最全的二元一次方程组解决问题

合集下载

(完整版)二元一次方程组的运用1(行程问题)

(完整版)二元一次方程组的运用1(行程问题)
等量关系1:火车完全过桥路程=桥的长度+火车的长度
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1:火车完全过桥路程=桥的长度+火车的长度 等量关系2:火车在桥=120 整理,得 X+y=120
3(x-y)=120
x-y=40
解得
x=80 y=40
答:巡逻车的速度是80千米/时,犯 罪团伙的车的速度是40千米/时.
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1: 快车行的路程+慢车行的
客车路程
路程=两列火车的车长和
货车路程
例6:客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车 长600米,如果两车相向而行,那么从两车车头相遇到车尾离开共需21
秒钟;如果客车从后面追赶货车,那么从客车车头追上货车车尾到客车 车尾离开货车车头共需1分45秒,求两车的速度。
作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两
辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油
站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻
车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车
和犯罪团伙的车的速度各是多少?
解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,
货车路程
客车路程
等量关系1:快车行的路程+慢车行的路程=两列火车的车长和
等量关系2:快车行的路程-慢车行的路程=两列火车的车长和

二元一次方程组应用题经典题有答案(5)

二元一次方程组应用题经典题有答案(5)

实际问题与二元一次方程组题型归纳(5)知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、行程问题题目:A、B 两地相距 120 千米,甲、乙两人分别从 A、B 两地同时出发,相向而行。

甲的速度是每小时 10 千米,乙的速度是每小时 20 千米。

经过多少小时两人相遇?答案:设经过 x 小时两人相遇。

甲行驶的路程为 10x 千米,乙行驶的路程为 20x 千米。

由于两人是相向而行,所以他们行驶的路程之和等于两地的距离,可列出方程:10x + 20x = 12030x = 120x = 4答:经过 4 小时两人相遇。

二、工程问题题目:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。

若两人合作,需要多少天完成?答案:设两人合作需要 x 天完成。

把这项工程的工作量看作单位“1”,甲每天的工作效率是 1/10,乙每天的工作效率是 1/15。

两人合作每天的工作效率是(1/10 + 1/15),可列出方程:(1/10 + 1/15)x = 1(3/30 + 2/30)x = 15/30 x = 1x = 6答:两人合作需要 6 天完成。

三、商品销售问题题目:某商店将进价为 8 元的商品按每件 10 元售出,每天可售出200 件。

现在采用提高售价,减少销售量的办法增加利润,如果这种商品每件的销售价每提高 05 元,其销售量就减少 10 件,问应将每件售价定为多少元时,才能使每天利润为 640 元?答案:设将每件售价定为 x 元。

每件的利润为(x 8)元,售价提高了(x 10)元。

因为售价每提高 05 元,销售量减少 10 件,所以销售量减少了 10×(x 10)÷05 = 20(x 10)件。

实际销售量为200 20(x 10)件。

根据利润=每件利润×销售量,可列出方程:(x 8)200 20(x 10)= 640(x 8)(200 20x + 200)= 640(x 8)(400 20x)= 640400x 20x² 3200 + 160x = 640-20x²+ 560x 3840 = 0x² 28x + 192 = 0(x 12)(x 16)= 0解得 x₁= 12,x₂= 16答:应将每件售价定为 12 元或 16 元时,才能使每天利润为 640 元。

(完整版)七年级数学下册二元一次方程组应用题

(完整版)七年级数学下册二元一次方程组应用题

二元一次方程组解应用题列方程解应用题的基本关系量:(1)行程问题:速度×时间=路程(2)顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(3)工程问题:工作效率×工作时间=工作量(4)浓度问题:溶液×浓度=溶质(5)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型:(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100% (10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的(分配调运问题)1、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

(完整版)二元一次方程组应用题大全(2),推荐文档

(完整版)二元一次方程组应用题大全(2),推荐文档

知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。

2、已知板凳和木马共有33个,腿共有101条。

板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。

其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。

问成人票与学生票各售出多少张?分析:两个相等关系:①;②。

4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。

已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。

及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。

解:设乌鸦有x只,树有y棵。

1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。

求参加会议的人数和宿舍数。

分析:两个相等关系:①;②。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

二元一次方程组应用题及答案

二元一次方程组应用题及答案

二元一次方程组应用题1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。

两人原来各有多少钱?书多少钱?设丽丽有x元钱家家有y元钱得出:3/5x=2/3y2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)解2元一次方程得x=50 y=45 即丽丽50元家家45元书30元一本2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?8除4/5=10(km/)4/5除8=0.1(kg)3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?30÷1/2=60千米1÷60=1/60小时4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23 求出x=285.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?62-24=38(只)3/5红=2/3黄9红=10黄红:黄=10:938/(10+9)=2红:2*10=20黄:20*9=186.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?2.16/(1+1/11)=1.98(立方米)8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?现在甲乙各有560÷2=280吨原来甲有280÷(1-2/9)=360吨原来乙有560-360=200吨9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是200÷2/11=2200元现价是2200-200=2000元10。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:设这两种储蓄的年利率 分别是x、y,根据题意得
x+y=3. 24%
解之得
2000x80%+1000y80%=43.92
x=2.25% y=0.99%
答:这两种储蓄的年利蓄分别为2.25%、0.09%
例2。某超市在“五一”期间寻顾客实行优惠,规定 如下:
(448/16+720/12)x=(448/14+720/18)y
解之得 X=13.5 所以88x=88·13.5=1188 Y=16.5
三、商品经济问题
本息和=本金+利息 利息=本金×年利率×期
数×利息税
利息所得税=利息金额×20℅
例1李明以两种形式分别储蓄了2000元和1000元,一年 后全部取出,扣除利息所得税后可得利息43.92元,已 知这两种储蓄的年利率的和为3.24℅,问这两种储蓄 的年利率各是几分之几?(注:公民应交利息所得税= 利息金额×20℅)
90(x-y)=450
快车长230米,慢车长220 米,若两车同向而行,快 车从追上慢车时开始到离 开慢车,需90秒钟


