部编版2020七年级数学上册 第2章 有理数的运算 2.5 有理数的乘方 第1课时 有理数的乘方同步练习

合集下载

2024年秋人教版七年级数学上册 第2章 “有理数的运算”《有理数的乘方》精品课件

2024年秋人教版七年级数学上册 第2章 “有理数的运算”《有理数的乘方》精品课件

(-10)×(-10)×(-10)×(-10)
知识点3 乘方的符号法则
【例3】(易错题)计算:
(1)(-1)4=
(-1)×(-1)×(-1)×(-1)

-1×1×1×1
1
,-14=
(2)(-3)2=

-9
.

(-3)×(-3)
-1


9
,-32=
-3×3
【变式3】计算:
(1)(-0.1)3= (-0.1)×(-0.1)×(-0.1) = -0.001 ,
3
3
解:(2)(-1 )




=(- )×(- )×(- )




=- .

(3)(-2×3)2.
解:(3)(-2×3)2
=(-6)2
=(-6)×(-6)
=36.
6.有一块面积为64平方厘米的正方形纸片,第1次剪掉一半,第2次剪
掉剩下纸片的一半,如此继续剪下去,第5次后剩下的纸片的面积是
最新人教版七年级数学上册
第二章 有理数的加减
有理数的乘方
一、预习导学
二、课堂导学
三、重难导学
乘方其实是乘法的一种简化,如:2×2,简化为22 ,读作“2的二次
方”.2×2×2,简化为23,读作“2的三次方”.
(-3)×(-3)×(-3),简化为 (-3)3
次方
.
(-1)×(-1)×(-1)×(-1),简化为
多少?
5

解:由题意,得64×( ) =64× =2(平方厘米).


答:第5次后剩下的纸片的面积是2平方厘米.
同学们,再见!

