ∆中,3OC =,3AC =,根据勾股定理得:23OA =,Q 11··22OC AC OA h =, 32h ∴=, 1333AOC AOQ S S ∆∆==Q , AOQ ∴∆边OA 上的高为92, 过O 作OM OA ⊥,截取92OM =,过M 作//MN OA ,交y 轴于点N ,如图所示:在Rt OMN ∆中,29ON OM ==,即()0,9N , 过M 作MH x ⊥轴,在Rt OMH ∆中,1924MH OM ==,39324OH OM ==,即93(4M ,9)4, 设直线MN 解析式为9y kx =+,把M 坐标代入得:99394k =+,即3k =-,即39y x =-+, 联立得:2391332y x y x x ⎧=-+⎪⎨=-⎪⎩,解得:330x y ⎧=⎪⎨=⎪⎩或2315x y ⎧=-⎪⎨=⎪⎩,即(33Q ,0)或(23-,15),则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(33,0)或(23-,15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.15.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.(1)证明四边形ABCD 是菱形,并求点D 的坐标; (2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由. 【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析 【解析】 【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标: 设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭, 当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8),∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形. ∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8).(2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10ax 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩.∴直线BC 的解析式为y=﹣2x+8.∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2.。
天津市九年级数学上册第二十二章《二次函数》经典题(培优练)(1)

一、选择题1.设A(﹣2,y 1),B(1,y 2),C(2,y 3)是抛物线y =﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2A解析:A 【分析】根据二次函数的性质解答. 【详解】由抛物线y =﹣(x +1)2+a 可知:抛物线开口向下,对称轴为直线x=-1, ∴点离对称轴越近该点的函数值越大, ∵2(1)1(1)2(1)---<--<--, ∴y 1>y 2>y 3, 故选:A . 【点睛】此题考查二次函数的增减性:当a>0时,对称轴左减右增;当a<0时,对称轴左增右减. 2.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y < D .当5x >时,12y y >D解析:D 【分析】当y 1=y 2,即(x ﹣2)(x ﹣m )=3x,把x =1代入得,(1﹣2)(1﹣m )=3,则m =4,画出函数图象即可求解. 【详解】 解:当y 1=y 2, 即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D . 【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.3.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④A解析:A 【分析】由OC 与OA 的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点为(3,0),然后根据抛物线与x 轴的交点问题可对④进行判断. 【详解】∵抛物线与y 轴的交点在x 轴的上方,且OC >1, ∴c >1,所以①正确; ∵抛物线的对称轴为直线x=1,而点(2,y 1)到直线x=1的距离小于点(4,y 2)到直线x=1的距离相等, ∴y 1>y 2,所以②正确; ∵x=-2时,y <0,∴4a-2b+c <0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x 轴的一个交点为(-1,0),∴抛物线与x 轴的另一个交点为(3,0),∴方程ax 2+bx+c=0的两根是x 1=-1,x 2=3,所以④正确. 故选:A . 【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 4.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2B 解析:B 【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误; 故选:B . 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 5.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =- B .直线3x =C .直线1x =D .直线2x =D解析:D 【分析】直接利用二次函数对称轴求法得出答案.【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.6.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++A 解析:A 【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可. 【详解】解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=,∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A . 【点睛】本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.7.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或12A 解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点 D .对称轴是3x =C解析:C 【分析】根据函数图象和性质逐个求解即可. 【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C . 【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+ C .2(2)2y x =-+ D .2(1)3y x =-+C解析:C 【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可. 【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y=(x-2)2+2. 故选:C . 