方差分析实验报告

合集下载

方差分析实验报告

方差分析实验报告

方差分析实验报告方差分析实验报告引言:方差分析是一种常用的统计方法,用于比较不同组之间的均值差异是否显著。

本实验旨在通过方差分析方法,探究不同施肥方法对植物生长的影响,并进一步分析各组间的均值差异是否具有统计学意义。

材料与方法:本实验选取了三种不同的施肥方法,分别是有机肥、化学肥和不施肥,每种施肥方法设置了五个重复。

实验选取了一种常见的作物植物进行研究,将其随机分为三组,每组分别使用不同的施肥方法。

在相同的环境条件下,记录植物生长的相关指标,包括植株高度、叶片数目和根系长度。

结果:通过方差分析得到的结果表明,不同施肥方法对植物生长的指标均有显著影响。

在植株高度方面,有机肥组的平均高度为30cm,化学肥组为25cm,而不施肥组仅为20cm。

在叶片数目方面,有机肥组的平均叶片数为15片,化学肥组为12片,而不施肥组仅为10片。

在根系长度方面,有机肥组的平均根系长度为40cm,化学肥组为35cm,而不施肥组仅为30cm。

通过方差分析,我们可以看出不同施肥方法对植物生长的影响是显著的,且有机肥的效果最好,不施肥的效果最差。

讨论:本实验结果表明,不同施肥方法对植物生长的影响是显著的。

有机肥的效果最好,可能是因为有机肥富含有机物质,能够提供植物所需的营养元素,并改善土壤结构。

而化学肥的效果次之,化学肥中的营养元素可以迅速被植物吸收利用,但对土壤的改良效果较差。

而不施肥组的植物生长受限,缺乏营养元素的供应,导致植物生长不良。

实验结果还表明,有机肥组和化学肥组之间的差异并不显著。

这可能是因为在本实验中,化学肥的配方和使用量与有机肥相当,因此两者对植物生长的影响相似。

然而,需要进一步研究来确定不同施肥方法在不同环境条件下的效果,以及其对土壤质量和环境的影响。

结论:通过方差分析实验,我们得出结论:不同施肥方法对植物生长的影响是显著的。

有机肥的效果最好,化学肥次之,而不施肥的效果最差。

这一结论对于农业生产和环境保护具有重要意义。

方差分析的实验报告

方差分析的实验报告

方差分析的实验报告方差分析的实验报告引言:方差分析是一种常用的统计方法,用于比较两个或多个组之间的均值差异是否显著。

在本次实验中,我们将运用方差分析来研究三种不同肥料对植物生长的影响。

通过对不同处理组的生长情况进行观察和数据分析,我们旨在探究不同肥料对植物生长的影响是否存在显著差异。

实验设计与方法:本实验采用了完全随机设计,共设置了四个处理组,分别为对照组和三个不同肥料处理组。

每个处理组设置了十个重复样本。

实验的主要步骤如下:1. 准备工作:选取相同品种的植物作为实验材料,并确保它们具有相似的生长状态和健康状况。

同时,为了消除外界因素的干扰,我们将植物放置在相同的环境条件下。

2. 分组处理:将植物随机分为四组,其中一组作为对照组,不施加任何肥料,另外三组分别施加三种不同的肥料。

3. 数据收集:在实验开始后的每个固定时间点,我们测量每个植物的生长指标,如株高、叶片数、根长等,并记录下来。

这些数据将用于后续的方差分析。

数据分析与结果:在实验结束后,我们对收集到的数据进行了方差分析。

通过计算各组的平均值、方差和标准差,我们得到了以下结果:1. 株高:对照组的平均株高为30cm,标准差为2cm;肥料A组的平均株高为35cm,标准差为3cm;肥料B组的平均株高为32cm,标准差为2.5cm;肥料C组的平均株高为33cm,标准差为2.8cm。

方差分析结果显示,不同处理组之间的株高差异是显著的(F=4.56, p<0.05)。

2. 叶片数:对照组的平均叶片数为15片,标准差为2片;肥料A组的平均叶片数为18片,标准差为3片;肥料B组的平均叶片数为16片,标准差为2.5片;肥料C组的平均叶片数为17片,标准差为2.8片。

方差分析结果显示,不同处理组之间的叶片数差异是显著的(F=3.21, p<0.05)。

3. 根长:对照组的平均根长为25cm,标准差为2cm;肥料A组的平均根长为28cm,标准差为3cm;肥料B组的平均根长为26cm,标准差为2.5cm;肥料C组的平均根长为27cm,标准差为2.8cm。

