浮头式换热器设计

合集下载

浮头式换热器设计简介

浮头式换热器设计简介

浮头式换热器设计(PN1.3/0.9; W=41T/h)过程装备与控制工程姓名学号指导老师 XX 工程师摘要管壳式换热器是化学、石油化学及石油炼制工业中以及其它一些行业中广泛使用的热交换设备。

它不仅可以单独作为加热器、冷却器等使用,而且是化工单元的重要附属设备,因此在化工生产中占有重要地位。

浮头式换热器是釜壳式换热器的一种,其优点是:管束可以从壳体里面抽出来,便于清洗;管壳的变形不会受到壳体的约束,消除热应力。

浮头式的设计内容有:换热器的热力学计算;换热器的零部件材料选定;换热器的结构设计;换热器的强度校核。

关键字:管壳式换热器浮头式换热器设计内容AbstractShell and tube heat exchange is widely used in the heat exchanger of chemical. It can’t only used for heater and cooler individually etc. But also for some important accessory equipment of the chemical units. So it occupies an place in chemical production.The floating head exchange is one of the shell and tude heat exchange.Tube bundle can be pumping out from the inside of the shell for easy to cheaning;The themcal deformation of the tube bundle will not be constraint of the shell by elimination of heat stress.The design of a floating head exchanger typically includes:The thermodynatic cacnlationof the heat exchanger;The components’ materials selection of the heat exchanger;Structural design of the heat exchanger;The components thickness colcnlation and strength checking of the heat exchange.Keywords:shell and tube exchanger; Floating head heat exchanger; Components of the design一、前言换热器是将热流体的部分能量传递给冷流体的设备,又称热交换器。

浮头式换热器的设计

浮头式换热器的设计

浮头式换热器的设计一、结构设计1.管束:由多根管子组成,一般采用导热性能好、抗腐蚀性强的材料,如不锈钢、铜合金等。

2.壳体:壳体通常由圆筒形成,材料通常选用碳钢、不锈钢等。

3.浮头:浮头可以移动,其作用是分离进出口两种介质,便于维修和清洗。

浮头由盖板、支撑节、密封垫片等部分组成,密封垫片既保证了浮头与壳体之间的密封性,又使浮头能够自由上下移动。

4.支撑件:支撑件用于支撑管束,保证其在壳体内的稳定性和均衡分布。

5.端面密封件:端面密封件用于保证管束与壳体之间的密封,常见的有O形圈、金属防喷卡环等。

6.进出口管道:进出口管道用于引入和排出介质,尺寸和位置需根据实际需要进行设计。

二、工作原理具体过程如下:1.高温介质进入换热器的壳体,通过管堂进入管束内部,经过管束与壳体之间的热量传递,从而使介质温度降低。

2.低温介质进入壳体,在管束外部流动,通过壳体与管束之间的传热,使介质温度升高。

3.热量通过管束和壳体之间的传导、对流和辐射传给低温介质,完成热量传递过程。

三、选型在设计浮头式换热器时,需要根据实际工艺条件和要求进行选型。

首先,确定所需换热功率和介质的工艺参数,如温度、流量等。

然后,根据换热器的结构和材料要求,选择合适的规格和型号。

关键的选型参数包括管子的直径、管程壳程的流通方式、壳程与管程之间的布置方式和导热面积。

此外,还要考虑换热器的可靠性、耐腐蚀性和维修便利性等因素,以确保换热器在运行期间的稳定性和长期效益。

四、运行维护1.定期清洗:定期清洗管束和壳体的内表面,清除污垢和沉积物,以保证换热效果。

2.定期检查:定期检查管束和壳体的密封状况,确保密封件的完整性和可靠性。

3.检修:在必要时,对浮头、支撑件和端面密封件进行检修或更换,以保证其正常运行。

4.防腐保温:根据介质的特性和工艺要求,对换热器进行防腐处理和保温处理,延长使用寿命。

总结:浮头式换热器是一种常见的热交换设备,其结构设计合理、工作原理清晰。

浮头式换热器(过程设备设计课程设计说明书)

浮头式换热器(过程设备设计课程设计说明书)

目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。

毕业设计:浮头式换热器设计

毕业设计:浮头式换热器设计

摘要随着石油化工行业的迅速发展,换热器在石化行业设备中占据着重要的部分和地位。

换热器是一种实现物料之间能量传递的设备,本设计主要是针对的浮头式换热器,浮头式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。

