光电耦合器moc

合集下载

常用光耦(光电耦合器)代换大全

常用光耦(光电耦合器)代换大全

常用光耦(光电耦合器)代换大全光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。

它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。

当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。

以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。

各品牌光耦替代型号Fairchild NECPart Nnmber TOSHIBA ParNumberLv PartNnmberTOSHIBA ParNumberLvH11A617TLP421B PS2501-1TLP421A H11A817TLP421A PS2561-1TLP421A H11AA814TLP620B TLP2571-1TLP421A H11B815TLP627A TLP2581L1TLP421F A HMA121TLP181A PS2505-1TLP620B HMA124TLP124A PS2565-1TLP620B HMA2701TLP181A PS2502-1TLP627A HMHA2801TLP281A PS2562-1TLP627A HMHA281TLP281A PS2532-1TLP627A HMAA2705TLP180A PS2533-1TLP627A HMHAA280TLP280A PS2521-1TLP629B H11A1TLP631A TLP2525-1TLP320B H11AA1TLP630A PS2701-1TLP181A H11AG1TLP331A PS2761-1TLP181A H11B1TLP571A PS2705-1TLP180A H11C1TLP541G A PS2765-1TLP180A H11D1TLP371C PS2702-1TLP127A H11G1TLP371A PS2801-1TLP281A MOC3021-MTLP3021(S)A PS2801-4TLP281-4A MOC3022-MTLP3022(S)A PS2861-1TLP281A MOC3023-MTLP3023(S)A PS2805-1TLP280A MOC3041-MTLP3041(S)A PS2805-4TLP280-4A MOC3042-MTLP3042(S)A PS2865-1TLP280A MOC3043-MTLP3043(S)A PS2811-1TLP283B MOC3051-MTLP3051(S)A PS2811-4TLP283-4B MOC3052-MTLP3052(S)A PS8601TLP759B MOC3061-MTLP3061(S)A PS8602TLP759A MOC3062-MTLP3062(S)A PS9613TLP759(IGM)A MOC3063-MTLP3063(S)A PS8701TLP114A B Vishay PS8101TLP114A BPart Nnmber TOSHIBA ParNumberLv PS9713TLP114A(IGM)BK817P TLP421A PS9113TLP114A(IGM)B SFH610A TLP421A PS9601TLP554A SFH614A TLP628A PS9614TLP554B SFH615A TLP421A PS9714TLP115A B SFH617A TLP421A PS9114TLP115A B SFH618A TLP624B PS9715TLP115A BSFH618A TLP624B PS9715TLP115A B TCET1100TLP421A PS9115TLP115A B SFH690XT TLP181A PS9701TLP115A A TCMT1100TLP281A PS7141-1A TLP597GA A TCMT4100TLP281-4A PS7141-2A TLP227GA-2A SFH628A TLP620B PS7141-1B TLP4597G B K815P TLP627A PS7141-2B TLP4227G-2B SFH612A TLP627A PS7141-1C TLP4006G BSFH619A TLP627A PS7341C-1ATLP594G BSFH655A TLP627A PS7141C-2ATLP224G-2BSFH692AT TLP127A PS7241-1A TLP176GA A TCED1100TLP627A PS7241-2A TLP206GA A IL66TLP371A PS7241-1B TLP4176G B IL66B TLP372A PS7241-2B TLP4206G B AVAGO(Agilent)AROMAT(NAIS)Part Nnmber TOSHIBA ParNumberLv PartNnmberTOSHIBA ParNumberLvHCPL-M600TLP115A A AQV210TLP592G A HCPL-M601TLP115A A AQV214E TLP597G A HCPL-M611TLP115A A AQV210EH TLP797GA A HCPL-M452TLP114A A AQV210S TLP192G A HCPL-M453TLP114A A AQV212TLP592A A HCPL-M456TLP114A A AQV212S TLP197A A HCPL-2601TLP2601A