2024年人教版七年级上册教学设计第二章 有理数的运算有理数的乘方

2024年人教版七年级上册教学设计第二章  有理数的运算有理数的乘方

2.3.1乘方第1课时有理数的乘方运算课时目标1.经历探索有理数乘方的意义的过程,体会转化的数学思想方法,培养学生的运算能力.2.理解乘方的意义,了解乘方与幂的关系,能识别指数和底数,掌握幂的符号法则,会进行乘方运算.3.经历发现问题、提出问题、分析问题和解决问题的过程,培养学生科学的思考问题的方法.学习重点乘方的意义以及幂的符号法则.学习难点幂、底数、指数的概念.课时活动设计情境引入问题1:如果一个正方形的边长为2,那么该正方形的面积是多少?问题2:如果一个正方体的棱长为2,那么该正方体的体积是多少?解:该正方形的面积为2×2,该正方体的体积为2×2×2.设计意图:创设情境,引入新课,为本节课的学习作铺垫.探究新知探究1有理数的乘方在上一教学活动中,所列的两个式子有什么特殊之处?你还能写出几个具有上述特征的式子吗?学生自主交流,独立完成,教师适时给予点拨.根据你发现的特征,完成下面的填空.(1)5×5×5记作53,读作5的3次方.(2)5×5×5×5记作54,读作5的4次方.(3)5×5×5×5×5记作55,读作5的5次方.⏟(4)5×5×5×…×5×5记作5n,读作5的n次方.n个5请你根据上面的内容,自己总结发现的规律.,记作a n,读作“a的n次方”.⏟总结:一般地,n个相同的乘数a相乘,即a·a·…·an个求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂.在a n中,a叫作底数,n叫作指数,当a n看作a的n次方的结果时,也可读作“a的n次幂”.例如,在94中,底数是9,指数是4,94读作“9的4次方”,或“9的4次幂”.一个数可以看作这个数本身的1次方.例如,5就是51.指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.探究2幂的符号法则思考:(1)-26的底数是多少?它与(-2)6表示的意义相同吗?(2)计算,并将下表补充完整.思考:上表中的计算结果的符号有什么规律?学生归纳总结.总结:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数. 0的任何正整数次幂都是0.设计意图:通过探究引导学生思考有理数乘方的意义,区分-a n 与(-a )n ,通过让学生计算乘方,发现幂的符号规律,并总结出幂的符号法则.典例精讲 例1 计算:(1)(-4)3; (2)(-2)4; (3)(-23)3. 解:(1)(-4)3=(-4)×(-4)×(-4)=-64. (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16. (3)(-23)3=(-23)×(-23)×(-23)=-827. 例2 用计算器计算(-8)5和(-3)6. 解:用带符号键的计算器.显示结果为-32 768.显示结果为729.因此,(-8)5=-32 768,(-3)6=729.设计意图:通过例题练习和讲解,提高学生的运算能力,并学会用计算器计算有理数的乘方运算,提高对新知识的应用能力.巩固训练1.(-2)3等于( C )A.-6B.6C.-8D.82.下列各组数中,运算结果相等的是( A )A.-53与(-5)3B.34与43C.-22与(-2)2D.(45)2与4253.计算3×3×…×32+2+⋯+2⏞ m 个3⏟ n 个2的结果为( A ) A.3m2nB.3m2nC.3mn 2D.m 32n4.(-2)5的底数是 -2 ,指数是 5 ,表示的意义是 5个-2相乘的积 ,即(-2)5= -32 .5.计算:(1)(-3)3; (2)(-5)4; (3)(-13)3; (4)0.23; (5)-72. 解:(1)(-3)3=(-3)×(-3)×(-3)=-27. (2)(-5)4=(-5)×(-5)×(-5)×(-5)=625. (3)(-13)3=(-13)×(-13)×(-13)=-127. (4)0.23=0.2×0.2×0.2=0.008. (5)-72=-(7×7)=-49.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理运用.课堂小结1.乘方中的底数、指数和幂的概念,会求有理数的正整数指数幂,掌握乘方运算与乘法运算的关系,会进行有理数的乘方运算.2.强调有理数乘方的符号规律.3.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.设计意图:学生通过自主反思,可加深对有理数乘方意义的理解,通过反思数学思想方法与活动经验,培养学生的数学思维品质,让学生学会学习,学会思考,使学生真正深入数学的学习过程中,抓住数学思维的内在实质.课堂8分钟.1.教材第52页练习第1,2,3题,第56页习题2.3第1,2题.2.七彩作业.教学反思第2课时有理数的混合运算课时目标1.能确定有理数加、减、乘、除、乘方混合运算的运算顺序,会进行有理数的混合运算,培养学生的运算能力.2.