离散数学3_3
离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
离散数学(chapter3集合的基本概念和运算)

以上运算律的证明思路:欲证P=Q,即证 x P x Q。
2013-7-10 离散数学
20
Байду номын сангаас
三、集合算律
证明分配律:A∪(B∩C) = (A∪B)∩(A∪C) 对x, x A∪(B ∩C) (x A ) (x B∩C )
(x A) (x B x C )
Z: 整数集合
Q: 有理数集合
R: 实数集合 C: 复数集合
: 空集(不含任何元素) E: 全集 (在某一问题中,含有所涉及的全部集合的集合。)
2013-7-10 离散数学 6
三、集合的表示方法
列出集合的所有元素,元素之间用逗号 1、列举法: 隔开。如A = { a, b, c } , B = { 1,2,4,6,7,9 } 用谓词概括该集合中元素的属性。 2、描述法: 如:A = { x | xZ 3 < x 6 } A = { x | P (x) },其中P (x)表示x满足的性质。 即A是由所有使P (x)为真的全体x构成。
2013-7-10 离散数学 3
§3.1 集合的基本概念
内容:集合,元素,子集,幂集等。 重点:(1) 掌握集合的概念及两种表示法, (2) 常见的集合N , Z, Q, R, C 和特殊集合 ,E, (3) 掌握子集及两集合相等的概念, (4) 掌握幂集的概念及求法。
2013-7-10 离散数学 4
2013-7-10
离散数学
8
四、集合之间的关系
3、真子集: B A。
B A B A B A
BABA B=A
4、幂 集:集合A的全体子集构成的集合,记作P (A)。 符号化为 P (A) = { x | x A} n 元集A的幂集P (A)含有2n个元素。
离散数学第3章 集合

任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
离散数学 第三章 集合

离散数学
将集合中的元素逐一列出,两端加上花括号。 { 1,2,3,4,5}; { 风,马,牛 }; { 2,4,6,8,10,… }; { 3,7,11,15,19,… }; 比较适合集合中的元素有限(较少或有规律),无限 (离散而有规律)的情况。 (3)谓词表示法: { x:P(x) } 或者{ x︱P(x) } 其中:P表示 x 所满足的性质(一元谓词)。 { x : x I (且) x8} ={…,-3,-2, -1,0,1,2,3,4,5,6 , paradox(1902)): 罗素1902年在集合论中也发现了如下的悖论。他 构造了这样一个集合 S={ x:xx } 然后他提出问题: SS ? 如果SS ,那么,按罗素给S的定义,则应有 SS; 如果S S ,那么,按罗素给S的定义,则应有 SS ; 罗素悖论的发现,几乎毁灭集合论,动摇数学的 基础,倾危数学的大厦。直接引发了数学的第三次 危机。
8
离散数学
第三章 集合 (set)
§1.集合理论中的一些基本概念
个体与集合之间的关系 集合的表示法 集合与集合之间的关系 幂集
§2 .集合代数 集合的基本运算
集合的补运算 集合的交运算和并运算
集合的宏运算
9
离散数学
第三章 集合 (set)
§1.集合理论中的一些基本概念 集合概念将作为一个不言自明的元概念(基本概 念)。它不能用别的术语来精确的定义,只能用别的 术语来加以说明。它本身就是用来定义其它概念的概 念。 我们来看看一些关于什么是集合的各种不同的说法, 以便加深对集合这个元概念的理解。 1. 莫斯科大学的那汤松教授说: 凡具有某种特殊性质的对象的汇集称之为集。 2. 复旦大学的陈建功教授说: 凡可供吾人思维的,不论它有形或无形,都叫做 物。具有某种条件的物,称它们的全部谓之一集。 3. 南开大学的杨宗磐教授说:
离散数学 第三-四章

Ai
(f) A (A∪B ), B (A∪B )
集合与关系 >集合的运算
交与 并的关系 定理3-2.1 设A、B、C为三个集合,则下列分配律 成立。 a) A∩(B∪C)=(A∩B)∪(A∩C) b) A∪(B∩C)=(A∪B)∩(A∪C) 定理3-2.2 设A、B为任意两个集合,则下列吸收律 成立 a) A∪(A∩B)=A b) A∩(A∪B)=A 定理3-2.3 A B 当且仅当 A∪B=B 或 A∩B=A。
集合与关系 > 集合的运算
本节重点掌握的概念: 集合, 集合相等,集合包含, 幂集。
本节重点掌握的方法: 集合的表示, 求幂集.
作业
3-1 (1)(a),(c) ,(e)
(3) (4) (a),(c) ,(e) (5) (6) (a),(c) ,(e) (9)
集合与关系 >集合的概念和表示法
上节知识点: 1. 集合的概念 2. 集合的表示 3 集合之间的关系 4 空集和全集 5 幂集(power set)
A-B
E B
A
集合与关系 >集合的运算
• 绝对补 定义3-2.4 设E为全集,任一集合A关于E的补 E-A, 称为集合A的绝对补,记作~A。
即 ~ A={ x| xE ∧ xA}
集合与关系 >集合的运算
(3) 集合的补(complement) 定义3-2.3 设A、B为任意两个集合,所有属于A而 不属于B的一切元素组成的集合S称为B对于A的 补集,或相对补,记作A-B。 即 A-B={ x| xA ∧ xB} 或 xA-B xA但 xB
例如 A={2, 5, 6} B={1, 2, 4, 7, 9} A-B={5, 6} B-A={1,4,7,9} E - A?
离散数学第四版课后答案(第3章)

