矩阵连乘备忘录算法

合集下载

矩阵连乘问题的算法

矩阵连乘问题的算法

矩阵连乘问题的算法
一、矩阵连乘问题
矩阵连乘问题是指在矩阵计算中,给定n个矩阵,求这n个矩阵的连乘积的最优解问题。

矩阵连乘问题既可以用于组合优化,也可以用于信息处理系统中查找最优路径的搜索算法。

它是最基本的组合优化问题。

二、矩阵连乘问题的算法
1. 动态规划法:动态规划法是求解矩阵连乘问题的常用算法。

它采用递归方法,将原问题分解为若干个子问题,然后求出各子问题的最优解,最后组合出原问题的最优解。

2. 贪心算法:贪心算法是一种经典的最优化算法,也可以用于求解矩阵连乘问题,即通过某种启发式规则,在每一步中都使最优决策,最终得到最优解。

3. 分支定界法:分支定界法是一种由搜索算法和界定法相结合而成的最优化算法,也可以用于求解矩阵连乘问题。

该算法按照树状的层次结构,向下搜索一个在每一步骤都使得当前最优的路径,然后上溯形成最优解。

4. 模拟退火算法:模拟退火算法是一种搜索算法,它可以用于求解矩阵连乘问题。

它采用一种模拟物理过程的原理,通过不断地改变解的状态,以求出相对最优解。

- 1 -。

《算法设计与分析》第3章 动态规划法

《算法设计与分析》第3章 动态规划法

最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);

算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。

int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。

加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。

下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。

1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。

备忘录矩阵连乘;最大公共子串算法JAVA程序

备忘录矩阵连乘;最大公共子串算法JAVA程序

实验报告5课程数据结构与算法实验名称动态规划第页班级11计本学号105032011130 姓名风律澈实验日期:2013年4月1日报告退发(订正、重做)一、实验目的掌握动态规划策略的原理和应用。

二、实验环境1、微型计算机一台2、WINDOWS操作系统,Java SDK,Eclipse开发环境三、实验内容必做题:1.要求采用备忘录方法编写程序求解矩阵连乘问题,要求输出问题最优值及最优解。

要求:输出矩阵连乘最少需要的数乘次数,同时输出最优运算顺序,以A、B、C、D四个矩阵连乘为例,输出最优解格式为:(A(B*C)*D)2.编写程序求解最长公共子序列问题,要求输出问题最优值及最优解。

要求:输出最长公共子序列长度,同时,依次输出该序列的每个元素。

四、实验步骤和结果(附上代码和程序运行结果截图)1,备忘录版本的矩阵连乘public class LookupChain {/***@param args*/public static void main(String[] args) {// TODO Auto-generated method stubint p[]={30,35,15,5,10,20,25};//记录数组行列数量int b[][]=new int[p.length][p.length];//记录连乘次数int s[][]=new int[p.length][p.length];//记录最佳分割位置for(int i=1;i<p.length;i++)//初始化数组 bb[i][i]=0;System.out.println(lookupChain(b,p,s,1,p.length-1));coutlc(1,p.length-1,s);}private static void coutlc(int i,int j,int s[][]) {// TODO Auto-generated method stubif(i==j)System.out.print("A"+i);else if(i+1==j){System.out.print("(A"+i+"*"+"A"+j+")");}else{System.out.print("(");coutlc(i,s[i][j],s);coutlc(s[i][j]+1,j,s);System.out.print(")");}}private static int lookupChain(int[][] b, int[] p, int[][] s,int i,int j) {// TODO Auto-generated method stubif(b[i][j]>0)return b[i][j];if(i==j)return 0;int u=lookupChain(b,p,s,i+1,j)+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){intt=lookupChain(b,p,s,i,k)+lookupChain(b,p,s,k+1,j)+p[i-1]*p[k]*p[j];if(u>t){u=t;b[i][j]=u;s[i][j]=k;}}return u;}}2.最长公共自序列public class Lcslength {/*** @param args*/public static void main(String[] args) {// TODO Auto-generated method stubchar a[]={'A','B','C','B','D','A','B'};char b[]={'B','D','C','A','B','A'};int x[][]=new int[b.length+1][a.length+1];//initefor(int i=0;i<a.length+1;i++)x[0][i]=0;for(int i=0;i<b.length+1;i++)x[i][0]=0;//lcslcslength(a,b,x);//printSystem.out.println(x[b.length][a.length]);coutlcs(x,b.length,a.length,b);}private static void coutlcs(int[][] x, int i, int j,char []b) { // TODO Auto-generated method stubif(i==0||j==0)return;if(x[i-1][j-1]==x[i-1][j]&&x[i-1][j-1]==x[i][j-1]){coutlcs(x,i-1,j-1,b);System.out.print(b[i-1]);}else if(x[i-1][j]>x[i][j-1])coutlcs(x,i-1,j,b);elsecoutlcs(x,i,j-1,b);}private static void lcslength(char[] a, char[] b, int[][] x) { // TODO Auto-generated method stubfor(int i=1;i<=b.length;i++)for(int j=1;j<=a.length;j++){if(b[i-1]==a[j-1])x[i][j]=x[i-1][j-1]+1;else if(x[i][j-1]>x[i-1][j])x[i][j]=x[i][j-1];elsex[i][j]=x[i-1][j];}}}五、实验总结(本次实验完成的情况,心得体会)。