在设计的整个过程中,严格按照GB150-1998《钢制压力容器》和GB151-1999《管壳式换热器》等标准进行设计和计算。

以及对换热器的强度,刚度和稳定性的校核。

本设计包括四个部分:说明部分;计算部分;绘图部分和翻译部分。

说明部分主要阐述了浮头式换热器的工艺流程及其在炼油化工生产中的地位,换热器设备及其发展现状和国内外换热器的最新发展趋势,同时介绍了换热器的结构设计,换热器主要零部件结构的设计及压力容器常用材料等。

最后对压力容器的制造,检验和验收等问题也作了简单的介绍。

计算部分主要针对筒体,封头,和法兰进行了详细计算,并对其进行了水压试验校核,还对换热器的管板,折流板,鞍座等进行了相关的设计计算。

除此之外,还参阅相关的设计手册及大量的文献,完成了各个零件图的绘制,还对两万字符的外文进行了翻译等工作。

因此,这是份比较具有创新性的毕业设计。

关键词:浮头式换热器;筒体;压力试验;校核AbstractWith the oil of the rapid development of the chemical industry, heat exchanger equipment in the petrochemical industry occupies an important part and status. Is a heat exchanger to achieve energy transfer between the materials of the equipment, mainly for the design of the floating head heat exchanger, floating head heat exchangers are shell and tube heat exchanger type is the use ofpartitions so that high-temperature fluid and low-temperature fluid for convective heat transfer in order to achieve the heat transfer between materials.In the design of the whole process, in strict accordance with GB150-1998 "Steel Pressure Vessels" and GB151-1999 "shell and tube heat exchanger" and other standards for the design and calculation. As well as the heat exchanger strength, stiffness and stability of the check.The design includes four parts: that part of it; calculation part; mapping and translation of some parts. Note on some of the main floating head heat exchanger and its application in the process of refining the position of chemical production, heat exchanger and the development of equipment and heat exchangers at home and abroad the latest development trends, at the same time introduced the structure of heat exchanger design, heat exchanger design of the structure of the main components and pressure vessels commonly used materials. Finally, pressure vessel manufacturing, testing and acceptance of other issues also made a brief introduction. Calculated for some of the main cylinder, head, and carried out a detailed calculation of the flange, and its hydraulic test checking, but also on the heat exchanger tube sheet, baffle, such as a saddle-related design calculation. In addition, see the related design manuals and a lot of literature, completed the mapping of various parts, but also on the20,000 foreign-language characters for the translation work. Therefore, it is a comparison of graduates with innovative design.Key words:Floating head heat exchanger; cylinder; pressure test; check目录1前言 (1)1.1管壳式换热器的分类 (1)1.2管壳式换热器的结构 (2)1.2.1管束 (2)1.2.2壳程 (3)1.2.3管子的排列方式 (3)1.2.4管板 (3)1.2.5折流板与折流杆 (3)1.3管壳式换热器相关分析 (4)1.3.1传热系数 (4)1.3.2平均温差 (4)1.3.3流体流速 (4)1.3.4流体压降 (4)1.3.5振动 (4)1.3.6其他 (4)1.4提高管壳式换热器传热能力的措施 (5)1.5管壳式换热器工作原理 (6)1.6管壳式换热器的发展 (7)1.6.1板式支承结构的发展 (7)1.6.2杆式支承结构的发展 (7)1.6.3空心环支承结构 (8)1.6.4管式自支承 (9)1.7管壳式换热器特点 (10)1.8管壳式与其他换热器的比较 (11)1.9腐蚀与防护 (14)1.9.1换热器腐蚀的原因 (14)1.9.2管壳式换热器的防腐蚀措施 (16)1.10换热器设计软件简介 (19)1.10.1HTFS (20)1.10.2 HTRI (21)1.10.3 ASPEN PLUS B—JAC (22)1.11结语 (23)2设计部分 (24)2.1浮头式换热器筒体的计算: (24)2.1.1计算条件 (24)2.1.2厚度的计算 (24)2.2前后端管箱封头的计算 (25)2.2.1设计条件 (25)2.2.2厚度计算 (25)2.2.3压力试验应力校核 (26)2.2.4压力试验应力校核 (27)2.3带法兰无折边球形封头及法兰计算 (27)2.3.1设计条件 (27)2.3.2厚度计算 (28)2.4管子排列方式的设计 (31)2.5开孔补强的计算 (31)2.5.1筒体开孔所需的补强面积要求 (32)2.5.2在有效补强范围内作为补强的截面积 (32)2.5.3选择补强圈补强 (33)2.6外头盖法兰厚度计算 (33)2.6.1设计条件 (33)2.6.2厚度计算 (34)2.7管板的厚度计算 (38)2.7.1设计条件 (38)2.7.2计算各参数 (39)2.7.3厚度计算 (41)2.7.4校核换热管轴向力 (42)3 致谢 (45)4 参考文献 (46)1 前言换热器是一种实现物料之间热量传递的节能设备,在石油、化工、冶金、电力、轻工、食品等行业应用普遍。