【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.10.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3 B .x =-1 C .x =-2 D .x =4C解析:C 【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案. 【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-, 故选:C . 【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键.二、填空题11.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:与x 轴只有一个交点; 乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.y =(x ﹣4)2或y =﹣(x ﹣4)2【分析】根据甲乙所说的特点可知判断抛物线的顶点坐标为(40)再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(03)或(0﹣3)然后利用待定系数法求出抛物线解析式解析:y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【分析】根据甲、乙所说的特点可知判断抛物线的顶点坐标为(4,0),再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(0,3)或(0,﹣3),然后利用待定系数法求出抛物线解析式即可. 【详解】解:∵抛物线与x 轴只有一个交点且对称轴是直线x =4, ∴抛物线的顶点坐标为(4,0), ∵抛物线与y 轴的交点到原点的距离为3.∴抛物线与y 轴的交点坐标为(0,3)或(0,﹣3), 设抛物线的解析式为y =a (x ﹣4)2, 把(0,3)代入得3=a (0﹣4)2,解得a =316,此时抛物线的解析式为y =316(x ﹣4)2;把(0,﹣3)代入得﹣3=a (0﹣4)2,解得a =﹣316,此时抛物线的解析式为y =﹣316(x ﹣4)2;综上,满足上述全部特点的二次函数的解析式为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 故答案为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【点睛】本题主要考查了二次函数的性质以及运用待定系数法确定函数解析式,灵活运用二次函数的性质成为解答本题的关键.12.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3根据二次函数的对称性、增减性可以得解. 【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小, 又由二次函数图象的对称性质可知x=0与x=4的函数值相等, ∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小, 所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <, ∴13y y <,∴213y y y <<, 故答案为213y y y <<. 【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键. 13.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.;【分析】先令y=0求得点AB 的坐标再求得顶点M 的坐标根据题意即可得出平移的方向和距离进而可求得平移后的解析式【详解】解:令y=0则有解得:x1=1x2=3∴A(10)B(30)∵=(x ﹣2)2﹣1解析:221y x x =++;【分析】先令y=0求得点A 、B 的坐标,再求得顶点M 的坐标,根据题意即可得出平移的方向和距离,进而可求得平移后的解析式. 【详解】解:令y=0,则有2043x x =-+, 解得:x 1=1,x 2=3, ∴A(1,0),B(3,0), ∵243y x x =-+=(x ﹣2)2﹣1,∴顶点M 的坐标为(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴将原抛物线向上平移1个单位长度,再向左平移3个单位长度,即可得到平移后的抛物线,∴平移后的顶点坐标为(﹣1,0), 即平移后的解析式为y=(x+1)2=x 2+2x+1, 故答案为:221y x x =++.本题考查了二次函数的图像与几何变换,会求抛物线与坐标轴的交点和顶点坐标,熟练掌握抛物线平移的变换规律是解答的关键.14.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1 【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式. 【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4 ∴y=2(x+1)2-1. 故答案为:y=2(x+1)2-1. 【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键.15.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③ 【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断. 【详解】解:∵抛物线开口向下,交y 轴的正半轴, ∴a <0,c >0,∵-2b a =12, ∴b =-a >0,∴abc <0,所以①错误; ∵抛物线与x 轴有2个交点, ∴△=b 2-4ac >0, 即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0), 而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上, ∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确. 由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误; 故答案为②③. 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.16.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时解析:> 【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小. 【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x>﹣1时,y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.17.已知关于x的一元二次方程x2﹣(2m+1)x+m2﹣1=0有实数根a,b,则代数式a2﹣ab+b2的最小值为_____.【分析】由韦达定理得出ab与m的关系式由一元二次方程的根与判别式的关系得出m的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab整体代入化简然后再配方结合m的取值范围可得出答案【详解】∵关于x 的解析:9 16【分析】由韦达定理得出a,b与m的关系式、由一元二次方程的根与判别式的关系得出m的取值范围,再对代数式a2﹣ab+b2配方并将a+b和ab整体代入化简,然后再配方,结合m的取值范围可得出答案.