实习 二(方差分析)

实习 二(方差分析)

西北农林科技大学实验报告学院名称:理学院专业年级:2006级信计1班姓名:袁金龙学号:15206012课程:多元统计分析报告日期:实验二方差分析一.实验题目1.对表5的数据进行方差分析:表5:某个因数下的3个处理的2个指标的不同结果2. 对表6的数据进行方差分析:二、实验分析:1.从题目要求来看,该题属于单向分类多元方差分析,根据spss软件,得到如下结果:⑴数据输入:⑵spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。

从主对话框左侧的变量列表中选定x1,x2,单击按钮使之进入[Dependent Variables]框,再选定变量level,单击按钮使之进入[Fixed Factor(s)]框图1:多元方差分析主窗口⑶运行结果如下:分析:从表1的sig=0.942>0.05,以及表3的四个统计量的sig最大值为0.003小于0.05,因此,该因数下的3个处理水平的均值不全相同,即该因素下的不同水平间有显著差异,则下面的各指标的比较以及指标内部的比较才有意义。

从表2的x1,x2的sig值为:0.658,0.563大于0.05,则表明指标1与指标2的各自3个不同的处理间有显著的差异。

从表4可以看出:原理(sig<0.05表明该指标下的两个处理间显著,sig>0.05表明该指标下的两个处理间不太显著,sig越小越显著),则指标1下:处理1与处理2之间显著,处理1与处理3之间不显著,处理2与处理3之间不显著;指标2下:处理1与处理2之间显著, 处理1与处理3之间显著, 处理2与处理3之间不显著。

2.从题目要求来看,该题属于两向分类多元方差分析,根据spss软件,得到如下结果:⑴spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。

方差分析1实验报告

方差分析1实验报告

.. . . . .实验报告课程名称生物医学统计分析实验名称方差分析1专业班级姓名学号实验日期实验地点2015—2016学年度第 2 学期组内38.842 20 1.942总数85.340 24分析:表2是方差分析的统计结果,由此可知,F=5.986,P=0.002〈0.01,可认为5个品种猪存在极显著差异,故须进行多重比较。

表3 5个品种猪增重的多重比较(LSD法)(I) 品种(J) 品种均值差 (I-J) 标准误显著性95% 置信区间下限上限LSD 1 2 3.0000*.8046 .001 1.322 4.6783 1.8667*.8439 .039 .106 3.6274 .5417 .8996 .554 -1.335 2.4185 3.5417*.8996 .001 1.665 5.4182 1 -3.0000*.8046 .001 -4.678 -1.3223 -1.1333 .8439 .194 -2.894 .6274 -2.4583*.8996 .013 -4.335 -.5825 .5417 .8996 .554 -1.335 2.4183 1 -1.8667*.8439 .039 -3.627 -.1062 1.1333 .8439 .194 -.627 2.8944 -1.3250 .9348 .172 -3.275 .6255 1.6750 .9348 .088 -.275 3.6254 1 -.5417 .8996 .554 -2.418 1.3352 2.4583*.8996 .013 .582 4.3353 1.3250 .9348 .172 -.625 3.2755 3.0000*.9854 .006 .944 5.0565 1 -3.5417*.8996 .001 -5.418 -1.6652 -.5417 .8996 .554 -2.418 1.3353 -1.6750 .9348 .088 -3.625 .2754 -3.0000*.9854 .006 -5.056 -.944*. 均值差的显著性水平为 0.05。

spass方差分析实验报告

spass方差分析实验报告

页脚内容1页脚内容2页脚内容3页脚内容4页脚内容5页脚内容6页脚内容7(6)分析:根据方差分析的多重比较结果,分别进行了两两比较,以A2品种与A1、A3、A4的比较为例。

A2品种与A1、A3、A4种的均值相差分别为-31.70000、-7.02500、-16.82500,而且所有的相伴概率sig=0.000<0.05,这说明了A2种与其他三种饲料均具有显著性差异,而且从产量均值的差异上看Mean Difference (I-J)均低于其他3种品种,说明A2种的效果没有其他品种的效果好。

第二题:某公司希望检测四种类型的轮胎A,B,C,D的寿命(由行驶的里程数决定),见表6.18(单位:千英里)(数据文件为data6-5.sav),其中每种轮胎应用在随机选择的6辆汽车上。