浮头式换热器的设计

浮头式换热器的设计

一.设计内容(1)设计计算列管式换热器的热负荷,传热面积,换热管,壳体,管板,隔板及等。

(2)绘制列管式换热器的装配图。

(3)编写课程设计说明书确定设计方案1.选择换热器类型两流体温度变化情况:热流体(混合物料)进口温度170.25℃,出口温度85℃;冷流体(冷水)进口温度35℃,出口温度43℃,该换热器用循环冷却水冷却,因两流体的温度之差较大,(>50℃)因此初步确定选用浮头式换热器。

2.流程的安排为使混合物料通过壳壁面向空气散热,提高冷却效果,应使冷却水走管程,混合物料走壳程。

确定物性数据定性温度:对于水等低粘度流体,其定性温度可取流体进出口温度的平均值。

故管程冷水的定性温度为T=(T1+T2)/2=(35+43)/2=39(℃)混合物料的定性温度T=(T1+T2)/2=(85.00+170.35)/2=127.68(℃)壳程混合物料在127.68℃下的有关物性数据如下密度ρo=847.25㎏/m3定压比热容c po=2.13K J/(㎏·℃)热导率 k o=0.108W/(m·℃)黏度μo=0.301×10-3Pa·s估算换热面积1.热流量依据公式Q=Wh*Cph(T1-T2)计算可得:Wh=23.3943*(92.14*0.0457+106.17*0.0256+0.380+0.157+0.256)+1 04.14*0.106)=2390㎏/hQ=2390/3600*2.13*1000*(170.35-85.00)=1.207*10^5W2.平均传热温差先按纯逆流计算,依据下式得:△t m’=△t1-△t2ln(△t1/△t2)=(127.35-50)/ln(127.35/50)=82.73℃3.计算R与PR=(T1-T2)/(t2-t1)=(170.35-85)/(43-35)=10.67P=(t2-t1)/(T1-t1)=(43-35)/(170.35-35)=0.059查表¢△t=0.83△t m=¢△t△t m’=0.83×82.73=68.67(℃)由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。

浮头式换热器毕业设计

浮头式换热器毕业设计

浮头式换热器毕业设计毕业设计(论文)专业:过程装备与控制工程题目:BJS1200浮头式冷凝器设计作者姓名:导师及职称:导师所在单位:二〇一三年六月十六日本科毕业设计(论文)任务书2012 届机械与汽车工程学院过程装备与控制工程专业学生姓名:Ⅰ毕业设计(论文)题目中文:BJS1200浮头式冷凝器设计英文:The design ofBJS1200 floating head condenserⅡ原始资料1. 马小明、钱颂文、朱冬生等. 管壳式换热器[M],北京:中国石化出版社,2010.2. 董其伍、张垚。

换热器 [M],北京:化学工业出版社,2008.3.GB_151-1999_管壳式换热器Ⅲ毕业设计(论文)任务内容1、课题研究的意义换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。

随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。

换热器因而面临着新的挑战。

换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。

目前在发达的工业国家热回收率已达 96%。

换热设备在现代装置中约占设备总重的 30%左右,其中管壳式换热器仍然占绝对的优势,约 70%。

其余 30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备,其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。