AQV214TLP597GA A HCPL-2611TLP2601A AQV214E TLP597G A HCPL-2201TLP555B AQV214EH TLP797GA A HCPL-2530TLP2530A AQV214H TLP797GA A HCPL-2531TLP2531A AQV214S TLP197GA A HCPL-2630TLP2631A AQV215TLP597A B HCPL-2631TLP2631A AQV216TLP797J A HCPL-3120TLP3120A AQV217S TLP197D A HCPL-3140TLP351A AQV410EH TLP4592G A HCPL-3150TLP351A AQV414TLP4592G A HCPL-3180TLP350B AQV414E TLP4597G A HCPL-314J TLP701*2C AQV414S TLP4197G A HCPL-4504TLP559A AQW210TLP222G-2A HCPL-0708TLP116B AQW210S TLP202G A HCPL-181TLP181A AQW212TLP222A-2A HCPL-354TLP180B AQW214TLP227GA-2A HCPL-814TLP620B AQW214S TLP206GA A HCPL-817TLP421A AQW215TLP222A-2B COSMO AQW217TLP222G-2APart Nnmber TOSHIBA ParNumberLv AQW414TLP4222G-2AK1010TLP421A AQW610S TLP4026G A K1020TLP621-2A AQW614TLP4007G A K2020TLP631B AQY210EH TLP227G A K3010TLP620B AQY210LS TLP174G A KP3020TLP620-2B AQY210S TLP174G A KP4010TLP627A AQY214EH TLP227G A KP4020TLP627-2A AQY214S TLP176GA A K5010TLP371A AQY410EH TLP4227G A K6010TLP630A AQY414EH TLP4227G B KPS2801TLP281A AQY414S TLR4176G A KPC354NT TLP180B AQY221N1S TLP3113/TLP3116B KPC355NT TLP127A AQY221N2S TLP3113/TLP3116B KPC357NT TLP181A AQY221R2V TLP3215A KPC452TLP127A AQY221N2V TLP3216A SHARPPart Nnmber TOSHIBA ParNumberLvPC123TLP421APC123TLP421APC817TLP421APC813TLP620APC815TLP627APC357NT TLP181APC354NT TLP180APC355NT TLP127APC3H7TLP281APC3H3TLP280A各品牌光耦替代型号Fairchild NECPart Nnmber TOSHIBA ParNumberLv PartNnmberTOSHIBA ParNumberLvH11A617TLP421B PS2501-1TLP421A H11A817TLP421A PS2561-1TLP421A H11AA814TLP620B TLP2571-1TLP421A H11B815TLP627A TLP2581L1TLP421F A HMA121TLP181A PS2505-1TLP620B HMA124TLP124A PS2565-1TLP620B HMA2701TLP181A PS2502-1TLP627A HMHA2801TLP281A PS2562-1TLP627A HMHA281TLP281A PS2532-1TLP627A HMAA2705TLP180A PS2533-1TLP627A HMHAA280TLP280A PS2521-1TLP629B H11A1TLP631A TLP2525-1TLP320B H11AA1TLP630A PS2701-1TLP181A H11AG1TLP331A PS2761-1TLP181A H11B1TLP571A PS2705-1TLP180A H11C1TLP541G A PS2765-1TLP180A H11D1TLP371C PS2702-1TLP127A H11G1TLP371A PS2801-1TLP281A MOC3021-MTLP3021(S)A PS2801-4TLP281-4A MOC3022-MTLP3022(S)A PS2861-1TLP281A MOC3023-MTLP3023(S)A PS2805-1TLP280A MOC3041-MTLP3041(S)A PS2805-4TLP280-4A MOC3042-MTLP3042(S)A PS2865-1TLP280A MOC3043-MTLP3043(S)A PS2811-1TLP283B MOC3051-MTLP3051(S)A PS2811-4TLP283-4B MOC3052-MTLP3052(S)A PS8601TLP759B MOC3061-MTLP3061(S)A PS8602TLP759A MOC3062-MTLP3062(S)A PS9613TLP759(IGM)A MOC3063-MTLP3063(S)A PS8701TLP114A B Vishay PS8101TLP114A BPart Nnmber