矩阵连乘算法

矩阵连乘算法

福州大学数学与计算机科学学院《计算机算法设计与分析》上机实验报告(2)i<=k<j,则:m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj。

由于在计算是并不知道断开点k的位置,所以k还未定。

不过k的位置只有j-i个可能。

因此,k是这j-i个位置使计算量达到最小的那个位置。

综上,有递推关系如下:若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。

s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。

从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]] )。

同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。

3、动态规划迭代算法设计:用动态规划迭代方式解决此问题,可依据其递归式自底向上的方式进行计算。

在计算过程中,保存已解决的子问题的答案。

每个子问题只计算一次,而在后面需要时只需简单检查一下,从而避免了大量的重复计算,最终得到多项式时间的算法。

4、算法代码:1.//3d1-2 矩阵连乘动态规划迭代实现2.//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*253.//p[0-6]={30,35,15,5,10,20,25}4.#include "stdafx.h"5.#include <iostream>ing namespace std;7.8.const int L = 7;9.10.int MatrixChain(int n,int **m,int **s,int *p);11.void Traceback(int i,int j,int **s);//构造最优解12.13.int main()14.{15.int p[L]={30,35,15,5,10,20,25};16.17.int **s = new int *[L];18.int **m = new int *[L];19.for(int i=0;i<L;i++)20. {21. s[i] = new int[L];22. m[i] = new int[L];23. }24.25. cout<<"矩阵的最少计算次数为:"<<MatrixChain(6,m,s,p)<<endl;26. cout<<"矩阵最优计算次序为:"<<endl;27. Traceback(1,6,s);28.return 0;29.}30.31.int MatrixChain(int n,int **m,int **s,int *p)32.{33.for(int i=1; i<=n; i++)34. {35. m[i][i] = 0;36. }37.for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)38. {39.for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界40. {41.int j = i+r-1;//计算前边界为r,链长为r的链的后边界42.43. m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];//将链ij划分为A(i) * ( A[i+1:j] )44.45. s[i][j] = i;46.47.for(int k=i+1; k<j; k++)48. {49.//将链ij划分为( A[i:k] )* (A[k+1:j])50.int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];51.if(t<m[i][j])52. {53. m[i][j] = t;54. s[i][j] = k;55. }56. }57. }58. }59.return m[1][L-1];60.}61.62.void Traceback(int i,int j,int **s)63.{64.if(i==j) return;65. Traceback(i,s[i][j],s);66. Traceback(s[i][j]+1,j,s);67. cout<<"Multiply A"<<i<<","<<s[i][j];68. cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;69.}上述迭代算法的运行过程如下图所示:当R=2时,先迭代计算出: m[1:2]=m[1:1]+m[2:2}+p[0]*p[1]*p[2];m[2:3]=m[2:2]+m[3:3]+p[1]*p[2]*p[3];。