【详解】∵关于x的一元二次方程x2﹣(2m+1)x+m2﹣1=0有实数根a,b,∴a+b=2m+1,ab=m2﹣1,△≥0,∴△=[﹣(2m+1)]2﹣4×1×(m2﹣1)=4m2+4m+1﹣4m2+4=4m+5≥0,∴m≥54-.∴a2﹣ab+b2=(a+b)2﹣3ab=(2m+1)2﹣3(m2﹣1)=4m2+4m+1﹣3m2+3=m2+4m+4=(m+2)2,∴a2﹣ab+b2的最小值为:2592416⎛⎫-+=⎪⎝⎭.故答案为:9 16.【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.18.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为解析:①②④【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n = 将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=-又∵0n <∴-0a b <又∵a b ,异号,∴0a <,0.b >∴23y ax bx =++的图象开口向下,∵33|2|||22π-->- ∴12y y <,故②正确;③∵3b a =-, 3.a b n -=-∴(3)3a a n --=-∴4 3.a n =-∴4.a n <,故③错误;④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确,故答案为:①②④.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.19.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.20.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.2【分析】先确定抛物线的解析式令得到AB 两点的坐标即可得到结果;【详解】∵抛物线y =-2x2+bx +c 顶点C 到x 轴的距离为6∴化二次函数解析式为顶点式为:∴令得解得:∵抛物线y =-2x2+bx +c 与解析:23 【分析】 先确定抛物线的解析式,令0y =,得到A ,B 两点的坐标,即可得到结果;【详解】∵抛物线y =-2x 2+bx +c 顶点C 到x 轴的距离为6,∴化二次函数解析式为顶点式为:()226y x h =--+, ∴令0y =,得()2260x h --+=, 解得:13x h =+,23x h =-,∵抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点, ∴()3,0A h +,()3,0B h -, ∴()3323AB h h =+--=; 故答案是23.【点睛】本题主要考查了二次函数的性质,抛物线与坐标轴的交点,准确分析计算是解题的关键.三、解答题21.如图,已知正三角形ABC 的边长为4,矩形DEFG 的DE 两个点在正三角形BC 边上,F 、G 点在AB 、AC 边上,求矩形DEFG 的面积的最大值是多少?解析:3设EF=x ,先求出三角形ABC 的高AH 的长,由矩形性质FG ∥BC ,推出△AFG ∽△ABC 利用性质得比例式FG AM =BC AH 求出()234FG=23x -⋅,利用矩形面积公式S 矩形DEFG =22343x x -+利用函数的性质求出最值即可. 【详解】过A 作AH ⊥BC 于H ,交FG 于M ,∵正三角形ABC 的边长为4,∴BH=CH=2,在Rt △ABH 中由勾股定理AH=2222AB -BH =4-2=23,设EF=x ,则AM=23-x ,∵矩形DEFG 的DE 两个点在正三角形BC 边上,∴FG ∥BC ,∴△AFG ∽△ABC ,∴FG AM =BC AH, ∴()234AM BC FG==AH 23x -⋅, ∴S 矩形DEFG =FE•FG=()2234234323x xx x -⋅=-+, ∵233a =-0<, 则抛物线开口向下,有最大值,432323x =-=⎛⎫⨯- ⎪⎝⎭,S 最大=23.本题考查等边三角形内接矩形问题,涉及等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质,掌握等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质是解题关键.22.如图,抛物线2123y x x =-++与直线24y x =交于A 、B 两点.(1)求A 、B 两点的坐标;(2)直接写出当x 取何值时,12y y >;(3)利用图象法直接写出不等式2230x x -++≥的解集.解析:(1)A (1,4),B (-3,-12);(2)-3<x <1;(3)-1≤x≤3.【分析】(1)根据函数的图象与性质可得2234x x x -++=,则可求出交点的横坐标,再由24y x =可得纵坐标,即可得出结论;(2)观察图象可得结果;(3)求出抛物线与x 轴的交点坐标,即可得解.【详解】解:(1)根据题意得:2234x x x -++=,解得:11x =,23x =-当11x =时,24y =.当23x =-时,212y =-.∴A (1,4),B (-3,-12).(2)观察图象得:当-3<x <1时,12y y >.(3)由2230x x -++=得:11x =-,23x =.∴抛物线与x 轴的交点坐标为(-1,0),(3,0).由图象可得,2230x x -++≥的解集为:-1≤x≤3.【点睛】本题主要考查了二次函数的图象与性质,掌握二次函数的图象与性质并能运用数形结合的思想是解题的关键.23.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解析:(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.24.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.解析:(1)234y x x =--;(2)3n =;(3)12x >-【分析】 (1)把A,B 代入解析式求出b,c ,即可得到抛物线解析式;(2)根据抛物线的对称性即可求得;(3)分三种情况讨论,即可求得满足题意的自变量x 的取值范围.【详解】解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -,∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为()0,4-, 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为()3,4-.∴3n CD ==.(3)依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ② 当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥. 综上所述,自变量x 的取值范围是12x >-. 【点睛】 本题考查了抛物线与x 轴的交点,待定系数法求二次函数的解析式,坐标与图形的变换−平移,二次函数的性质,分类讨论是解题的关键.25.已知关于x的方程(k-1)x2+(2k-1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=(k-1)x2+(2k-1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围.