七年级上册数学有理数有理数的运算知识点整理
人教版七年级数学上册 第一章《有理数》知识点归纳

人教版七年级数学上册第一章《有理数》知识点归纳一、有理数的有关概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
对任意有理数a ,总有0a ≥。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
七年级上册数学月考知识点整理

七年级上册数学月考知识点整理七年级上册数学月考知识点整理一、有理数的加减乘除1. 有理数的加法和减法有理数的加法定义:对于任意的有理数a、b,a+b也是一个有理数,且满足以下运算规律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)存在零元素:a+0=a存在负元素:a+(-a)=0有理数的减法定义:对于任意的有理数a、b,a-b也是一个有理数,且满足以下运算规律:减法的定义:a-b=a+(-b)减法的性质:a-b=c等价于a=b+c2. 有理数的乘法和除法有理数的乘法定义:对于任意的有理数a、b,a*b也是一个有理数,且满足以下运算规律:交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)存在单位元素:a*1=a存在倒数元素:a*(1/a)=1有理数的除法定义:对于任意的有理数a、b(b≠0),a/b也是一个有理数,且满足以下运算规律:除法的定义:a/b=a*(1/b)除法的性质:a/b=c等价于a=b*c二、整数的运算1. 整数的加法和减法整数的加法定义:对于任意的整数a、b,a+b也是一个整数,且满足有理数加法的运算规律。
整数的减法定义:对于任意的整数a、b,a-b也是一个整数,且满足有理数减法的运算规律。
2. 整数的乘法和除法整数的乘法定义:对于任意的整数a、b,a*b也是一个整数,且满足有理数乘法的运算规律。
整数的除法定义:对于任意的整数a、b(b≠0),a/b也是一个整数或有理数。
三、平方根与立方根1. 平方根的概念平方根的定义:对于任意的非负数a,如果存在一个非负数x,使得x的平方等于a,即x^2=a,则x称为a的平方根,记作√a。
2. 平方根的性质平方根的非负性:对于任意的非负数a,其平方根x满足x≥0。
平方根的唯一性:对于任意的非负数a,其平方根x是唯一的。
3. 立方根的概念立方根的定义:对于任意的实数a,如果存在一个实数x,使得x的立方等于a,即x^3=a,则x称为a的立方根,记作∛a。
初一数学上册知识点总结(3篇)

初一数学上册知识点总结实数:—有理数与无理数统称为实数。
有理数:整数和分数统称为有理数。
无理数:无理数是指无限不循环小数。
自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:符号不同的两个数互为相反数。
倒数:乘积是1的两个数互为倒数。
绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。
一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。
邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。
两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
七年级数学上册知识点多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
七年级上册数学《有理数》知识要点整理

《有理数》知识要点一、有理数的概念1、正数和负数: (1)、大于0的数叫做正数. (2)、在正数前面加上负号“—”的数叫做负数.(3)、数0既不是正数,也不是负数 .(4)、在同一个问题中,分别用正数与负数表示具有相反的量 .2、有理数:(1)凡能写成分数形式的数,都是有理数。
整数和分数统称有理数.注意:0既不是正数,也不是负数;—a 不一定是负数,如:—(-2)=4,这个时候的a=—2. π不是有理数;(2)有理数的分类:①按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按性质分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)自然数<====>0和正整数;a >0 <====>a 是正数; a <0 <====>a 是负数;a ≥0<====>a 是正数或0<====>a 是非负数; a ≤0<====>a 是负数或0<====>a 是非正数。
3、数轴【重点】:(1)、规定原点、正方向和单位长度的直线叫做数轴。
它满足以下要求:(1)、数轴的三要素:原点、正方向、单位长度。
(2)、画数轴的步骤:一画(画直线);二取(取原点和正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上.注意:(1)所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
原点表示数0.(2)、正数在原点的右边,与原点的距离是|a|个单位长度; 负数在原点的左边,与原点的距离是|a |个单位长度。
4、相反数:(1)、只有符号不同的两个数叫做互为相反数。
注意:① a —b 的相反数是b —a ;a+b 的相反数是—a —b ;② 相反数的商为-1; ③ 相反数的绝对值相等。
(3)、a 和-a 互为相反数。
0的相反数是0,正数的相反数是负数,负数的相反数是正数。
相反数是它本身的数只有0。
(4)、在任意一个数前面添上“-”号, 表示原数的相反数。
人教版七年级数学上册第一章有理数及其运算知识点总结大全

有理数及其运算知识点总结大全一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力.根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念 比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数. 为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略. 对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类 整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数. 到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为1的分数,但本章中的分数是指不包括分母是1的分数. 通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法 规定了原点、正方向和单位长度的直线叫做数轴. 数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念 如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0. 在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义. 一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了. 相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念 在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则 在数轴上表示的两个数,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数大于一切负数; 两个负数,绝对值大的反而小.8、有理数加法法则在中,a 叫做底数,n 叫做指数,叫做幂.n a na 的读法有两种:n a (1)读作a 的n 次幂.(2)读作a 的n 次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、科学记数法把一个大于10的数记成的形式,其中a 的整数位数只有一位,这种记数的方法,叫做科学记10na 数法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义 随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 . 正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念 把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律 单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 . 括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 . 在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较 两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 . 两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简107。
七年级数学上册第二章 有理数及其运算知识点