220m

甲 450m
解:设快车、慢车的速 度分别为xm/s、ym/s
根据题意,得
90(x-y)=450 解之得
18(x+y)=450
若两车相向而行,快车 从与慢车相遇时到离开 慢车,只需18秒钟
同时同地同向在同一跑道进行比赛
A

B
当男生第一次赶上女生时 男生跑的路程-女生跑的路程=跑道的周长
同时异地追及问题 乙的路程-甲的路程=甲乙之间的距离
T ( V乙 - V甲 )=s
t


S
例1.某站有甲、乙两辆汽车, 若甲车先出发1h后乙车出发, 则乙车出发后5h追上甲车; 若甲车先开出30km后乙车出 发,则乙车出发4h后乙车所 走的路程比甲车所走路程多10 km.求两车速度.
Y=10
答:船在静水中的速度及水流的速度 分别为50km/h、10km/h
二、工程问题
工作量=工作时间×工作效率 工作时间=工作量/工作效率
工作效率=工作量/工作时间、
例1.某工人原计划在限定时间内加工一批 零件.如果每小时加工10个零件,就可以超 额完成3 个;如果每小时加工11个零件就可 以提前1h完成.问这批零件有多少个?按原 计划需多少小时 完成?
解:设甲乙两车的速度分别为 若甲车先出发1h后
x Km/h、y Km/h
乙车出发,则乙车 出发后5h追上甲车
根据题意,得
5y=6x 解之得 X=50
4y=4x+40
Y=6o
答:甲乙两车的速度分别为
若甲车先开出30km后乙 车出发,则乙车出发4h 后乙车所走的路程比甲车 所走路程多10km.
50km、60km
解:设这批零件有x个,按原计 划需y小时完成,根据题意,得
10y=x+3 11(y-1)=x
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成
例2.甲乙两家服装厂生产同一规格的上衣和裤 子,甲厂每月(按30天计算)用16天生产上衣,14 天做裤子,共生产448套衣服(每套上、下衣各 一件);乙厂每月用12天生产上衣,18天生产 裤子,共生产720套衣服,两厂合并后,每月 按现有能力最多能生产多少套衣服?
根据题意,得
发,每隔10min相遇一次
2.5(x+y)=400 解之得 X=100 答:甲乙两人的速度分别
10(X-Y)=400
Y=60 为100m/min、60m/min
甲 乙
A
B
环形跑道追及问题等 同于异地追及问题


C
A
B
例4.已知A、B两码头之间的距离为 240km,一艏船航行于A、B两码头之间, 顺流航行需4小时 ;逆流航行时需6小时, 求船在静水中的速度及水流的速度.
解:设甲乙两人的速度分 别为xm/min、ym/min 根据题意,得
2.5(x+y)=400
甲、乙两人在周长为 400m的环形跑道上练 跑,如果相向出发,每 隔2.5min相遇一次
A B
解:设甲乙两人的速度分 甲、乙两人在周长为400m的
别为xm/min、ym/min 环形跑道上练跑,如果同向出
练习.一辆汽车从甲地驶往乙地,途中要过一桥。用 相同时间,若车速每小时60千米,就能越过桥2千米; 若车速每小时50千米,就差3千米才到桥。问甲地与 桥相距多远?用了多长时间?
船在逆水中的速度=船在 静水中的速度-水流的速度
水流方向
轮船航向
船在顺水中的速度=船在 静水中的速度+水流的速度
水流方向
5y
x
30km
5x 4y
4x
例2.一列快车长230米,一列慢 车长220米,若两车同向而行, 快车从追上慢车时开始到离开慢 车,需90秒钟;若两车相向而行, 快车从与慢车相遇时到离开慢车, 只需18秒钟,问快车和慢车的速 度各是多少?
解:设快车、慢车的速 度分别为xm/s、ym/s 根据题意,得
X=15
Y=10
答:快车、慢车的速度分别为15m/s、10m/s
230m
甲乙
220m
230m
甲乙
220m
450m 18s
例3.甲、乙两人在周长为400m的 环形跑道上练跑,如果相向出发, 每隔2.5min相遇一次;如果同向出 发,每隔10min相遇一次,假定两人 速度不变,且甲快乙慢,求甲、乙 两人的速度.
填写下表
工厂 上衣(裤子)
甲 上衣
裤子
乙 上衣
裤子
生产天数 生产套数
16 14 448
12 18 720
工厂 上衣(裤子)
甲 上衣
裤子
乙 上衣
裤子
生产天数 生产套数
16
14
448
12 18 720
解:设该厂用x天生产上衣,y天生产裤 子,则共生产(448/16+720/12)x套衣服, 由题意得
X+y=30
二元一次方程 组的应用
一、行程问题
基本数量关系
时间=路程/速度 同时相向而行 同时同向而行
路程=时间×速度 速度=路程/时间 路程=时间×速度之和 路程=时间×速度之差
船在顺水中的速度=船在静水中的速度+水流的速度 船在逆水中的速度=船在静水中的速度-水流的速度
V1
V2
A
S
B
S=T( V1 + V2 )
轮船航向
例5.已知A、B两码头之间的距离为240km,一艏 船航行于A、B两码头之间,顺流航行需4小时 ;逆 流航行时需6小时, 求船在静水中的速度及水流 的速度.
解:设船在静水中的速度及水流的速度 分别为xkm/h、ykm/h,根据题意,得
4(x+y)=240 解之得 X=50
6(x-y)=240
相关文档
最新文档