(3)已知抛物线y=(k-1)x2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a>1或a<﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x2+(2k-1)x+2=0得到k=2,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x2+(2k-1)x+2﹣y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k=1时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k2-12k+9=(2k-3)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根(2)解:令y=0,则(k-1)x2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x的一元二次方程,得x1=﹣2,x2=11-k,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴1-k=-1,k=2.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得(k-1)x2+(2k-1)x+2﹣y=0恒成立,即k(x2+2x)-x2-x﹣y+2=0恒成立,得:x2+2x=0;x1=0,y1=2;x2=-2,y2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.26.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(1)直接写出c ,m 的值;(2)求此二次函数的解析式.解析:(1)4c =,52m =;(2)219(1)22y x =-++或2142y x x =--+ 【分析】(1)根据表格中对应值可知对称轴的值和抛物线与y 轴的交点,即可求得c 的值,根据抛物线的对称性即可求得m 的值; (2)直接利用待定系数法求出二次函数解析式即可.【详解】解:(1)根据图表可知:二次函数y=ax 2+bx+c 的图象过点(0,4),(-2,4), ∴对称轴为直线2012x -+==-,c=4, ∵(-3,52)的对称点为(1,52), ∴m=52; (2)∵对称轴是直线x=-1, ∴顶点为(-1,92), 设y=a (x+1)2+92, 将(0,4)代入y=a (x+1)2+92得, a+92=4, 解得a=-12, ∴这个二次函数的解析式为y=-12(x+1)2+92.【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求解函数对称轴是解题的关键.27.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表: x …-4 -3 -2 -1 0 1 … y… -5 0 3 4 3 0 … (1)求此二次函数的解析式;(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.解析:(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.28.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解析:(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积。
天津中考数学二轮 二次函数 专项培优 易错 难题

天津中考数学二轮二次函数专项培优易错难题一、二次函数1.(6分)(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴线段FH的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (±0)或(5±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5±,即:点C坐标为(5+,0)或(5﹣0);③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=9710,则点C坐标为(9710,0).综上所述:存在,点C的坐标为:(,0)或(5±0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3,∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-,化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A ′H +A ′C ≥HC =,∴t ,即点M 在整个运动过程中用时最少是3秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.4.已知,抛物线y=x 2+2mx(m 为常数且m≠0). (1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求△ABM的面积.(3)若点(2,p),(3,g),(4,r)均在该抛物线上,且p<g<r,求m的取值范围.【答案】(1)抛物线与x轴有2个交点,理由见解析;(2)△ABM的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b2-4ac的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m的值,进而求出抛物线的解析式,得出A,B,M三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m的取值范围,综上所述,求出m的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m的式子表示出p,g,r,再代入 p<g<r 即可列出关于m的不等式组,求解即可。
天津市南开中学九年级数学上册第二十二章《二次函数》(培优练)

一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.将二次函数221y x x =+-化为2()y x h k =-+的形式时,结果正确的是( )A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 4.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =5.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .46.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)-7.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .8.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤10.二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )A .0abc >B .20a b +<C .关于x 的方程230ax bx c +++=有两个相等的实数根D .930a b c ++<11.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-13.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<< 14.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( )A .x =-3B .x =-1C .x =-2D .x =415.