在进行有理数混合运算的过程中,能合理地使用运算律进行简化运算.学习重点掌握有理数混合运算的运算顺序,会进行有理数的混合运算.学习难点熟练合理使用运算律进行混合运算.课时活动设计情境引入计算:1. (1)-32; (2)(-3)2; (3)-16; (4)(-1)6. 2. -3÷25×52.3. 18-32÷8+(-2)2×5.问题:先计算,再思考上述运算中有几种运算?分别是什么?结合经验你能说说混合运算的运算顺序吗?设计意图:通过有理数的混合运算,让学生先独立思考运算顺序,然后谈一谈自己的理解,加深学生对运算顺序的理解.探究新知探究 有理数的混合运算问题:如何计算18-32÷8+(-2)2×5呢?分几步运算? 学生先独立思考,分解计算步骤.教师给出下述计算过程. 18-32÷8+(-2)2×5 ① ① ①所以原式=①-①+①=18-4+20=34.由此可知,有理数混合运算顺序:先算乘方,再算乘除,最后算加减.如果有括号,要先算括号内的.总结:有理数的加、减、乘、除、乘方混合运算的运算顺序为 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 设计意图:通过探究,让学生确定有理数的加、减、乘、除、乘方混合运算的运算顺序,会进行有理数的混合运算,培养学生的运算能力.典例精讲 例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×(-42+2)-(-3)2÷(-2).解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27.(2)原式=-8+(-3)×(-16+2)-9÷(-2)=-8+(-3)×(-14)-(-4.5)=-8+42+4.5=38.5. 例2 观察下面三行数: -2,4,-8,16,-32,64,…;① 0, 6, -6, 18, -30, 66, …; ① -1, 2, -4, 8, -16, 32, …. ①(1)第①行中的数可以看成按什么规律排列? (2)第①①行中的数与第①行中的数分别有什么关系? (3)取每行中的第10个数,计算这三个数的和.分析:观察第①行中的数,发现各数均为2的倍数,联系数的乘方,从符号和绝对值两方面考虑,可以发现排列的规律.解:(1)第①行中的数可以看成按如下规律排列:-2,(-2)2,(-2)3,(-2)4,….(2)对比第①①两行中位置对应的数,可以发现:第①行中的数是第①行中相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…;对比第①①两行中位置对应的数,可以发现:第①行中的数是第①行中相应数的12,即(-2)×12,(-2)2×12,(-2)3×12,(-2)4×12,….(3)每行中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×12=1 024+(1 024+2)+1 024×12=1 024+1 026+512=2 562.设计意图:通过例1让学生得以练习,提高对有理数混合运顺序的应用能力;通过例2引导学生解决简单的规律性问题.巩固训练 计算:(1)(-1)8×3+(-2)4÷4; (2)(-3)3+(-12)3×16; (3)78×(23-12)×37÷54.解:(1)原式=1×3+16÷4=3+4=7. (2)原式=-27+(-18)×16=-27-2=-29. (3)原式=78×16×37×45=120.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.有理数混合运算顺序: 先乘方,再乘除,最后加减; 同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 2.探究简单的规律性问题.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第54页练习,第56页习题2.3第3,11题. 2.七彩作业.教学反思2.3.2科学记数法课时目标1.借助身边熟悉的事物体会大数,发展学生的好奇心、想象力及创新意识.2.通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感.学习重点正确使用科学记数法表示大于10的数.学习难点正确掌握10n的特征以及科学记数法中n与数位的关系.课时活动设计情境引入地球距离月球表面约为384 000 000米.这样大的数,读写都有一定的困难.这节课我们就来学习表示大数的一种方法——科学记数法.设计意图:通过实际问题引入本节课的内容,激发学生的学习兴趣.探究新知探究科学记数法观察10的乘方,102=100,103=1 000,104=10 000,….问题1:等号左边10的指数与右边整数中0的个数有什么关系?教师引导学生得到左边10的指数与右边整数中0的个数相同,即10的n次幂等于10…0(在1的后面有n个0),因此可以利用10的乘方表示一些大数,例如,696 000=6.96×105,读作“6.96乘10的5次方(幂)”.