( A B C) ( A B) ((A B) ( A B)) (C ( A B))
= (C ( A B)) C ( A B). 易 见 , C (A B) C, 但 不 一 定 有 C (A B) C.如 令 A B C {1}.时,等式(4)不为真。类假地,等式(5)的左 边经化简后得 (A C) B ,而 (A C) B 不一定恒等于 A-C。 3.17 (1)不为真。(2),(3)和(4)都为真。对于题 (1)举反例如下:令 A {1}, A {1}, B {1,4},C {2}, D {2,3}, 则 A B 且 C B ,但 A C B D ,
这是 S T 的充公必要条件,从而结论为真. 对 于 假 命 题 都 可 以 找 到 反 例 , 如 题 (2) 中 令 S {1,2},T z{1}, M {2}即可;而对于题(5),只要 S 即可. 3.9 (2),(3)和(4)为真,其余为假. 3.10 (1) A {0,1,2}. (2) A {1,2,3,4,5} (3) A {1} (4) A { 0,0 , 0,1 1,0 , 0,2 , 1,1 , 2,0 , 0,3 ,
A B .
(4)易见,当 A=B 成立时,必有 A-B=B-A。反之,由 A-B=B-A 得
( A B) B (B A) B
化简后得 B A ,即 B A,同理,可证出 A B ,从而 得到 A=B。
3.18 由| P(B) | 64 可知|B|=6。又由| P(A B) | 256 知| A B | 8 , 代入包含排斥原理得
{,{1},{2},{1,2}}}.
(4) P( A) {,{{1}},{{1,2}},{{1}},{{1,2}} (5) P( A) {,{1},{1},{2},{1,1},{1,2}{1,2}{1,1,2}. 分析 在做集合运算前先要化简集合,然后再根据题目 要求进行计算.这里的化简指的是元素,谓词表示和集合公 式三种化简. 元素的化简——相同的元素只保留一个,去掉所有冗余 的元素。 谓词表示的化简——去掉冗余的谓词,这在前边的题解 中已经用到。 集合公工的化简——利用简单的集合公式代替相等的 复杂公式。这种化简常涉及到集合间包含或相等关系的判别。 例如,题(4)中的 A {{1,1},{2,1},{1,2,1}}化简后得 A {{1},{1,2}}, 而题(5)中的 A {x | x R x3 2x2 x 2 0} 化 简为 A {1,1,2}。 3.15
《离散数学》课件-第3章集合的基本概念