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<二、填空题16.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a-,则A ∠=______︒. 17.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.18.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.19.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.20.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是.21.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.22.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .23.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.24.2251=-+-y x x 的图象不经过__________象限;25.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.26.抛物线y =x²-x 的顶点坐标是________三、解答题27.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 28.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.29.已知二次函数y =﹣x 2+4x +5,完成下列各题: (1)求出该函数的顶点坐标.(2)求出它的图象与x 轴的交点坐标. (3)直接写出:当x 为何值时,y >0. 30.已知关于x 的方程222(1)2()10a x a b x b +-+++=. (1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.。
天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--2

天津市中考数学能力提升分类练习试卷(带答案带解析)之二次函数--261.已知:抛物线l1:y=−x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,−3).(1)求抛物线l2的函数表达式;(2)如图1,P为抛物线l1的对称轴上一动点,连接P A,PC,当∠APC=90°时,求点P的坐标;(3)如图2,M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M 自点A运动至点E的过程中,线段MN长度的最大值.所以点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为21.【点睛】本题考查了二次函数的综合题,解题的关键是熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数的解析式,会求抛物线与坐标轴的交点坐标;理解坐标与图形的性质,记住两点间的距离公式和勾股定理.62.如图1,抛物线y =ax 2+bx ﹣8与x 轴交于A (2,0),B (4,0),D 为抛物线的顶点.(1)求抛物线的解析式;(2)如图2,若H 为射线DA 与y 轴的交点,N 为射线AB 上一点,设N 点的横坐标为t ,△DHN 的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,若N 与B 重合,G 为线段DH 上一点,过G 作y 轴的平行线交抛物线于F ,连接AF ,若NG =NQ ,NG ⊥NQ ,且∠AGN =∠F AG ,求F 点的坐标. 【答案】(1)y =−x 2+6x −8;(2)S =32x −3;(3)F (1,-3)【分析】(1)利用待定系数法即可解决问题.(2)如图1中,连接OD ,根据S =S △OND +S △ONH −S △OHD 计算即可.(3)如图2中,延长FG 交OB 于M ,只要证明△MAF ≌△MGB ,得FM =BM .设M (m ,0),列出方程即可解决问题.【详解】解:(1)抛物线y =ax 2+bx ﹣8与x 轴交于A (2,0),B (4,0), 代入得{4a +2b −8=016a +4b −8=0 ,解得{a =−1b =6,∴抛物线解析式为y =−x 2+6x −8; (2)如图1中,连接OD . ∵y =−x 2+6x −8=−(x -3)2+1∴顶点D 坐标(3,1), ∵A (2,0)设直线AD 的解析式为y =kx +b (k ≠0) 把A (2,0),(3,1)代入得{0=2k +b 1=3k +b解得{k =1b =−2∴直线AD 的解析式为y =x -2, 令x =0,解得y =-2 ∴H (0,−2).∵设N 点的横坐标为t ,∴△DHN 的面积S =S △OND +S △ONH −S △OHD =12×t ×1+12×t ×2−12×2×3=32t −3.∴S =32x −3;(3)如图2中,延长FG 交OB 于M .∵H (0,−2),A (2,0) ∴OH =OA =2,∴∠OAH =∠OHA =45°, ∵FM //OH ,∴∠MGA =∠OHA =∠MAG =45°, ∴MG =MA , ∵∠F AG =∠NGA , ∴∠MAF =∠MGN , 在△MAF 和△MGN 中, ∵{∠AMF =∠GMB AM =MG ∠MAF =∠MGB , ∴△MAF ≌△MGB , ∴FM =BM .设M (m ,0), ∴−(−m 2+6m −8)=4−m , 解得m =1或4(舍弃), ∴M (1,0) ∴BM =4-1=3 ∴FM =3, ∴F (1,-3).【点睛】本题考查二次函数综合题、全等三角形的判定和性质、待定系数法等知识,解题的关键是学会利用分割法求面积.学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.63.如图,抛物线y =ax 2+bx +c 的图像经过点A(−1,0),B(0,−3),其对称轴为直线x =1(1)求这个抛物线的解析式(2)抛物线与x 轴的另一个交点为C ,抛物线的顶点为D 判断△CBD 的形状并说明理由 (3)直线BN//x 轴,交抛物线于另一点N ,点P 是直线BN 下方的抛物线上的一个动点(点P 不与点B 和点N 重合),点P 做x 轴的垂线,交直线BC 于点Q ,当四边形BPNQ 的面积最大时,求出点P 的坐标【答案】(1)y =x 2−2x −3;(2)△CBD 是直角三角形,见解析;(3)P (32,−154) 【分析】(1)利用待定系数法求解;(2)先求出点C 、D 的坐标,利用勾股定理求出BC 、BD 、CD 的长即可判断; (3)先求出直线BC 的解析式,N 的坐标,得到四边形BPNQ 的面积=12BN ⋅PQ ,故当PQ最大时,四边形BPNQ 的面积最大,设P (x ,0),则P (x,x 2−2x −3),Q (x,x −3),得到四边形BPNQ 的面积的函数解析式,利用函数性质解答. 【详解】解:(1)由题意得{a −b +c =0c =−3−b2a=1, 解得{a =1b =−2c =−3,∴这个抛物线的解析式为y =x 2−2x −3;(2)令y =x 2−2x −3中y =0,得x 2−2x −3=0, 解得x =-1或x =3, ∴C (3,0),∵y =x 2−2x −3=(x −1)2−4 ∴顶点D 的坐标为(1,-4),∵CB 2=32+32=18,BD 2=12+12=2,CD 2=22+42=20, ∴CB 2+BD 2=CD 2, ∴△CBD 是直角三角形;(3)∵B (0,-3),C (3,0), ∴直线BC 的解析式为y =x −3,∵直线BN//x 轴,交抛物线于另一点N ,B (0,3),对称轴为直线x =1, ∴N (2,-3), ∵PQ ⊥x 轴,64.