算法笔记——【动态规划】矩阵连乘问题——备忘录法

算法笔记——【动态规划】矩阵连乘问题——备忘录法

算法笔记——【动态规划】矩阵连乘问题——备忘录法问题描述:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。

确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

输⼊数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。

问题解析:由于矩阵乘法满⾜结合律,故计算矩阵的连乘积可以有许多不同的计算次序。

这种计算次序可以⽤加括号的⽅式来确定。

若⼀个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调⽤2个矩阵相乘的标准算法计算出矩阵连乘积。

完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表⽰为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的⽅式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。

每⼀种完全加括号的⽅式对应于⼀个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。

看下⾯⼀个例⼦,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):100*5*50 + 10*100*50 = 75000次(注意计算次数的⽅法!)所以问题是:如何确定运算顺序,可以使计算量达到最⼩化。

 算法思路:例:设要计算矩阵连乘乘积A1 A2 A3 A4 A5 A6,其中各矩阵的维数分别是:A1:30*35; A2:35*15; A3:15*5; A4:5*10; A5:10*20; A6:20*25递推关系:设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。

矩阵连乘问题-备忘录法求最优值

矩阵连乘问题-备忘录法求最优值

矩阵连乘问题-备忘录法求最优值矩阵连乘问题是一个很典型的动态规划问题。

在这个问题中,给定多个矩阵,我们需要将它们相乘得到一个最终的矩阵。

但是,矩阵相乘的顺序对于最终答案是有影响的,因此需要考虑如何寻找最优的矩阵相乘顺序。

备忘录法可以很好地解决这个问题,它是动态规划的一种优化方法,通过记忆已经计算过的结果来避免重复计算。

首先,我们需要定义一个状态表示,用来表示每一个子问题。

在矩阵连乘问题中,可以将子问题定义为:对于给定的一组矩阵,从第i 个矩阵到第j个矩阵进行连乘所需的最少乘法次数。

接下来,我们可以考虑如何递归地求解子问题。

具体来说,我们可以枚举每一个可能的括号位置,将原问题分解成两个子问题。

这个过程可以用递归实现。

但是,这个方法会涉及到很多重复计算,因为很多子问题会被重复使用。

为了避免这个问题,我们可以使用备忘录法对递归算法进行优化。

具体来说,在计算每一个子问题的最优值时,我们可以将结果存储在一个备忘录中,以便在之后重复使用。

备忘录法的实现过程比较简单。

我们可以定义一个二维数组memo,其中memo[i][j]表示对于给定的矩阵序列,在第i个矩阵到第j个矩阵之间进行连乘所需的最少乘法次数。

初始时,将memo中所有元素都设置为一个较大的数(比如1000000),表示这个子问题还没有被计算过。

接下来,我们可以实现一个递归函数helper(i,j),用来计算memo[i][j]。

具体来说,函数的实现如下:```def helper(i,j):#如果已经计算过memo[i][j],直接返回结果if memo[i][j] != 1000000:return memo[i][j]#如果只有一个矩阵,直接返回0if i == j:return 0#初始化memo[i][j]memo[i][j] = 1000000#枚举括号位置for k in range(i,j):memo[i][j] = min(memo[i][j], helper(i,k) + helper(k+1,j) + matrix[i][0] * matrix[k][1] * matrix[j][1])return memo[i][j]```在实现递归函数时,我们首先检查memo[i][j]是否已经计算过,如果是,直接返回结果。

矩阵连乘问题的算法

矩阵连乘问题的算法

矩阵连乘问题的算法介绍矩阵连乘问题是一个经典的数学问题,它涉及到如何寻找一组矩阵相乘的最优顺序,使得计算所需的乘法操作总数最小化。

这个问题在计算机科学和算法设计中有着重要的应用。

本文将介绍矩阵连乘问题的算法及其相关概念和应用。

问题描述给定一组矩阵{A1, A2, A3, …, An},其中Ai的维度为pi-1 × pi(1 ≤ i ≤ n),我们希望找到一种矩阵相乘的顺序,使得计算这些矩阵相乘所需的乘法操作总数最小化。