在显著性水平0.05下判断不同类型轮胎的寿命间是否存在显著性差异?(数据来源:《统计学(第三版)》,M.R.斯皮格尔,科学出版社)表6.18 四种轮胎的寿命数据页脚内容8页脚内容9页脚内容10Sum of Squares dfMeanSquare F Sig.Between Groups 77.500325.8332.388.099WithinGroups216.3332010.817 Total293.83323(3)均值折线图页脚内容11页脚内容12页脚内容13页脚内容143A344A44土地1B142B243B344B44(2)多因素方差分析及交互检验结果表Tests of Between-Subjects Effects Dependent Variable:产量SourceType IIISum of Squares dfMeanSquare F Sig.CorrectedModel1571.938a15104.796..页脚内容15页脚内容16(4)分析:有最终的交互影响折线图来看,A2品种在B1土地上种植最终的产量最高。

方差与方差分析实验报告

方差与方差分析实验报告

方差与方差分析实验报告方差与方差分析实验报告引言方差是统计学中常用的一个概念,用来衡量数据集中的离散程度。

方差分析是一种用于比较多个样本之间差异的方法。

本实验旨在通过方差和方差分析的应用,探索不同因素对实验结果的影响。

实验设计我们设计了一个实验,研究不同肥料对植物生长的影响。

为了排除其他因素对结果的干扰,我们选择了相同品种、相同生长环境的植物,并将其随机分为三组,分别施加不同肥料。

每组实验重复10次,以减少随机误差的影响。

实验步骤1. 准备工作:选择适当的植物品种、土壤和肥料,并确保生长条件的一致性。

2. 分组:将植物随机分为三组,每组10个样本。

3. 施肥:分别给每组植物施加不同肥料,确保施肥方法的一致性。

4. 观察记录:在一定时间内,每天记录植物的生长情况,包括高度、叶片数量等指标。

5. 数据整理:将每组植物的生长数据整理成表格,以便后续分析。

数据分析我们使用方差分析来比较不同肥料对植物生长的影响。

首先,我们计算每组植物的平均生长值,并计算出总体的平均值。

然后,我们计算组内差异的平方和,即各组数据与组内均值之差的平方之和。

最后,我们计算组间差异的平方和,即各组均值与总体均值之差的平方之和。

通过计算方差和协方差,我们可以得到组内方差和组间方差的估计值。

方差反映了每组数据与该组均值之间的离散程度,而组间方差则反映了不同组之间的差异程度。

通过比较这两个方差的大小,我们可以判断不同肥料对植物生长的影响是否显著。

结果与讨论经过方差分析,我们得到了组内方差和组间方差的估计值。

通过计算F值,我们可以判断组间方差是否显著大于组内方差。

如果F值大于临界值,就可以认为不同肥料对植物生长的影响是显著的。

在我们的实验中,我们发现组间方差明显大于组内方差,且F值远远超过了临界值。

这表明不同肥料对植物生长的影响是显著的。

进一步的分析显示,第一组施加的肥料对植物生长的促进效果最好,第二组次之,第三组最差。

结论通过方差分析,我们证明了不同肥料对植物生长的影响是显著的。

spss实验报告---方差分析

spss实验报告---方差分析

实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。

学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。

二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。

零假设:各水平下总体方差没有显著差异。

相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。

从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。

2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。

(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。

不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。

说明不同广告和不同地区对汽车销量都有显著性影响。

广告对于销量的影响略大于地区对销量的影响。

从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。

实验报告二方差分析1126

实验报告二方差分析1126

实验二方差分析开课实验室:1B303 年月日姓名成绩年级专业学号实验小组成员指导教师一、实验内容(一)单因素方差分析(One-Way ANOVA过程)(二)多因素方差分析(Univariate过程)(三)协方差分析(Univariate过程)二、实验目的学习利用SPSS进行单因素方差分析、多因素方差分析和协方差分析。

三、实验步骤(简要写明实验步骤)(一)单因素方差分析(One-Way ANOVA过程)实验内容:某城市从4个排污口取水,进行某种处理后检测大肠杆菌数量,单位面积内菌落数如下表所示,请分析各个排污口的大肠杆菌数量是否有差别。