像上面这样,把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n是正整数),使用的是科学记数法.问题2:对于小于-10的数能否也用类似的方法表示呢?-567 000 000用这种方法应该怎样表示?学生分小组探究交流,教师将正确答案进行板书.解:-567 000 000=-5.67×108.设计意图:让学生经历用科学记数法表示数的探索过程,提高学生分析问题和解决问题的能力,增强学生的思维能力.典例精讲例用科学记数法表示下列各数:1 000 000,57 000 000,-123 000 000 000.解:1 000 000=1×106.57 000 000=5.7×107.-123 000 000 000=-1.23×1011.设计意图:通过例题讲解,让学生对科学记数法的表示得以运用,提高学生的运用能力.巩固训练1.用科学记数法表示下列各数:(1)352 000 000;(2)167 560 000;(3)602 000 000 000.解:(1)352 000 000=3.52×108.(2)167 560 000=1.675 6×108.(3)602 000 000 000=6.02×1011.2.下列用科学记数法表示的数,原来各是什么数?1×107,1.9×103,2.06×106.解:1×107=10 000 000,1.9×103=1 900,2.06×106=2 060 000.设计意图:通过练习,让学生巩固所学知识,加深对科学记数法的理解,提高学生的运算能力.课堂小结1.本节课主要学习用科学记数法表示大数的方法.应该注意:任意一个大于10的数表示成a×10n的形式,其中10的指数n应等于整数位数减1,1≤a<10,n是正整数.2.思考现实中还有哪些比较大的数,并用科学记数法表示出来.设计意图:学生通过反思,可进一步加深对科学记数法的理解,通过归纳总结,培养学生的数学思维品质,让学生学会学习,学会思考.课堂8分钟.1.教材第56页练习第1,2,3题,第56页习题2.3第4,5,9题.2.七彩作业.2.3.2科学记数法把一个大于10的数表示成a×10n的形式(其中a大于或等于1,且a小于10,n 是正整数),即为科学记数法.教学反思2.3.3近似数课时目标1.了解和掌握近似数的概念,能准确确定一个近似数的精确度.2.能根据要求用四舍五入法取近似数.学习重点近似数、精确度的概念.学习难点由给出的近似数求其精确度.课时活动设计回顾引入回顾什么是四舍五入法.设计意图:通过回顾旧知,引入本节课的学习.探究新知探究近似数和准确数1.宇宙的年龄约为138亿年,长江约长6 300千米,圆周率π约为3.14,每个三角形都有3个内角,某中学七年级共有10个班.上面语句中出现的数字中,哪些是与实际相符的?哪些是与实际相近的?学生分小组交流讨论.教师随后给出近似数和准确数的概念.准确数:与实际相符的数.近似数:与实际相近的数,通过测量或估计得到.2.小明和小颖分别测量了同一片树叶的长度,他们所用的直尺的最小单位是不同的,分别是厘米和毫米.问题:根据小明的测量,这片树叶的长度约为多少米?根据小颖的测量呢?谁的测量结果会更准确一些?学生自主探究.教师给出:近似数与准确数的接近程度,可以用精确度表示.追问:小明、小颖的测量分别精确到什么单位?解:分别精确到了十分位和百分位.按四舍五入法对圆周率π取近似数时,有π≈3(精确到个位),π≈3.1(精确到0.1,或叫作精确到十分位),π≈3.14(精确到0.01,或叫作精确到百分位),π≈3.142(精确到0.001,或叫作精确到千分位),π≈3.141 6(精确到0.000 1,或叫作精确到万分位),……设计意图:让学生通过实际情境理解近似数与准确数及精确度的概念.典例精讲例按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到百分位).解:(1)0.015 8≈0.016.(2)304.35≈304.(3)1.804≈1.8.(4)1.804≈1.80.设计意图:通过例题让学生体会运用四舍五入法求近似数的方法.巩固训练用四舍五入法对下列各数取近似数:(1)0.012 36(精确到0.000 1);(2)688.753 2(精确到个位);(3)2.597 43(精确到0.01);(4)0.085 6(精确到千分位).解:(1)0.012 36≈0.012 4.(2)688.753 2≈689.(3)2.597 43≈2.60.(4)0.085 6≈0.086.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.本节课主要学习近似数的概念,并能按要求取近似数.2.通过这节课的学习,还有哪些收获呢?设计意图:学生通过反思,可进一步加深对近似数的理解.通过归纳总结,培养学生的数学思维品质,让学生学会学习,学会思考.课堂8分钟.1.教材第56页练习第4题,第56页习题2.3第6题.2.七彩作业.2.3.3近似数1.准确数和近似数.2.用四舍五入法求近似数.教学反思。