在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。

浮头式换热器是管壳式换热器系列中的一种,换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。

换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。

壳体一般为圆筒形,也可为方形。

管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。

浮头式换热器

浮头式换热器

圆整可取 D=400mm
5.折流板 采用弓形折流板,取弓形折流板圆缺高度为壳体内径的 25%, 则切去的圆缺高度为 h =0.25×400 =100(mm) ,故可取 h= 110 mm。
取折流板间距 B=0.3D,则 B=0.3×400=120(mm),可取 B 为 150。
折流板数 NB =
传热管长
由于 82mm 不是标准管径,因此确定 ������ =75mm ������ 经计算 符合经济流速范围 u=
qm1
ρ A
=
18850/3600 999.8× 0.785× 0.0752
=1.2m/s
故确定 ������ =75mm,u=1.2m/s ������ ②压头 在水槽液面及压力表 2 处列伯努利方程,
5.计算传热面积:
=
219917
604.3×20.38
=17.86m2
=20.54m2
四.工艺结构尺寸
1.管径和管内流速
选用ф 25×2.5 传热管(碳钢),取管内流速 ui=1.0m/s。 2.管程数和传热管数 依据传热管内径和流速确定单程传热管数
=
18850 /(999.8×3600 ) 0.785×0.02 2 ×1
折流板间距
-1=
4500 150
-1=29(块)
折流板厚度取 6mm.
折流板圆缺面水平装配。
6.接管
壳程流体进出口接管:取接管内牛奶流速为 u=2.0m/s,则接 管内径为
4V πu 4×4200 /(3600 ×1030 ) 3.14×2
d=
=
=26.8mm
取标准管径为 30 mm。
管程流体进出口接管:取接管内冷盐水流速 u=1.5 m/s,则接管内 径为

浮头换热器的课程设计说明书

浮头换热器的课程设计说明书

化工原理课程设计设计题目:浮头式换热器的设计指导教师李毅学生姓名凌风2010 年 10 月 20 日浮头式换热器设计任务书一、设计题目:浮头式换热器的设计二、设计原始数据操作条件:①大豆油:入口温度133℃,出口温度40℃②冷却介质:循环水,入口温度30℃,出口温度40℃③大豆油处理量:5000kg/h④允许压降:不大于1×105Pa⑤大豆油定性温度下的物性数据:根据液体相对密度共线图查得86.5℃下大豆油的密度为: =925 kg/m3根据液体粘度共线图得86.5℃下大豆油的粘度为:μ=0.000850 Pa/s根据液体比热容共线图得86.5℃下大豆油的定压比热容为:2.052 kJ/(kg·℃)CP0 =查表得86.5℃下大豆油的导热系数为λ=0.1559 W/(m·℃)⑥循环冷却水在定性温度下的物性数据如下:ρ=994 kg/m3密度:i=4.08 kJ/(kg·℃)定压比热容:CPiλ=0.626 W/(m·℃)导热系数:iμ=0.000725 Pa/s粘度:i⑦每年按330天计算,每天24小时连续运行。

三、设备型式浮头式换热器四、设计任务1.编写课程设计说明书2.设计计算列管式换热器的管径尺寸、管内流速、热负荷、传热面积、管程数、管数、壳程数和接管尺寸等3.工艺流程图及换热器工艺条件图4.设计评述目录一、设计方案 (3)1.1选择换热器的类型 (3)1.2流动空间及流速的确定 (3)二、物性数据 (4)三、计算总传热系数 (4)3.1热流量 (4)3.2平均传热温差(逆流) (4)3.3冷却水用量 (4)3.4总传热系数K (4)四、计算传热面积 (5)五、工艺结构尺寸 (5)5.1管径和管内流速 (5)5.2管程数和传热管数 (5)5.3平均传热温差校正系数 (6)5.4传热管排列和分程方法 (6)5.5壳体内径 (6)5.6折流板 (6)5.7接管 (7)六、换热器核算 (7)6.1热量核算 (7)6.2换热器内流体的流动阻力 (9)6.3换热器主要结构尺寸和计算结果 (10)七、主体设备图 (11)八、参考文献 (11)九、主要符号说明 (11)十、总结 (12)一、设计方案1.1选择换热器的类型两流体温度变化情况:入口温度133℃,出口温度40℃循环水,入口温度30℃,出口温度40℃本设计任务为煤油冷却器的设计,两流体在传热过程中无相的变化,该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器;固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学生物工程专业《化工原理课程设计》说明书题目名称浮头式换热器的设计专业班级学号学生姓名指导教师2012 年06 月08 日目录1、设计方案.................................................................................. 错误!未定义书签。

2、衡算.......................................................................................... 错误!未定义书签。

2.1确定设计方案 ..................................................................... 错误!未定义书签。

2.1.1换热器的类型................................................................ 错误!未定义书签。

2.1.2 管程安排....................................................................... 错误!未定义书签。

2.2确定物性数据 ..................................................................... 错误!未定义书签。

2.3估算传热面积 ..................................................................... 错误!未定义书签。

2.3.1 热负荷........................................................................... 错误!未定义书签。

2.3.2 热流体用量................................................................... 错误!未定义书签。

2.3.3 平均传热温差........................................................... 错误!未定义书签。

2.3.4 初算传热面积............................................................... 错误!未定义书签。

2.4换热器工艺结构尺寸设计 ................................................. 错误!未定义书签。

2.4.1 管径和管内流速........................................................... 错误!未定义书签。