第二章有理数及其运算一、有理数1.用正、负数表示具有相反意义的量2.有理数的分类(1)按定义分类(2)按符号分类二、数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴.2.用数轴上的点表示有理数任何一个有理数都可以用数轴上的一个点来表示.3.比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数.三、绝对值1.相反数的概念及性质(1)只有符号不同的两个数叫做互为相反数(2)互为相反数的两个数到原点的距离相等2.绝对值的概念及性质(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值(2)一个正数的绝对值是它本身.(3)一个负数的绝对值是它的相反数.(4)0的绝对值是0.3.比较两个负数的大小两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法(1)加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数。
(2)加法的运算律加法的交换律加法的结合律2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(2)乘法的运算律乘法的交换律乘法的结合律乘法对加法的分配律4.有理数的除法除法法则:除以一个数,等于乘以这个数的倒数.5.有理数的乘方乘方运算规律:(1)正数的任何次幂都是正数.(2)负数的偶次幂是正数,负数的奇次幂是负数.(3)0的任何正整数次幂都是0.(4)a的偶次幂是正数,即a n≥0(其中n为偶数).6.有理数的混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.四、科学记数法1.科学记数法的概念一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.2.a与n的取法在a×10n形式中,n的值是原数整数位数减1,a 则是将原数保留一位整数得来的.。
七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。
七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。
三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。
4.相反数的商为-1。
5.相反数的绝对值相等。
四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的运算
一、本节学习指导
有理数的运算和我们小学学习的四则运算很相似,运算规律也一样,不同的是有理数运算中有负数参与,所以相对要复杂一些,本节要多加练习。
二、知识要点
1、有理数的加法
(1)、有理数加法法则:
① 同号两数相加,取相同的符号,并把绝对值相加;
② 异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
③ 一个数与0相加,仍得这个数。
(2)、加法计算步骤:先定符号,再算绝对值。
(3)、有理数加法的运算律:
① 加法的交换律:a+b=b+a;
② 加法的结合律:(a+b)+c=a+(b+c)。
(4)、为了计算简便 ,往往会采取以下方法:
①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
2、有理数的减法
(1)、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+
(-b)。
(有理数减法运算时注意两“变”:①减法变加法;②把减数变为它的相反数。
)
注:有理数的减法实质就是把减法变加法。
3、有理数的乘法
(1)、有理数乘法法则:
①两数相乘,同号得正,异号得负,并把绝对值相乘;
②任何数同零相乘都得零;
(2)、一个数同1相乘,结果是原数;一个数同-1相乘,结果是原数的相反数。
(3)、乘积为1的两个数互为倒数;
注意:0没有倒数;若ab=1<====>a、b互为倒数。
(4)、几个不是偶的数相乘,积的符号由负因式的个数决定。
负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数。
(5)、有理数乘法的运算律:
① 乘法的交换律:ab=ba;
② 乘法的结合律:(ab)c=a(bc);
③ 乘法的分配律:a(b+c)=ab+ac.
4、有理数的除法
(1)、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
(2)、有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0.
(3)、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;
③运用乘法运算律和乘法法则进行计算得出结果。
5、有理数的乘方
(1)、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n中,
a叫做底数,n叫做指数。
(2)、a n表示的意义是n个a相乘。
如:23=2×2×2=8
(3)、分数的乘方,在书写时一定要把整个分数用小括号括起来。
如:(1/2)2
(4)、负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来。
(5)、10的几次方,幂的结果中1后面就有几个0.如:105 =100000
(6)、负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何正整数次幂都是的任何次幂都是的奇数次幂是-1,-1的偶数次幂是1.
5、科学记数法
(1)、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,而且1≤︱a︱<10,n是正整数),使用的是科学计数法。
(2)、用科学记数法表示一个n位整数,其中10的指数是n-1.
例:0用科学计数法记为×108
6、近似数
(1)、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。
(2)、精确度:近似数与准确数的接近程度可以用精确度表示。
(3)、利用四舍五入法得到的近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
(4)、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。
(5)、a×10n中有效数字是指a的有效数字。
(6)、等于本身的数汇总:
①相反数等于本身的数:0
②倒数等于本身的数:1,-1
③绝对值等于本身的数:正数和0
④平方等于本身的数:0,1
⑤立方等于本身的数:0,1,-1.
三、经验之谈:
有理数的运算我们要多做练习来巩固。
其次我们还要理解科学计数法的原则。
近似数的解题技巧:近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位。
当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似数。
本文由索罗学院整理。