铁电薄膜铁电性能的表征
铁电材料的制备及其铁电性能研究

铁电材料的制备及其铁电性能研究铁电材料是指具有铁电性质的材料,铁电性质是指在外加电场下,材料会发生极性翻转,即正负极性相互转换。
这种性质使铁电材料广泛应用于存储器、传感器、激光器、换能器、电容器等领域。
本文将介绍铁电材料的制备方法及其铁电性能研究。
一、铁电材料的制备方法1.溶胶-凝胶法溶胶-凝胶法是一种低温热处理制备铁电材料的方法。
首先,将合适比例的金属盐溶解在水和有机物的混合液中,然后使之脱水凝固,得到凝胶。
接着,将凝胶热处理干燥,形成透明的玻璃状材料。
该方法制备的铁电材料具有良好的机械性能和化学稳定性。
2.物理气相沉积法物理气相沉积法是一种高温热处理制备铁电材料的方法。
在该方法中,通过激光或者热蒸发等方式将材料原子或分子蒸发,沉积在基底上,形成薄膜结构。
该方法具有工艺简单、生产效率高等优点,可以制备出高质量的铁电薄膜材料。
3.气相沉积法气相沉积法是一种制备铁电材料薄膜的方法,通过气体反应沉积铁电薄膜。
该方法可以制备出大面积、高质量、低成本的铁电薄膜。
在该方法中,可以通过改变反应条件来控制铁电薄膜的性能,如薄膜的微观结构和组分等。
二、铁电材料的铁电性能研究研究铁电材料的铁电性能是了解材料电性能的一种重要手段。
以下是常用的铁电性能研究方法。
1.压电测试压电测试是通过在机械应力下测量铁电材料的电感生成能力来研究铁电性质。
在该测试中,将电极夹在铁电材料两端,给材料施加机械压力后,测量材料中电极间电势差的变化,进而计算出电感。
2.电容测试电容测试是一种测量铁电材料铁电性能的方法。
在该测试中,先将材料置于电场中,并在电场强度不断增大的过程中测量材料的电容变化,进而计算出材料的介电常数与电容变化量之间的关系。
通过电容测试可以了解材料的介电常数、铁电极化强度和耐电压强度等参数。
3.极化测试极化测试是一种研究材料极化行为的方法。
该测试中,通过在外场的作用下,测量材料中电极间电势差,进而计算出铁电极化强度的大小。
《Bi5Ti3FeO15基铁电薄膜的弛豫与储能特性调控》范文

《Bi5Ti3FeO15基铁电薄膜的弛豫与储能特性调控》篇一一、引言随着现代电子技术的飞速发展,铁电材料因其独特的电性能和物理特性在微电子器件、传感器和储能器件等领域得到了广泛的应用。
Bi5Ti3FeO15基铁电薄膜作为一种新型的铁电材料,具有优异的电性能和良好的稳定性,在铁电存储器、传感器和储能器件等领域具有巨大的应用潜力。
本文将重点探讨Bi5Ti3FeO15基铁电薄膜的弛豫与储能特性调控,为进一步优化其性能提供理论依据。
二、Bi5Ti3FeO15基铁电薄膜的弛豫特性Bi5Ti3FeO15基铁电薄膜的弛豫特性主要表现在其电性能随时间的变化。
在电场作用下,薄膜内部的极化过程会受到温度、频率和电场强度等因素的影响,导致其电性能发生弛豫现象。
为了研究这一现象,我们采用了多种实验手段,如介电谱、铁电测试等,对Bi5Ti3FeO15基铁电薄膜的弛豫特性进行了深入分析。
首先,我们通过介电谱测试得到了薄膜在不同温度和频率下的介电常数和介电损耗。
结果表明,随着温度的升高和频率的降低,薄膜的介电常数逐渐增大,而介电损耗则呈现出先减小后增大的趋势。
这表明在一定的温度和频率范围内,Bi5Ti3FeO15基铁电薄膜具有良好的弛豫特性。
其次,我们利用铁电测试手段对薄膜的极化过程进行了研究。
结果表明,在电场作用下,薄膜内部的极化过程具有明显的滞后现象,即极化强度随时间逐渐增大并达到饱和状态。
这一过程与温度、频率和电场强度等因素密切相关,进一步证实了Bi5Ti3FeO15基铁电薄膜具有良好的弛豫特性。
三、Bi5Ti3FeO15基铁电薄膜的储能特性调控为了进一步提高Bi5Ti3FeO15基铁电薄膜的储能性能,我们对其进行了多种调控手段的研究。
首先,通过改变薄膜的制备工艺参数,如沉积温度、气氛和退火时间等,可以有效地调控薄膜的微观结构和成分,从而影响其储能性能。
其次,通过引入掺杂元素或制备复合材料等方法,可以进一步提高薄膜的储能密度和效率。
铁电薄膜材料及其应用

铁电薄膜材料及其应用一、引言铁电薄膜材料是一种重要的功能材料,具有优异的电学、铁电和机械性能,广泛应用于信息存储、传感器、微电子机械系统等领域。
本文将介绍铁电薄膜材料的特性、制备方法及其应用领域。