已知抛物线y=ax2+bx+6(a为常数,a≠0)交x轴于点A(6,0),点B(−1,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)P是抛物线上位于直线AC上方的动点,过点P作y轴平行线,交直线AC于点D,当PD取得最大值时,求点P的坐标;(3)M是抛物线的对称轴l上一点,N为抛物线上一点;当直线AC垂直平分△AMN的边MN时,求点N的坐标.∴{a −b +6=036a +6b +6=0 , ∴{a =−1b =5,∴抛物线的解析式为y =−x 2+5x +6, 当x =0时,y =6, ∴点C (0,6); (2)如图(1),∵A (6,0),C (0,6), ∴直线AC 的解析式为y =−x +6,设D (t ,−t +6)(0<t <6),则P (t ,−t 2+5t +6), ∴PD =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9, 当t =3时,PD 最大,此时,−t 2+5t +6=12, ∴P (3,12);(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,PD =PE ,(3)中NF ∥x 轴是解本题的关键.65.如图,在平面直角坐标系中,抛物线y =−x 2+bx +c 的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为(3,0),B 点坐标为(−1,0),连接AC 、BC .动点P 从点A 出发,在线段AC 上以每秒√2个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少? (3)在线段AC 上方的抛物线上是否存在点M ,使△MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由. 【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)(3+√174,23+√178)【分析】(1)利用待定系数法求解即可;(2)过点P 作PE ⊥x 轴,垂足为E ,利用S 四边形BCPQ =S △ABC -S △APQ 表示出四边形BCPQ 的面积,求出t 的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,证明△PFM ≌△QEP ,得到MF =PE =t ,PF =QE =4-2t ,得到点M 的坐标,再代入二次函数表达式,求出t 值,即可算出M 的坐标.【详解】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0), 则{0=−9+3b +c 0=−1−b +c ,解得:{b =2c =3;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0), ∴△OAC 是等腰直角三角形,由点P 的运动可知: AP =√2t ,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE =√2t √2=t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ=12×4×3−12×[3−(−1+t )]t =12t 2−2t +6∵当其中一点到达终点时,另一点随之停止运动,AC =√32+32=3√2,AB =4,∴0≤t ≤3,∴当t =−−22×12=2时,四边形BCPQ 的面积最小,即为12×22−2×2+6=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,{∠F =∠QEP∠PMF =∠QPE PM =PQ,∴△PFM ≌△QEP (AAS ),∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∵点M 在抛物线y =-x 2+2x +3上,66.如图,在平面直角坐标系中,抛物线y=ax2+bx−4(a≠0)与x轴交于点A(−1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接P A,PD,求△PAD面积的最大值;(3)在(2)的条件下,将抛物线y=ax2+bx−4(a≠0)沿射线AD平移4√2个单位,得到新的抛物线y 1,点E 为点P 的对应点,点F 为y 1的对称轴上任意一点,在y 1上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程. 【答案】(1)y =x 2-3x -4;(2)8;(3)G(52,−54)或G(152,−254)或G(72,−254),过程见解析【分析】(1)将A (−1,0),B (4,0)的坐标代入函数式利用待定系数法求解即可;(2)先得出抛物线的对称轴,作PE ∥y 轴交直线AD 于E ,设P (m ,m 2-3m -4),用m 表示出△APD 的面积即可求出最大面积;(3)通过平移距离为4√2,转化为向右平移4个单位,再向下平移4个单位,根据平移变化得出平移后的抛物线关系式和E 的坐标,分DE 为对角线、EG 为对角线、EF 为对角线三种情况进行讨论即可.【详解】解:(1)将A (-1,0),B (4,0)代入y =ax 2+bx -4得{a −b −4=016a +4b −4=0,解得:{a =1b =−3 , ∴该抛物线的解析式为y =x 2-3x -4,(2)把x =0代入y =x 2-3x -4中得:y =-4,∴C (0,-4),抛物线y =x 2-3x -4的对称轴l 为x=32∵点D 与点C 关于直线l 对称,∴D (3,-4),∵A (-1,0),设直线AD 的解析式为y =kx +b ;∴{3k+b =-4-k +b =0 ,解得:{k =−1b =−1, ∴直线AD 的函数关系式为:y =-x -1,设P (m ,m 2-3m -4),作PE ∥y 轴交直线AD 于E ,∴E (m ,-m -1),∴PE =-m -1-(m 2-3m -4)=-m 2+2m +3,∴S ΔAPD =12×PE ×|x D −x A |=2(−m 2+2m +3)=−2m 2+4m +6,∴S ΔAPD =−2m 2+4m +6=−2(m −1)2+8,∴当m =1时,△PAD 的面积最大,最大值为:8(3)∵直线AD 的函数关系式为:y =-x -1,∴直线AD 与x 轴正方向夹角为45°,∴抛物线沿射线AD 方向平移平移4√2个单位,相当于将抛物线向右平移4个单位,再向下平移4个单位,∵A (−1,0),B (4,0),平移后的坐标分别为(3,-4),(8,-4),设平移后的抛物线的解析式为y 1=x 2+dx+e则{9+3d+e =-464+8d+e =-4 ,解得:{d =−11e =20, ∴平移后y 1=x 2-11x +20,∴抛物线y 1的对称轴为:x =112,∵P (1,-6),∴E (5,-10),∵以点D ,E ,F ,G 为顶点的四边形是平行四边形,分三种情况:设G (n ,n 2-11n +20),F (112,y ), ①当DE 为对角线时,平行四边形的对角线互相平分∴3+52=n+1122,∴n=52 ∴G(52,−54)②当EF 为对角线时,平行四边形的对角线互相平分67.