七年级数学上册 第二章 有理数及其运算 9 有理数的乘方课件上册数学课件

七年级数学上册 第二章 有理数及其运算 9 有理数的乘方课件上册数学课件
12/7/2021
1.(-7)7表示 ( ) A.7个-7的积 B.-7与7的积 C.7个-7的和 D.-7与7的和 答案 A (-7)7=(-7)×(-7)×(-7)×(-7)×(-7)×(-7)×(-7). 2.下列各幂中是负数的是 ( ) A.23 B.(-2)2 C.(-1)2 018 D.(-1)5 答案 D 正数的任何次幂都是正数,负数的偶次幂是正数,奇次幂是负 数,故选D.
12/7/2021
易错点 对幂的相关定义理解不透彻
例 计算:(1)(-5)2;(2)-54;(3)- 2 2 .
5
错解 (1)(-5)2=-5×2=-10.
(2)-54=(-5)×(-5)×(-5)×(-5)=625.
(3)- 2 2 =-2 2× 4=- .
5 5 5 25
正解 (1)(-5)2=(-5)×(-5)=25.
(2)-54=-5×5×5×5=-625.
(3)- 2 2 =-2 2=- 4 .
5
55
错因分析 将乘方与乘法混淆,误认为(-5)2=(-5)×2;-54的底数是5而不是
-5;22的底数是2, 52 的 2 底数是
2
5
.
12/7/2021
知识点一 有理数乘方的意义 1.(2017北京房山期中)乘积(-3)×(-3)×(-3)×(-3)可以表示为 ( ) A.-34 B.-(+3)4 C.(-3)4 D.-(-3)4 答案 C (-3)×(-3)×(-3)×(-3)=(-3)4. 2.下列说法正确的是 ( ) A.-25的底数是-2 B.-110读作“负1的10次幂” C.(-3)3与-33意义相同 D.(-1)2 017=-12 017 答案 D -25的底数是2;-110读作“负的1的10次幂”;(-3)3表示3个-3相 乘,-3123/表7/2示0213个3相乘的相反数;(-1)2 017=-12 017=-1.只有D选项正确.

2.3 有理数的乘方(第1课时)(课件)七年级数学上册(青岛版2024)

2.3 有理数的乘方(第1课时)(课件)七年级数学上册(青岛版2024)
(3)- =-1×1×1×1×1×1=-1。





(4)(− ) =(- )×(- )×(- )=- 。





新知巩固
4. 分别比较下列各组数的大小:
(1) - 与 (-) ;
(2) (-. ) 与(-. ) ;
解:(1)∵-32=-3×3=-9, (2)∵(-0.2)2=0.04,
(4)∵ - =27,(-3)3=-27,
9>-9,
27>-27,
∴(-3)2>-32。
∴ - >(-3)3。
1.有理数乘方的意义。
2.会求有理数的正整数指数幂。
3.幂的符号与底数、指数的关系。
课堂检测
基础过关
1.(2021·河北·二模)
A.



C.
− × − × −

×


D. 表示2个-3相乘
课堂检测
基础过关
6. (2024江苏南京期中)下列说法正确的是( D )
A. 倒数等于它本身的数只有1
B. 平方等于它本身的数只有1
C. 立方等于它本身的数只有1
D. 正数的绝对值是它本身
课堂检测
基础过关

3
(-11)
7. 底数是-11,指数是3时,要写成
;底数是 ,指数是2时,
要写成
2
( )



8.(2023泰州泰兴期末)一个数的平方等于81,则这个数是 ±9 。
9. (2024常州金坛三中期中)计算:(-1)100+(-1)101=_____。
0
课堂检测
基础过关
10.