二、铁电薄膜材料的特性1.电学性能铁电薄膜材料具有高度的自发极化和电畴结构,可以在外加电场的作用下发生极化反转,产生较大的极化强度和位移,表现出优异的铁电性能。
此外,铁电薄膜材料还具有较高的介电常数和较小的漏电流等特点。
2.铁电稳定性铁电薄膜材料的铁电稳定性是其在实际应用中的重要性能之一。
铁电稳定性取决于材料的结构、成分和制备工艺等因素。
具有高稳定性的铁电薄膜材料可以在长时间内保持其铁电性能,不易发生退化或失效。
3.机械性能铁电薄膜材料通常具有较好的机械性能,如高硬度、高韧性、良好的耐磨性和耐腐蚀性等。
这些机械性能使得铁电薄膜材料在传感器、微电子机械系统等领域中具有广泛的应用前景。
三、制备方法1.溶胶-凝胶法溶胶-凝胶法是一种常用的制备铁电薄膜材料的方法。
该方法是将前驱体溶液涂覆在基片上,经过干燥、热处理等过程,制备出铁电薄膜材料。
溶胶-凝胶法制备的铁电薄膜材料具有成分均匀、纯度高、制备温度低等优点,但该方法也存在制备周期长、生产效率低等缺点。
2.脉冲激光沉积法脉冲激光沉积法是一种利用激光能量将靶材气化,然后在基片上沉积成膜的方法。
该方法制备的铁电薄膜材料具有结构致密、成分均匀、表面平整等特点,适用于大面积制备高质量的铁电薄膜材料。
但该方法也存在设备昂贵、制备成本高等缺点。
3.金属有机化学气相沉积法金属有机化学气相沉积法是一种利用金属有机化合物和反应气体在基片上沉积成膜的方法。
该方法制备的铁电薄膜材料具有组分灵活、制备温度低、生产效率高等优点,但该方法也存在设备复杂、气体纯度要求高等缺点。
四、应用领域1.铁电存储器由于铁电薄膜材料具有高极化强度和稳定的铁电性等特点,因此被广泛应用于制备铁电存储器。
利用铁电薄膜材料的极化状态变化可以实现信息的写入和擦除,具有非易失性、高速、低功耗等优点。
铁电薄膜及铁电存储器的研究进展

铁电薄膜及铁电存储器的研究进展
周益春;唐明华
【期刊名称】《材料导报》
【年(卷),期】2009(023)009
【摘要】铁电薄膜是具有铁电性且厚度尺寸为数纳米到数微米的薄膜材料,因其在非挥发性铁电随机存储器方面的潜在应用而受到广泛关注.综述了新型无铅、无疲劳Bi4Ti3O12(BIT)基铁电薄膜材料的制备和改性及性能表征方法,阐述了铁电薄膜的3种失效机制及铁电薄膜存储器的研究现状,最后提出了铁电薄膜及存储器今后可能的研究方向.
【总页数】19页(P1-19)
【作者】周益春;唐明华
【作者单位】湘潭大学低维材料及其应用技术教育部重点实验室,湘潭,411105;湘潭大学低维材料及其应用技术教育部重点实验室,湘潭,411105
【正文语种】中文
【中图分类】TN384
【相关文献】
1.大面积铁电薄膜的MOCVD制备及铁电存储器的研制 [J], 王弘
2.铁电薄膜及铁电存储器研究 [J], 武德起;刘保亭;闫正;闫常瑜;赵庆勋
3.Bi4Ti3O12铁电薄膜及其铁电存储器 [J], 乔燕
4.铁电存存储器的特点和铁电薄膜研究的新动向 [J], 张惠丰;罗维根
5.铁电薄膜和铁电场效应存储器研究 [J], 周文利;于军;曹广军
因版权原因,仅展示原文概要,查看原文内容请购买。
PLT/PbO铁电薄膜的制备及性能研究

( p . o a e il c e c ,S c a i e st ,Ch n du 61 0 4 ,Ch n ) De t fM t ra sS in e ihu n Un v r iy eg 0 6 ia
Ab ta t ( o9La o) i 7O3( s r c : Pb 0 。1 T 。95 PLT) t n im sw e e p e r d by RF a hi fl r r pa e m gner n s te ig wih a Pb bu f t o pu t rn t O f—
e a e tr o t mp r t r ,s b e u n l n e l d i i r ly r o m e e a u e u s q e tya n a e a r a n .W ih t i me h d,t eP t h s to h LT h n fl t u ep r v — t i i mswi p r e o s h
维普资讯
第2卷第6 9 期
2 0 往 1 B 07 2
压
电
与
声
光
Vo . 9 No 6 12 .