如图,已知二次函数y=−x2+bx+c(c>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求该二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为点Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点P,使△PMC为等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.68.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,顶点为D,已知点B的坐标是(1,0),OA=OC=3OB.(1)求这个二次函数的表达式;(2)若E是线段AD上的一个动点(E与A,D不重合),过点E作平行于y轴的直线交抛物线于点F,求线段EF长度的最大值;(3)将(1)中的函数图象平移后,表达式变为y=ax2+2mx+1,若这个函数在−2≤x≤1时的最大值为3,求m的值.【答案】(1)y=−x2−2x+3;(2)EF最大值为1;(3)m=1.5或−√2【分析】(1)先表示出C(0,c),再利用OA=OC=3OB可得A(c,0),B(−13c,0),于是可利用交点式表示解析式,得到y=−(x+13c)(x−c)=−x2+23c+13c2,所以13c2=c,解得c=3,所以抛物线解析式为y=−x2+2x+3;(2)把二次函数写成顶点式,得到D点坐标,设出直线AD的解析式,将A、D两点坐标代入,可得直线解析式,分别利用各自的解析式写出交点E的坐标表达式,利用两点间公式可得到二次函数,求出最值即可;(3)分三种情况求出m的值.【详解】(1)当x=0时,y=−x2+bx+c=c,则C(0,c),∵OA=OC=3OB,∴A(c,0),B (−13c,0),∴y =−(x +13c)(x −c)=−x 2+23c +13c 2,∴13c 2=c ,解得c =0(舍去)或c =3,∴代入二次函数y =ax 2+bx +c 解析式中,y =−x 2−2x +3;(2)∵抛物线y =−x 2−2x +3=−(x +1)2+4,∴顶点D 的坐标为(−1,4).设直线AD 的解析式为y =kx +b ,∵A(−3,0),D(−1,4),∴{−3k +b =0−k +b =4, 解得:{k =2b =0, ∴直线AD 的解析式为y =2x +6.设点E 的横坐标为m ,∴E(m,2m +6),F (m,−m 2−2m +3),∴EF =−m 2−2m +3−(2m +6)=−m 2−4m −3=−(m +2)2+1,∴当m =−2时,EF 最大值为1.(3)∵y =ax 2+2mx +1的图象由y =−x 2−2x +3平移得到,∴表达式可设为y =−x 2+2mx +1,对称轴是直线x =m ;①若m <−2,则x =−2时函数值最大,把x =−2,y =3代入y =−x 2+2mx +1, 解得m =−1.5,不合题意,舍去;②若−2≤m ≤1,则x =m 时函数值最大,把x =−m,y =3代入y =−x 2+2mx +1,解得m =±√2,∴m=−√2;③若m>1,则x=−1时函数值最大,把x=−1,y=3代入y=−x2+2mx+1,解得m=1.5综上所述,m=1.5或−√2.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的图象与性质(对称性、增减性)等知识点,较难的是题(3),利用二次函数的性质正确分三种情况讨论是解题关键.x2+bx+c过点A(−1,0)和点B(3,0),与y轴交于点C,顶点为点D.69.抛物线y=−12(Ⅰ)求点C,D的坐标;(Ⅱ)点E是线段OB上一动点,过点E作直线l⊥x轴,交抛物线于点M,连接BM并延长交y 轴于点N,连接AM,OM.若△AEM的面积是△MON面积的2倍,求点E的坐标;(Ⅲ)抛物线上一点T,点T的横坐标是−3,连接BT,与y轴交于点P,点Q是线段AT上一动点(不与点A,点T重合)将△BPQ沿PQ所在直线翻折,得到△FPQ,当△FPQ与△TPQ重叠部分的面积是△TBQ面积的1时,求线段TQ的长度.4∴y=−12×(−3)2−3+32=−6.∴点T的坐标为(−3,−6).设直线BT的解析式为y=k2x+b2,有{3k2+b2=0−3k2+b2=−6,解得{k2=1b2=−3∴直线BT的解析式为y=x−3.∵当x=0时,y=−3.∴点P的坐标为(0,−3).过点T作TG⊥y轴于点G,则TG=3,PG=3,∴TP=√TG2+PG2=√32+32=3√2.又BP=√OB2+OP2=√32+32=3√2,∴BP=TP,∴点P是线段BT的中点.∴S△BPQ=S△TPQ.由折叠知,△BPQ≌△FPQ,则S△BPQ=S△FPQ.∴S△FPQ=S△TPQ.①如图,当点F在直线BT下方时,设线段FQ与线段PT交于点M,△FPQ与△TPQ重叠部分是△MPQ,连接FT.∵S△MPQ=14S△BTQ,∴S△MPQ=12S△TPQ=12S△FPQ.∴MP=MT,MQ=MF.∴四边形FPQT是平行四边形.∴TQ=PF.∵PF=BP,BP=3√2,∴TQ=3√2.②如图,当点F 在直线BT 上方时,设线段FP 与线段QT 交于点N,△FPQ 与△TPQ 重叠部分是△NPQ ,连接FT .同理可得,四边形FTPQ 是平行四边形. ∴QF =TP =BP . ∵QF =BQ , ∴BQ =BP =3√2.设直线AT 的解析式为y =k 3x +b 3, 有{−k 3+b 3=0−3k 3+b 3=−6 ,解得{k 3=3b 3=3 ∴直线AT 的解析式为y =3x +3. 设点Q 的坐标为(t,3t +3)(−3<t <−1), 过点Q 作QE ⊥x 轴于点E ,BQ =√EB 2+EQ 2=√(t −3)2+(3t +3)2=3√2,解得t 1=0,t 2=−65. ∵−3<t <−1,∴t =−65,∴点Q 的坐标为(−65,−35).70.如图所示,在抛物线上选定两点,我们把过这两点的线段和这条抛物线所围成的图形称作抛物线弓形.在平面直角坐标系xOy 中,已知抛物线y =ax 2(a >0)与直线y =x 相交于点O 和点A ,OA 截得的抛物线弓形的曲线上有一点P .(Ⅰ)当a=1时,解答下列问题:①求A点的坐标;②连接OP,AP,求△OPA面积的最大值;③当△OPA的面积最大时,直线OP也截得一个更小的抛物线弓形,同理在这个更小的抛物线弓形曲线上也有一点P′,连接OP′,P′P,当△OP′P的面积最大时,求这个△OP′P的最大面积与②中△OPA的最大面积的比值;(Ⅱ)将(Ⅰ)中a=1的条件去掉后,其它条件不变,则△OP′P的最大面积与△OPA的最大面积的比值是否变化?请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
(3)设点 为抛物线的对称轴 上的一个动点,求使 为直角三角形的点 的坐标.
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65
∴当44≤x≤46时,y随x的增大而增大
∴当x=46时,w最大值=8640元
即商场销售该品牌玩具获得的最大利润是8640元.
【点睛】
本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.
【解析】
【2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m, m2+ m﹣1),由此得到EF=﹣ m2+ m+4,根据二次函数最值的求法解答即可;
(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.
【答案】(1)抛物线的解析式为 ,直线的解析式为 .(2) ;(3) 的坐标为 或 或 或 .