例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},
离散数学 第3章 基于归结原理的推理证明

7
3.1.1.2 斯柯林(Skolem)标准范式
定义 3.1.2 从前束范式中消去全部存在量词所得到的公式即为 Skolem 标准范式。 例如,如果用 Skolem 函数 f(x)代替前束形范式 x (y)(z)( P( x) F ( y, z) Q( y, z)) 中 的 y 即得到 Skolem 标准范式: ( x) ( z)(P(x)∧F(f(x), z)∧Q(f(x), z)) Skolem 标准型的一般形式是
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
15
例 3.2.1 求子句集 S={T(x)∨Q(z),R(f(y))}的 H 域。 解 此例中没有个体常量,任意指定一个常量 a 作为个体常量;只有一个函数 f(y),有: H0={a} H1={a,f(a)} H2={a,(a),f(f(a))} …… H∞={a,f(a),f(f(a)),f(f(f(a))),…}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理3-6.3 集合A的一个划分确定A的元素间的一个 等价关系。 证明:设集合A的一个划分S={S1,S2,…,Sm},现定义 一个关系R={<x,y>|x∈A,y∈A,x,y属于同一分 块},可以证明,R是等价关系。 I:对任意a∈A,a和a在同一分块,故<a,a>∈R,R自反 II:若a和b在同一分块,则b和a也在同一分块,即 aRb必有bRa,R对称
注意:商集中不记录重复的等价类,故实际上是所有 等价类集合的类别体现。 例:前例整数集合I上的模3同余等价关系R的商集为:
I/R={[0]R,[1]R,[2]R},即商集只表示等价类的种类一 共是三种。该商集也可表示为I/R=[3]R,[-2]R,[5]R}等 形式。
定理3-6.2 集合A上的等价关系R,决定了A的一个 划分,该划分就是商集A/R。 证明 I:在A/R={[a]R|a∈A}中, [a]R A
等价关系与等价类的性质
1. 定理3-6.1 aRb iff [a]R=[b]R。
证明:
必要性:因为有aRb,对任意x∈[a]R,有aRx,由R对称,得 bRa,由R传递,得bRx,知x∈[b]R,即[a]R [b]R;同理 可证明[b]R[a]R,故[a]R=[b]R 充分性:因为[a]R=[b]R,a∈[a]R有a∈[b]R,故有bRa,R是 等价关系,有aRb. 证毕.
(2)R={<x,y>|x∈I,y∈I,x≡y(mod 3)}
解:[0]R={…,-6,-3,0,3,6,…}
[1]R={…,-5,-2,1,4,7,…}
[2]R={…,-4,-1,2,5,8,…}
显然有: [0]R= [3]R= [-3]R=…
[1]R= [4]R= [-2]R=…
[2]R= [5]R= [-1]R=…
aA
II:对于A的每一个元素a,由于R是自反的,故必有 aRa成立,即a∈[a]R,故A的每个一元素的确属于一 个分块 III:A的每个元素只能属于一种分块[a]R≠[b]R,即得aRx且bRx,由R是等价关系可推出aRb, 则有[a]R=[b]R,这不可能。
III: 若a与b在同一分块中,b与c在同一分块中,因为
SiSj= (i≠j) 故a与c必在同一分块,即
aRb∧bRcaRc,R传递
该定理的应用:由集合上的一种划分求等价关系的方法
设集合A上的一种划分S={S1,S2,…,Sm},则
m
R S k S k 一定是等价关系。
k 1
划分与等价关系是一一对应的,由此得到一个 定理—— 定理:如果有划分:H={A1,A2,…,An},
II(对称性):<a,b>∈Ra≡b(mod k)b≡a(mod k),故<b,a>∈R,R对称。 III(传递性):任意<a,b>∈R且<b,c>∈R,即 a≡b(mod k)且b≡c(mod k),显然有a≡c(mod k),故 <a,c>∈R,即R传递。 综合I,II,III,有R是等价关系。
3-7
相容关系
定义3-7.1 给定集合A上的关系R,若R是自反的, 对称的,则称R是相容关系。
定义3-6.2 设R为集合A上的等价关系,对任何 a∈A,集合[a]R={x|x∈A∧aRx}称为元素a形成的 R等价类。 例:写出以下等价关系的所有等价类。
(1)R={<1,1>,<1,4>,<4,1>,<4,4>,<2,2>,<2,3>, <3,2>,<3,3>}
解:[1]R=[4]R={1,4} [2]R=[3]R={2,3}
2.关于等价类的性质:
1)[a]R一定非空且a∈[a]R。
证明 等价关系R自反,故<a,a>∈R,有 a∈[a]R。 2)aRb [a]R=[b]R
3)< a,b > R ,则[a]R∩[b]R=
定义3-6.3 集合A上的等价关系R,其等价类集合
{[a]R|a∈A}称作A关于R的商集,记作A/R。
则RH=A1×A1∪A2×A2∪…∪An×An
其中RH是指由H所确定的一个等价关系R.
例:设A={1,2,3,4,5},有一个划分H={{1,2}, {3},{4,5}},求由该划分确定的A上的一个等价 关系R。
定理3-6.4 设R1和R2为非空集合A上的等价关系, 则R1=R2当且仅当A/R1=A/R2。 证明:必要性:若R1=R2,显然有A/R1=A/R2。 充分性:由A/R1=A/R2证明R1=R2 任取序偶<a,b>∈R1,则a,b∈[a]R1,因为A/R1=A/R2, 则存在[x]R2∈A/R2,有[x]R2=[a]R1,即有a,b∈[x]R2, <x,a>∈R2且<x,b>∈R2,R2是等价关系,容易推出 <a,b>∈R2,故R1R2;同理可证, R2R1。
3-6 等价关系与等价类
定义3-6.1 设R为定义在集合A上的一个关系,若R是 自反的,对称的和传递的,则R称为等价关系。 例1:平面上三角形集合中,三角形的相似关系是等 价关系;上海市的居民的集合中,住在同一区的关系 也是等价关系。 例2:设I为整数集合,R={<x,y>|x≡y(mod k)},证 明关系R为等价关系。 证明 I(自反性):任意a∈I,有a≡a(mod k),故 <a,a>∈R