七年级数学上册第二章有理数及其运算2.9有理数的乘方教学

七年级数学上册第二章有理数及其运算2.9有理数的乘方教学
2 0 1 6
=11 18
2016
=8.
第二十七页,共三十一页。
趣味 阅读 (qùwèi)
两个人打赌谁得到(dédào)的钱多,甲对乙说:我从明天 开始,每天给你100元,而你第一天只需给我1元钱,以后 你每天给我的钱是前一天的2倍,时间为11天,乙欣然同意了. 你觉得(jué de),最后谁得到的钱多呢?
第九页,共三十一页。
归纳(guīnà) 总结
根据有理数的乘法法则可以得出: 负数(fùshù)的奇次幂是负数(fùshù),负数(fùshù)的偶次幂
是正数. 正数(zhèngshù)的任何正整数次幂都是正数(zhèngshù),0 的任何正整数次幂都是0.
第十页,共三十一页。
你能迅速(xùn sù)的判断下列各幂的正负吗?
第二十八页,共三十一页。
课堂(kètáng) 小结
乘方的意义
有理数的乘方
(chéngfāng)
乘方的运算
规律(guīlǜ)探究
第二十九页,共三十一页。
第三十页,共三十一页。
内容(nèiróng)总结
导入新课。1.理解并掌握有理数的乘方、幂、底数、指数的概。2.能够正确进行有理数的乘 方运算.(难点)。下图是日本某小学门前贴的一张海报,你懂其中的含义吗。请用算式表示.算
厚度为2×0.1毫米,求: (1)对折2次后,厚度为多少毫米? (2)对折20次后,厚度为多少毫米?
对折次数 1 2 3 4 … 20 纸的层数 21 22 23 24 … 220
第十九页,共三十一页。
解:(1)∵厚度为0.1毫米(háo mǐ)的纸,将它对折一次后, 厚度为2×0.1毫米, ∴对折2次的厚度是0.1×22毫米. (2)对折20次的厚度是0.1×220=104857.6(毫米).

第二章有理数的运算小结复习(第1课时知识要点)(教学课件)-七年级数学上册课件(人教版2024)

第二章有理数的运算小结复习(第1课时知识要点)(教学课件)-七年级数学上册课件(人教版2024)
第二章 有理数的运算
第二章 有理数的运算



复 习 小 结 第 1 课 时

|
课堂导问
✓ 列出本章你学到知识的关键词?
✓ 各知识有联系的用线连起来?
✓ 分别列出你掌握了和有疑问的知识?
✓ 你认为还将学那些知识?
数系与运算
数的产生和发展离不开生活和生产的需要
正整数





分数(小数)



负数
有理数加法


判断
确定
运算
2.计算算下列各题 ,回顾其运算法则和步骤:
(1) (-3)―(―5);
(2) 0-7;
(3) 7.2―(―4.8);
1
(-3
2
(5)
(3)2-5
1
)-5
4
解:(1) (-3)―(―5)= (-3)+5=2
(2) 0-7 = 0+(-7) =-7
(3) 2-5 = 2+(-5) =-3
(4)7+(-3.3).
(5)0+(-7);
(6)(-4.7)+4.7
12
12
(7)−19 +19

196
196
12 3 12
(8) + + ;
19 4 19
答案:(1)-3.3
(5)-7
(2)5
(6)0
(3)-4.7
(7)0
(4)3.7
3
(8)
4


1.同号两数相加


2.异号两数相加
3.一个数同0相加

2024秋七年级数学上册第2章有理数及其运算2.9有理数的乘方教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.9有理数的乘方教案(新版)北师大版
5.教学工具:确保教师能够使用投影仪、电脑、白板等教学工具,以便进行多媒体教学和互动式教学。
6.学习平台:如果可能,准备在线学习平台或教学管理系统,以便进行在线教学、布置和批改作业,以及进行学生学习情况的跟踪和评估。
7.教学资源库:建立教学资源库,收集与本节课相关的教学资源,如教案、课件、练习题、案例分析等。这些资源将有助于教师进行教学设计和教学活动的实施。
④有理数乘方的注意事项:
1.防止乘方运算中的错误。
2.注意负数的乘方运算规则。
⑤有理数乘方的练习题:
1.计算a^n,其中a是任意有理数,n是正整数。
2.计算a^(-n),其中a是任意有理数,n是正整数。
3.计算(-a)^n,其中a是任意有理数,n是正整数。
⑥有理数乘方的拓展:
1.有理数的乘方在生活中的应用。
3.重点难点解析:在讲授过程中,我会特别强调乘方的运算法则和零指数幂、负指数幂这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数乘方的基本原理。
3.实验器材:本节课可能需要一些简单的实验器材,如计算器、纸张、铅笔等,以确保学生能够进行乘方运算的实践练习。另外,如果有条件,可以准备一些物理实验器材,如测量工具、计时器等,以便进行与乘方相关的实验。
4.教室布置:根据教学需要,对教室进行适当的布置。将学生分组,设置讨论区,以便学生进行小组讨论和合作学习。同时,布置一些展示区,用于展示学生的学习成果和作品。
3.学生可能遇到的困难和挑战:学生在学习有理数的乘方时可能遇到的困难和挑战包括:理解乘方的概念和意义,如何将乘方运用到具体的计算中,以及如何解决与乘方相关的实际问题。学生可能对于乘方的计算规则不太理解,或者在实际操作中容易出错。此外,学生可能对于如何将乘方应用到解决实际问题中感到困惑,不知道如何运用乘方的知识来解决具体的问题。