D e . 20 c 07
PI Z ) ECTEC E (EL TRI & AC CS OUS TOOPTI CS
文 章 编 号 : 0 4 2 7 ( 0 7 0 — 7 40 10—4 4 2 0 )600 —3
Al2O3衬底上Pb(ZrTi)O3铁电薄膜的外延生长与性能

构材料的缓冲作 用,Yamada等 在 Al2O3 衬 底 上 成 功 外 延 生 长了 BST 薄膜 。 [7] 而 Xiao等则通过 增 加 MgO/ZnO 双 缓 冲 层成 功 在 Al2O3 衬 底 上 获 得 了 高 质 量 的 BST 铁 电 薄 膜 。 [8] 在前人报道的 基 础 上,本 实 验 首 次 以 SrRuO3(SRO)为 缓 冲 层,在 Al2O3 衬底上 外 延 生 长 PZT 薄 膜。SRO 为 钙 钛 矿 立 方结构,具有金 属 导 电 特 征。 以 SRO 导 电 层 为 缓 冲 层 有 利 于降低界面电 荷 的 积 累,从 而 增 强 器 件 的 性 能。 同 时,SRO 还可以作为 PZT 铁电极化性能测量的电极。
Key words buffer,ferroelctric,epitaxial growth
0 引 言
近年来,由于具有优良的铁电、压 电、热 释 电 及 电 光 等 特 性,铁电薄膜材料在非易失性铁电存 储器、微 型 机 电 系 统、传 感器和光电器 件 等 领 域 得 到 了 广 泛 研 究 。 [1] 为 保 证 铁 电 器 件具有理想的性能,要求铁电材 料 具 有 较 大 的 剩 余 极 化(Pr) 和较低的矫顽场(Ec)。PbZr1-xTixO3(PZT)铁 电 薄 膜 所 具 有 的优良介电和铁电性能使其成为首选材料之一。随着薄膜 制备技术的不断发展和工艺条 件的不断成 熟,国 内 外 研 究 人 员已 在 多 种 衬 底 材 料 上 (如 SrTiO3、MgO、蓝 宝 石 (Al2O3) 等 )制 [2-6] 备 了 高 质 量 的 PZT 薄 膜 材 料。 在 这 些 衬 底 材 料 中,Al2O3 以其低造价、低介电损耗及优良的热稳定性等 优 点 而备受关注。可以 预 想 在 Al2O3 衬 底 上 生 长 高 质 量 的 外 延 PZT 薄膜将有利于开发新型的光电和微波器件。
铁电材料BaTiO3的制备及其压电、光伏特性实验报告

铁电材料BaTiO3的制备及其压电、光伏特性实验报告调研报告一、文献综述1.背景:铁电材料是指具有自发极化,而且在外加电场下,自发极化发生转向的电介质材料,它是热释电材料的一个分支。
铁电材料由于其铁电性、介电性、压电性、热释电效应、热电效应、电光性质等特性,而广泛应用于各个领域(见下表1),如在通讯系统、微电子学、光电子学、集成光学和非机械学等领域有着重要的或潜在的应用,从而引起国内外学者的广泛研究。
表1.铁电薄膜材料的应用性质主要叁件介电性电容器,动态随机存取存储器(DRAM)压电性声表面波(SAW)器件、微型压电马达、微型压电骡动器热科电性热释电探测罂及阵列铁电性铁电HI机存取存储器(FRAM)、铁电场效应管电光效应光调制嘱,光波导声光效应声光偏转器光折交效应光注制器.光全息存储器非线性光学效应光学倍频器铁电薄膜材料根据成分可分为三大类,包括锯酸盐系、钛酸盐系、铝酸盐系,其中典型铁电材料有:钛酸钢(BaTiO3)、磷酸二氢钾(KH2Po4)等,然而BaTi03是一种强介电化合物材料,它具有很高的介电常数和较低的介电损耗,是电子陶瓷中使用最广泛的材料之一,它被称作“电子陶瓷工业的支柱”。
同时该材料是最早研究的钙钛矿结构的铁电材料,因此通过对该材料的学习、制备和性能的检测,对铁电材料领域的相关知识的了解有着重要的意义。
前人们对钛酸钢的制备和性能有着很多的研究,FI前对钛酸钢材料的研究已经往微型化发展,制备成铁电薄膜材料,同时研究不同的制备方法、元素掺杂等对钛酸钢薄膜材料性能的影响,在这基础上,研究外界条件(外加磁场等)对铁电薄膜材料的物理调控,渐渐的利用其性质应用于器件中(光伏器件、电容器等)。
2.制备方法与结构性质:结构性质:电介质材料按其晶体对称性可分为32种点群,在这32种晶体学点群中,有21种不具有对称中心,其中20种呈现压电效应。
而这20种压电性晶体中的10种具有受热而自发极化现象,因其是受热而引起电极化状态的改变,故这10种晶体又称为热释电晶体。
pt系铁电材料的制备与性能表征

电子科技大学硕士学位论文PT系铁电材料的制备与性能表征姓名:***申请学位级别:硕士专业:应用化学指导教师:***20050121摘要本论文分两步研究了钛酸铅(PT)系铁电材料的制备工艺技术、物化结构表征及铁电、介电、热释电性能。