【解析】
分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
【答案】(1) , ;(2)①当 时, ;②当 时, ;③当 时,
【解析】
【分析】
(1)根据一次函数表达式求出B点坐标,然后根据B点在抛物线上,求出b值,从而得到二次函数表达式,再根据二次函数表达式求出A点的坐标,最后代入一次函数求出m值.(2)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.
【详解】
解:(1)令y=0,则 ,
∵m<0,∴ ,解得: , .
∴A( ,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为 ( ),
把C(0, )代入可得, .
∴C1的表达式为: ,即 .
设P(p, ),
∴ S△PBC= S△POC+ S△BOP–S△BOC= .
∵ <0,∴当 时, S△PBC最大值为 .
【解析】
【分析】
(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.
当点 关于抛物线对称轴(直线 )对称时, ,∴
且二次函数图象的开口向下,顶点 在直线 上
综上:①当 时, ;②当 时, ;③当 时, .
【点睛】
本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.
3.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F
则∠OEC=45°-15°=30°,
∴OE=OC•tan60°=3 ,
设EC为y=kx﹣3,代入(3 ,0)可得:k ,
联立两个方程可得: ,
解得: ,
所以M2( ,﹣2).
综上所述M的坐标为(3 ,6)或( ,﹣2).
【点睛】
此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.
(3)由C2可知:B(3,0),D(0, ),M(1, ),
∴BD2= ,BM2= ,DM2= .
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即 + = ,
解得: , (舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即 + = ,
详解:(1)依题意得: ,解得: ,
∴抛物线的解析式为 .
∵对称轴为 ,且抛物线经过 ,
∴把 、 分别代入直线 ,
得 ,解之得: ,
∴直线 的解析式为 .
(2)直线 与对称轴 的交点为 ,则此时 的值最小,把 代入直线 得 ,
∴ .即当点 到点 的距离与到点 的距离之和最小时 的坐标为 .
(注:本题只求 坐标没说要求证明为何此时 的值最小,所以答案未证明 的值最小的原因).
,
解得: ,
所以二次函数的解析式为:y x2﹣3;
(3)存在,分以下两种情况:
①若M在B上方,设MC交x轴于点D,
则∠ODC=45°+15°=60°,
∴OD=OC•tan30° ,
设DC为y=kx﹣3,代入( ,0),可得:k ,
联立两个方程可得: ,
解得: ,
所以M1(3 ,6);
②若M在B下方,设MC交x轴于点E,
(3)设 ,又 , ,
∴ , , ,
①若点 为直角顶点,则 ,即: 解得: ,
②若点 为直角顶点,则 ,即: 解得: ,
③若点 为直角顶点,则 ,即: 解得:
, .
综上所述 的坐标为 或 或 或 .
点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.
(1)求抛物线的解析式;
(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;
(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.
【答案】(1)抛物线的解析式为y= x2+ x﹣1;(2) ,( , );(3)点G的坐标为(2,1),(﹣2 ,﹣2 ﹣1),(2 ,2 ﹣1),(﹣4,3).
【详解】
(1)如图1,∵直线 与 轴交于点为 ,∴点 坐标为
又∵ 在抛物线上,∴ ,解得
∴二次函数的表达式为
∴当 时,得 ,
∴
代入 得, ,∴
(2)如图2,根据题意,抛物线的顶点 为 ,即 点始终在直线 上,
∵直线 与直线 交于点 ,与 轴交于点 ,而直线 表达式为
解方程组 ,得
∴点 ,
∵点 在 内,∴
(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;
(3)分M在BC上方和下方两种情况进行解答即可.
【详解】
(1)将C(0,﹣3)代入y=x+m,可得:
m=﹣3;
(2)将y=0代入y=x﹣3得:
x=3,
所以点B的坐标为(3,0),
将(0,﹣3)、(3,0)代入y=ax2+b中,可得:
一、二次函数真题与模拟题分类汇编(难题易错题)
1.如图,在平面直角坐标系 中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0, ),点M是抛物线C2: ( <0)的顶点.
解得: , (舍去).
综上所述, 或 时,△BDM为直角三角形.
2.已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 .
(1)如图1,若二次函数图象也经过点 ,试求出该二次函数解析式,并求出 的值.
(2)如图2,点 坐标为 ,点 在 内,若点 , 都在二次函数图象上,试比较 与 的大小.
【点睛】
本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
4.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.
【解析】
【分析】
(1)在 中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC= S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:
(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000
获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000
(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46
(2)设点E的坐标为(m,m+3),线段EF的长度为y,
则点F的坐标为(m, m2+ m﹣1)
∴y=(m+3)﹣( m2+ m﹣1)=﹣ m2+ m+4
即y=- (m﹣ )2+ ,
此时点E的坐标为( , );
(3)点G的坐标为(2,1),(﹣2 ,﹣2 ﹣1),(2 ,2 ﹣1),(﹣4,3).
理由:①如图1,当四边形CGDE为菱形时.
【详解】
解:(1)将y=0代入y=x+3,得x=﹣3.