第2章 有理数的运算 整理与复习(复习课件)七年级数学上册(人教版2024)

第2章 有理数的运算 整理与复习(复习课件)七年级数学上册(人教版2024)
6. (﹣2)3+32= 1
复习要点
一、有理数的运算
有理数混合运算的顺序:
1. 先乘方,再乘除,最后加减.
2. 同级运算,从左到右进行.
3. 如有括号,先做括号内的运算,按小括号、中括号、大括号
依次进行.
复习要点
一、有理数的运算
7. 有理数的运算律
1. 加法交换律
a+b=b+a
2. 加法结合律
(a+b)+c=a+(b+c)
(2)(+3)﹣(﹣5) (+3)
=
课堂巩固
一、有理数的运算
用“>”、“=”、“<”填空

1. 若a<0,b<0,|a|<|b|,则a+b____0
2. 若a>0,b<0,|a|>|b|,则a+b____0

3. 若a<0,b>0,|a|>|b|,则a+b____0

4. 若a<0,b>0,|a|=|b|,则a+b____0
0除以任何一个不等于0的数,都得0.
复习要点
一、有理数的运算
有理数乘除混合运算
1. 乘法交换律:ab=ba
两个数相乘,交换乘数的位置,积不变.
2. 乘法结合律: (ab)c= a(bc)
三个数相乘,先把前两个数相乘,或者先把后两个
数相乘,积不变.
3. 分配律:a(b+ c) = ab+ac
一个数与两个数的和相乘,等于把这个数分别与这
a+b+c=(a+b)+c=a+(b+c)
典例分析
一、有理数的运算
例:小明和小强在游戏中规定,长方形表示加,圆形
表示减,结果小者为胜. 请你当裁判,判定谁是胜者.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5 有理数的乘方
第1课时 有理数的乘方
知识点1 乘方的意义 1.x 3
表示( )
A .3x
B .x +x +x
C .x ·x ·x
D .x +3
2.在(-3)4
中,底数是________,指数是________. 3.把下列各式改写成乘方的形式: (1)12×12×12×12×1
2=______; (2)(-5)×(-5)×(-5)=________. 知识点2 乘方的计算
4.(-5)2
的结果是__________;-52
的结果是________. 5.2017·杭州计算-22
的结果是( ) A .-2 B .-4 C .2 D .4 6.计算:
(1)(-3)2;
(2)⎝ ⎛⎭
⎪⎫252
; (3)(-1)2018;
(4)-12
.
7.计算:
(1)-2×(-1)3
; (2)(-5)4
÷(-5)2