2.4.2管程数和传热管数....................................................... 错误!未定义书签。

2.4.3 平均传热温差校正....................................................... 错误!未定义书签。

2.4.4 传热管排列................................................................... 错误!未定义书签。

2.4.5 壳体直径....................................................................... 错误!未定义书签。

2.4.6 折流板........................................................................... 错误!未定义书签。

2.4.7接管............................................................................... 错误!未定义书签。

3、换热器核算.............................................................................. 错误!未定义书签。

3.1传热面积校核...................................................................... 错误!未定义书签。

3.1.1管程传热膜系数............................................................ 错误!未定义书签。

3.1.2 壳程传热膜系数........................................................... 错误!未定义书签。

3.1.3 总传热系数................................................................... 错误!未定义书签。

3.1.4 传热面积校核............................................................... 错误!未定义书签。

3.2换热器内压降的核算........................................................ 错误!未定义书签。

3.2.1 管程阻力....................................................................... 错误!未定义书签。

3.2.2 壳程阻力....................................................................... 错误!未定义书签。

4、设备选型.................................................................................. 错误!未定义书签。

4.1管子排列方式的选择 ......................................................... 错误!未定义书签。

4.2折流板的选择 ..................................................................... 错误!未定义书签。

4.3除污垢措施的选择 ............................................................. 错误!未定义书签。

4.4材料的选择 ......................................................................... 错误!未定义书签。

5、附录及图表.............................................................................. 错误!未定义书签。

6、设计总结.................................................................................. 错误!未定义书签。

7、参考文献.................................................................................. 错误!未定义书签。

1、设计方案在化工、石油、动力、制冷、食品等行业中广泛地使用各种换热器,且他们是上述这些行业的通用设备,并占有十分重要的地位。

在化工厂,换热器的费用约占总费用的10%-20%。

在某工厂的生产过程中,因生产需要,需用水回收甘油的热量。

已知水将甘油从120℃冷却至50℃,且甘油的压力不大于0.1MPa 。

水的流量为50m 3/h ,水的入口温度为28℃,出口温度为78℃,压力不大于0.1MPa ,请设计一台换热器能完成上述任务。

2、衡算2.1 确定设计方案 2.1.1换热器的类型两流体的温度变化情况:水的进口温度28℃,出口温度为78℃;甘油的进口温度为120℃,出口温度为50℃,本组为浮头式换热器。

2.1.2 管程安排对于一般压力较高的流体流经管内,因为管子直径小,承受高压能力好,所以水走管程,又被冷却物料一般走壳程,便于散热,所以甘油走壳程。

2.2 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进、出口温度平均值。

故壳程甘油的定性温度为12050852T +==℃ 管程流体的定性温度为2878532T +==℃在定性温度下,分别查取管程和壳程流体(水和甘油)的物性参数,见下表:表1 冷热流体的物性参数物质 密 度 (kg/m 3) 比热容(kJ/kg·℃)黏 度 (Pa·s) 导热系数 (W/m·℃) 甘油 水 810985.62.22 4.1760.9×10-3 509.6×10-60.18 65.4×10-22.3 估算传热面积2.3.1 热负荷(忽略热损失)6m c p c 985.610 4.17650 2.0610Q C T ∆=⨯⨯⨯=⨯,,KJ/h =572kW2.3.2 热流体用量(忽略热损失)()3m,h3p h 2157210 3.7kg /s 13320() 2.221012050T Q Q C T T ⨯====-⨯-,kg/h 2.3.3 平均传热温差先按纯逆流计算,得m 7050602t +∆==℃2.3.4 初算传热面积参照列管式换热器中K 值大致范围表[1],可假设K=350W/(m 2·℃)则估算的传热面积为357210===2735060T m Q S K t ⨯∆⨯估m 22.4 换热器工艺结构尺寸设计 2.4.1 管径和管内流速参照列管式换热器内常用的流速范围表[3],取管内流速为1i u =m/s ,并取s N =24管径用下式计算27.15d ===mm又由于考虑到市场上管径的一般规格大小,所以我们选用φ30×1.0mm 的管子。

利用试差法,计算管内流速为:2250/3600==0.940.7850.028244v i s q u d N π=⨯⨯⨯⨯m/s 2.4.2 管程数和传热管数由于s N =24,按照单管程,所需的传热管长度为27123.140.02824sS L d N π===⨯⨯估m按照单管程设计,由于传热管太长,故宜采用多管程设计。

相关文档
最新文档