首先我们以铁电陶瓷为研究对象,利用传统工艺方法制备了铁电PZT陶瓷靶材,并对掺杂、组分、工艺等因素对陶瓷块材的介电、铁电性能的影响进行了探讨。
然后以铁电薄膜材料为研究对象,采用溶胶~凝胶(Sot—Gel)法制备了PT系铁电薄膜,对薄膜的形貌、厚度、结晶等性能进行了表征,对铁电薄膜材料的介电、铁电、热释电性能进行了研究分析。
主要内容如下:1、采用传统陶瓷工艺制备了复合掺杂ca、sr和La三元素的PZT陶瓷。
着重研究了Zr/Ti及退火温度对PZT陶瓷性能的影响,研究发现:此二因素都是影响PZT样品性能的关键因素。
随Zr/Ti值在0.4/0.6到0.55/0.5范围内增大,样品的剩余极化值只、介电常数r、损耗因子留J等参数均基本呈现增大趋势。
这是因为Zr/Ti在0.53/0.47的相界附近晶格畸变会发生突变,在此区域铁电体结构较松弛,介电常数较大,内耗也较大。
但烧结温度对不同组分的样品性能的影响没有显现出特别明显的规律。
2、着重对掺La”、Mn”对PZT陶瓷结构与性能的影响作了研究和探讨,通过对添加两物质的样品的介电、铁电性能的比较发现:掺La”可以增大剩余极化值和损耗;掺杂Mn”可以降低损耗;同时加入La”、Mn”可以调整PZT性能得到理想的效果。
Pb过量0.05mol、Zr/Ti为55/45、掺La”量为2atm%、掺Mn”量为O.15wt%的PZT组分,在1200℃烧结,保温90分钟得到的陶瓷材料具有良好的铁电和介电性能:矩形度良好的电滞回线、剩余极化值只为40“c/cm2、矫顽场基为0.476KV/cm、介电常数f为908,损耗因子tg占仅为0.6%。
该材料有望成为陶瓷靶材在脉冲激光沉积法(PLD)制备铁电薄膜的工艺中得到应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁电薄膜铁电性能的表征
摘要:本文简述铁电体的特性及其原因,并在不同电压测量了铁电体的电滞回线,并比较了不同电压下各重要参数的变化规律,最后对实验的结果进行了讨论与分析。
关键词: 电畴,电滞回线,极化,趋势线
引言
铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。
在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。
铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。
铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。
自发极化的出现是与这一类材料的晶体结构有关的。
晶体的对称性可以划分为32种点群。
在无中心对称的21种晶体类型种除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。
热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。
热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E 之间形成电滞回线是铁电体的一个主要特性。
自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。
晶体红,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。
整个晶体在该方向上呈现极性,一端为正,一端为负。
在其正负端分别有一层正和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加,所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。
畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。
总自由能取极小值的条件决定了电畴的稳定性。
一、实验目的:
1、了解铁电参数测试仪的工作原理和使用方法
2、了解什么是铁电体,什么是电滞回线及其测量原理和方法。
3、了解非挥发铁电随机读取存储器的工作原理及性能表征。
二、实验原理:
1、铁电体的特点
(1)电滞回线
铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性
关系。
在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场见图1 ,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化