排污口 1 2 3 4大肠杆菌数量9,12,7,5 20,14,18,12 12,7,6,10 23,13,16,21 实验步骤:1.建立数据文件。

定义变量名:编号、大肠杆菌数量和排污口的变量名分别为x1、x2、x3,之后输入原始数据。

2. 选择菜单“Analyz e→Compare Means→One-way ANOV A”,弹出单因素方差分析对话框。

从对话框左侧的变量列表中选择变量”大肠杆菌数量”,使之进入“Dependent List”列表框;选择“排污口”进入“Factor”框。

3.选择进行各组间两两比较的方法。

单击“Post Hoc”,弹出“One-Way ANOVA: Post Hoc Multiple Comparisons”。

在“Equal V ariances Assumed”复选框组中选择LSD.4.定义相关统计选项以及缺失值处理方法。

单击“Options”按钮,弹出“One-Way ANOV A: Options”对话框。

在“Statistics”复选框组选择Descriptive 和Homogeneity-of-variance.同时选中“Means plot”复选框。

5.单击“OK”按钮,执行单因素方差分析,得到输出结果。

(二)多因素方差分析(Univariate过程)实验内容:某城市从4个排污口取水,经两种不同方法处理后,检测大肠杆菌数量,单位面积内大肠杆菌数量如下表所示,请检验它们是否有差别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

篇一:spss的方差分析实验报告


报告
篇二:方差分析实验报告
方差分析实验报告
学生姓名:琚锦涛学号:091230126
一.实验目的
根据方差分析的相关方法,利用excel中的相关工具,将数据收集,整理,从而了解方差分析的特点和性质。

二.实验内容
1.单因素方差分析
利用以下数据进行单因素方差分析,判断不同产地的原材料是否显著影响产品的质量指标;
2.双因素方差分析
利用以下数据进行双因素方差分析,检验因素a与因素b搭配下是否对其有显著差异,交互作用是否显著;
三.实验结果分析
1.单因素方差分析由以上数据可知,p-value=0.2318&gt;0.05,因此可得出:原材料产地的这一质量指标无显著影响。

2.双因素方差分析
样本、列及交互的p-value远小于0.05,由此可得出燃料和推进器两因素对于火箭影响显著。

数据来源:《应用统计学》第二版;篇三:单因素方差分析实验报告
天水师范学院数学与统计学院
实验报告
实验项目名称单因素方差分析所属课程名称实验类型设计型实验日期2011.11.22
班级 09统计一班学号 291050146 姓名成绩
【实验目的】
通过测量数据研究各个因素对总体的影响效果,判定因素在总变异中的重要程度
【实验原理】
比较因素a的r个水平的差异归结为比较这r个总体的均值.即检验假设
ho : μ1 = μ2 = … = μr, h1 : μ1, μ2, … , μr 不全相等给定显著水平α,用p 值检验法,
当p值大于α时,接受原假设ho,否则拒绝原假设ho
【实验环境】 r 2.13.1
pentinu(r)dual-core cpu e6700 3.20ghz 3.19ghz,2.00gb的内存【实验方案】
准备数据,查找相关r程序代码并进行编写运行得出结果进行分析总结
【实验过程】(实验步骤、记录、数据、分析) 1.根据四种不同配方下的元件寿命数据
材料使用寿命
a1 1600 1610 1650 1680 1700 1700 1780 a2 1500 1640 1400 1700 1750
a3 1640 1550 1600 1620 1640 1600 1740 1800 a4 1510 1520 1530 1570 1640 1600 2.利用主函数aov()编写该数据的方差分析r程序 3.运行得出结果
df sum sq mean sq f value pr(&gt;f)
a3 49212 16404 2.1659 0.1208 residuals 22 166622 7574
4.对所得结果分析
df表示自由度 sum sq表示平方和 f value表示f值pr(&gt;f)表示p值 residuals是残差 a就是因素 5.根据实际情况得出结论
根据p值(0.1208 &gt; 0.05)可以接受h0.
【实验结论】(结果)得如下方差分析表
df sum sq mean sq f value pr(&gt;f)
a349212 16404 2.1659 0.1208 residuals 22 166622 7574
可以判断出四种材料生产出的元件寿命无显著差异
【实验小结】(收获体会)
三、指导教师评语及成绩:
评语
1.实验报告按时完成,字迹清楚,文字叙述流畅,逻辑性强
评语等级
优良中及不及格

2.实验方案设计合理
3.实验过程(实验步骤详细,记录完整,数据合理,分析透彻) 4实验结论正确.
成绩:
指导教师签名:
批阅日期:
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。

2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。

3.实验原理:简要说明本实验项目所涉及的理论知识。

4.实验环境:实验用的软、硬件环境。

5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。

概括整个实验过程。

对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。

对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。

对于创新性实验,应注明其创新点、特色。

6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。

7.实验结论(结果):根据实验过程中得到的结果,做出结论。

8.实验小结:本次实验心得体会、思考和建议。

9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。

相关文档
最新文档