动态规划算法动态规划算法是解决矩阵连乘问题的经典方法。

它通过存储中间结果来避免重复计算,从而提高计算效率。

下面将介绍动态规划算法的具体实现步骤。

定义子问题假设我们要计算矩阵Ai × Ai+1 × … × Aj的最优顺序和乘法操作总数,其中i ≤ j。

确定状态转移方程设m[i][j]表示计算矩阵Ai × Ai+1 × … × Aj的最优顺序和乘法操作总数。

根据定义,我们有以下状态转移方程: - 当i = j时,m[i][j] = 0,因为只有一个矩阵无需进行乘法操作; - 当i < j时,m[i][j] = min{m[i][k] + m[k+1][j] + pi-1 × pk × pj},其中i ≤ k < j。

填表计算最优值根据状态转移方程,我们可以使用动态规划的方法逐步填充表格m。

具体步骤如下:1. 初始化所有m[i][i]为0(0 ≤ i ≤ n); 2. 对于每个子问题(i, j),从i= 1递增到j = n-1,按照递增的长度进行计算: - 对于每个i和j,根据状态转移方程计算m[i][j]; 3. 最终,m[1][n-1]即为所求的计算矩阵Ai × Ai+1× … × An的最优顺序和乘法操作总数。

重构最优解为了得到最优顺序下的具体计算过程,我们可以使用一个辅助表格s来记录最优划分点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南涉外经济学院计算机科学与技术专业
《算法设计与分析》课程
矩阵连乘备忘录算法
实验报告
班级:
学号:
姓名:
教师:
成绩:
2012年5月
【实验目的】
1 掌握动态规划算法和备忘录方法;
2 利用动态规划备忘录思想实现矩阵连乘;
3 分析实验结果,总结算法的时间和空间复杂度。

思考是否能将算法的时间复杂度提高到
O(nlgn)
【系统环境】
Windows 07 平台
【实验工具】
VC++6.0中文企业版
【问题描述】
描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1可乘的,i=1,2,…,n-1。

找出这个n个矩阵的连乘A1A2…An所需相乘的最少次数的方式。

例:矩阵连乘积A1A2A3A4可以有一下五种不同的完全加括号方式:
(A1(A2(A3A4)))
(A1((A2A3)A4))
((A1A2)(A3A4))
((A1(A2A3))A4)
(((A1A2)A3)A4)
【实验原理】
原理:1、矩阵连乘满足结合律,且不同的结合方式,所需计算的次数不同。

2、利用备忘录方法,用表格保存以解决的子问题答案,降低重复计算,提高效率。

思路:m初始化为0,表示相应的子问题还位被计算。

在调用LookupChain时,若m[i][j]>0,则表示其中储存的是所要求子问题的计算结果,直接返回此结果即刻。

否则与直接递归算法一样,自顶而下的递归计算,并将计算结果存入m[i][j]后返回。

因此,LookupChain总能返回正确的值,但仅在它第一次被调用时计算,以后调用就直接返回计算结果。

方法:用MemorizedMatrixChain函数将已经计算的数据存入表中,用LookupChain函数配合MemorizedMatrixChain函数递归调用计算。

【源程序代码】
#include<stdio.h>
#include<stdlib.h>
#include<ctime>
#define N 10
int p[N],m[N][N],s[N][N];
int LookupChain(int i,int j);
//备忘录算法函数
int MemorizedMatrixChain(int n,int **m,int **s)
{
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
m[i][j]=0;
return LookupChain(1,n);
}
//递归调用函数
int LookupChain(int i,int j)
{
if(m[i][j]>0)
return m[i][j];
if(i==j)
return 0;
int u=LookupChain(i,i)+LookupChain(i+1,j)+p[i-1]*p[i]*p[j];
s[i][j]=i;
for(int k=i+1;k<j;k++)
{
int t=LookupChain(i,k)+LookupChain(k+1,j)+p[i-1]*p[k]*p[j];
if(t<u)
{
u=t;
s[i][j]=k;
}
}
m[i][j]=u;
return u;
}
//输出格式函数。

相关文档
最新文档