(3)-32
×⎝ ⎛⎭
⎪⎫-132
; (4)(-1)2019
×(-2)+(-1)
2018
.
知识点3 乘方的应用
8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏
合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图2-5-1所示.请问这样捏合到第8次后,可拉出细面条的根数是( )
图2-5-1
A .64根
B .128根
C .256根
D .512根
9. 大肠杆菌每过30分钟由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成多少个?
10. 计算(-1)
2018
+(-1)
2019
的结果是( )
A .0
B .-1
C .-2
D .2 11.下列各数中,数值相等的有( )
①32
和23
;②-23
与(-2)3
;③22
与(-2)2
;④42
5与1625
;⑤-(-0.1)3
与0.001.
A .1组
B .2组
C .3组
D .4组
12.联想一些具体数的乘方,可得当a <0时,下列各式成立的是________.(填序号即可)
①a 2>0;②a 2=-a 2;③a 2=(-a )2;④a 3=-a 3
. 13.设n 是自然数,则
(-1)n
+(-1)
n +1
2
的值为________.
14.有一张厚度是0.1 mm 的纸,将它对折1次后,厚度是2×0.1 mm ,那么: (1)对折2次后,厚度是________mm ; (2)对折4次后,厚度是________mm ;
(3)若一层楼高约为3 m ,则把纸对折15次后,其厚度与一层楼相比,哪个高?为什么?
.对有理数a ,b 定义运算★:a ★b =a b
.例如, (-5)★3=(-5)3
=-125.
(1)运算★满足交换律吗?即a ★b =b ★a 是否成立?举例说明;
(2)求⎣⎢⎡⎦
⎥⎤⎝ ⎛⎭⎪⎫-23★3★2的值.
16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,根据上述算式中的规律,你认为220的末位数字是( )
A.2 B.4 C.6 D.8
17.阅读材料:求1+2+22+23+24+…+22018的值.
解:设S=1+2+22+23+24+…+22017+22018,①将等式两边同时乘2,得
2S=2+22+23+24+25+…+22018+22019.②
②式减去①式,得2S-S=22019-1,
即S=22019-1.
故1+2+22+23+24+…+22018=22019-1.
请你仿照此法计算:
(1)1+2+22+23+24+ (210)
(2)1+3+32+33+34+…+3n(其中n为正整数).
1.C 2.-3 4 3.(1)⎝ ⎛⎭
⎪⎫125
(2)(-5)3
4.25 -25 5.B
6.(1)9 (2)4
25
(3)1 (4)-1
7.解:(1)-2×(-1)3
=-2×(-1)=2. (2)(-5)4
÷(-5)2
=625÷25=25. (3)原式=-9×1
9
=-1.
(4)原式=(-1)×(-2)+1=2+1=3. 8.C
9.解:∵大肠杆菌每过30分钟由1个分裂成2个, ∴经过3小时后分裂180
30
=6(次),
∴经过3小时后这种大肠杆菌由1个分裂成26
=64(个). 10.A 11.C. 12. ①③ 13.0
14.解:(1)对折2次后,厚度是4×0.1=0.4(mm). (2)对折4次后,厚度是16×0.1=1.6(mm). (3)根据题意得到对折n 次后,厚度为2n
×0.1 mm ,
∴把纸对折 15次后,其厚度为215
×0.1=3276.8 mm =3.2768 m>3 m, 故把纸对折15次后,其厚度比一层楼高.
15.解:(1)定义的运算不满足交换律,即a ★b =b ★a 不成立.如2★3=23
=8,而3★2=32
=9,所以2★3≠3★2.
(2)⎝ ⎛⎭⎪⎫-23★3=⎝ ⎛⎭⎪⎫-233=-827,⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-23★3★2=⎝ ⎛⎭⎪⎫-827★2=⎝ ⎛⎭⎪⎫-8272
=64729.
16.C
17.解:(1)设S =1+2+22
+23
+24
+…+210
,① 将等式两边同时乘2,
得2S =2+22
+23
+24
+…+210
+211
.② ②式减去①式,得2S -S =211
-1, 即S =211
-1,
故1+2+22
+23
+24
+…+210
=211
-1. (2)设S =1+3+32
+33
+34
+ (3)
,① 等式两边同时乘3,
得3S =3+32
+33
+34+…+3n +3n +1
,②
②式减去①式,得3S -S =3n +1
-1,
即2S =3
n +1
-1,
故1+3+32+33+34+ (3)
=12
(3n +1-1)。

相关文档
最新文档