的增加,总极化仍然有所增大(BC)段 。
如果趋于饱和后电场减小,极化将循 CBD 段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD 表示的极化称为剩余极化Pr 。
将线段CB 外推到与极化轴相交于E ,则线段OE 为饱和自发极化Ps 。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG 所示,OF 所代表的电场是使极化等于零的电场,称为矫顽场 Ec 。
电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC 所示此曲线称为电滞回线。
V
图1铁电体的电滞回线 图2测量电路阁
电滞回线可以用图2的装置显示出来(这就是著名的Sawyer-Tower 电路),以电晶体作介质的电容Cx 上的电压V 是加在示波器的水平电极板上,与Cx 串联一个恒定电容Cy(即普通电容),Cy 上的电压Vy 加在示波器的垂直电极板上,很容易证明Vy 与铁电体的极化强度P 成正比,因而示波器显示的图象,纵坐标反映P 的变化,而横坐标Vx 与加在铁电体上外电场强成正比,因而就可直接观测到P-E 的电滞回线。
下面证明Vy 和P 的正比关系,因
y
x x y x y C C C C V V ==ωω11
(12.2-1)
式中ω为图中电源V 的角频率
d S
C x 0εε=
ε为铁电体的介电常数,0ε 为真空的介电常数,S 为平板电容x C 的面积,d 为 平行平板间距离,代入(12.2-1)式得:
E C S d V C S V C C V y x y x Y x y 00εεεε===
(12.2-2)
根据电磁学
E E E P χεεεεε000)1(=≈-= (12.2-3) 对于铁电体>>ε1,固有后一近似等式,代入(12.2-2)式 ,
P C S V y y =
(12.2-4)
因S 与y C 都是常数,故Vy 与P 成正比。
(2)居里点Tc
当温度高于某一临界温度Tc 时,晶体的铁电性消失。
这一温度称为铁电体的居里点。
由于铁电体的消失或出现总是伴随着晶格结构的转变,所以是个相变过程,已发现铁电体存在两种相变:一级相变伴随着潜热的产生,二级相变呈现比热的突变,而无潜热发生,又铁电相中自发极化总是和电致形变联系在一起,所以铁电相的晶格结构的对称性要比非铁电相为低。
如果晶体具有两个或多个铁电相时,最高的一个相变温度称为居里点,其它则称为转变温度。
(3)居里-外斯定律
由于极化的非线性,铁电体的介电常数不是常数,而是依赖于外加电场的,一般以OA 曲线(图1)在原点的斜率代表介电常数,即在测量介电常数 时,所加外电场很小,铁电体在转变温度附近时,介电常数具有很大的数值,数量级达5
410~10。
当温度高于居里点时,介电常数随温度变化的关系 ∞+-=
εεC T T C 0 (12.2-5)
2、铁电体和铁电存储的应用
铁电体具有介电、压电、热释电、铁电性质以及与之相关的电致伸缩性质、非线性光学性质、电光性质、声光性质、光折变性质、铁电记忆存储性能等等,都与其电极化性质相关,特别是电介质的热释电与铁电性质都与其自发极化相关。
由于铁电体具有上述性质,因而在诸多高技术中有着很重要的应用。
利用其压电性能可制作电声换能器,利用其热释电性质可制作红外探测器,红外监视器,热成像系统等;利用非线性光学效应可制作激光倍频、三倍频、和频、差频器;利用电光性质可制作激光电光开关、光偏转器、光调制器等;利用声光效应可制作激光声光开关、声光偏转器、声光调制器等;利用光折变效应可制作光存储器件;而铁电材料的铁电性可制作铁电记忆存储器。
铁电记忆存储器(Ferroelectric Memory )是利用铁电体所具有的电滞回线性质。
当加到铁电体上电场为零时,铁电体上仍保持有一定的极化强度Pr(或-Pr),这个极化电荷的符号取决于该电体上原加场的符号。
若原来加的正场,则当外场变为零场时,铁电体上为正的剩余极化(+Pr )而若是从负场变到零场,则此时剩余极化为负(-Pr )。
正是利用这无外场时所有的两个稳定极化±Pr 作为计算机编码0(Pr )和1(Pr ),这就是铁电记忆及逻辑电路的基础。
铁电记忆存储是铁电体极少数利用铁电体的铁电性能去工作,而不是其他性能(如热电、压电、电光等)的应用。
3、铁电薄膜的制备方法
目前制备铁电薄膜的方法主要有:Sol-Gel 凝胶法、MOCVD 法、PLD 法和溅射法。
在这些制备方法中,每一种都有自身的特点。
三、实验仪器:。