TOSHIBA ParNumberLv PS9713TLP114A(IGM)BK817P TLP421A PS9113TLP114A(IGM)B SFH610A TLP421A PS9601TLP554A SFH614A TLP628A PS9614TLP554B SFH615A TLP421A PS9714TLP115A B SFH617A TLP421A TLP115A BSFH617A TLP421A PS9114TLP115A B SFH618A TLP624B PS9715TLP115A B TCET1100TLP421A PS9115TLP115A B SFH690XT TLP181A PS9701TLP115A A TCMT1100TLP281A PS7141-1A TLP597GA A TCMT4100TLP281-4A PS7141-2A TLP227GA-2A SFH628A TLP620B PS7141-1B TLP4597G B K815P TLP627A PS7141-2B TLP4227G-2B SFH612A TLP627A PS7141-1C TLP4006G BSFH619A TLP627A PS7341C-1ATLP594G BSFH655A TLP627A PS7141C-2ATLP224G-2BSFH692AT TLP127A PS7241-1A TLP176GA A TCED1100TLP627A PS7241-2A TLP206GA A IL66TLP371A PS7241-1B TLP4176G B IL66B TLP372A PS7241-2B TLP4206G B AVAGO(Agilent)AROMAT(NAIS)Part Nnmber TOSHIBA ParNumberLv PartNnmberTOSHIBA ParNumberLvHCPL-M600TLP115A A AQV210TLP592G A HCPL-M601TLP115A A AQV214E TLP597G A HCPL-M611TLP115A A AQV210EH TLP797GA A HCPL-M452TLP114A A AQV210S TLP192G A HCPL-M453TLP114A A AQV212TLP592A A HCPL-M456TLP114A A AQV212S TLP197A A HCPL-2601TLP2601A AQV214TLP597GA A HCPL-2611TLP2601A AQV214E TLP597G A HCPL-2201TLP555B AQV214EH TLP797GA A HCPL-2530TLP2530A AQV214H TLP797GA A HCPL-2531TLP2531A AQV214S TLP197GA A HCPL-2630TLP2631A AQV215TLP597A B HCPL-2631TLP2631A AQV216TLP797J A HCPL-3120TLP3120A AQV217S TLP197D A HCPL-3140TLP351A AQV410EH TLP4592G A HCPL-3150TLP351A AQV414TLP4592G A HCPL-3180TLP350B AQV414E TLP4597G A HCPL-314J TLP701*2C AQV414S TLP4197G A HCPL-4504TLP559A AQW210TLP222G-2A HCPL-0708TLP116B AQW210S TLP202G A HCPL-181TLP181A AQW212TLP222A-2A HCPL-354TLP180B AQW214TLP227GA-2A HCPL-814TLP620B AQW214S TLP206GA A HCPL-817TLP421A AQW215TLP222A-2B COSMO AQW217TLP222G-2APart Nnmber TOSHIBA ParNumberLv AQW414TLP4222G-2AK1010TLP421A AQW610S TLP4026G A K1020TLP621-2A AQW614TLP4007G A K2020TLP631B AQY210EH TLP227G A K3010TLP620B AQY210LS TLP174G A KP3020TLP620-2B AQY210S TLP174G A KP4010TLP627A AQY214EH TLP227G A KP4020TLP627-2A AQY214S TLP176GA A K5010TLP371A AQY410EH TLP4227G A K6010TLP630A AQY414EH TLP4227G B KPS2801TLP281A AQY414S TLR4176G A KPC354NT TLP180B AQY221N1S TLP3113/TLP3116B KPC355NT TLP127A AQY221N2S TLP3113/TLP3116B KPC357NT TLP181A AQY221R2V TLP3215A KPC452TLP127A AQY221N2V TLP3216A SHARPPart TOSHIBA Par LvPart Nnmber TOSHIBA ParNumberLvPC123TLP421A PC817TLP421A PC813TLP620A PC815TLP627A PC357NT TLP181A PC354NT TLP180A PC355NT TLP127A PC3H7TLP281A PC3H3TLP280A。

MOC3023_光耦.pdf

MOC3023_光耦.pdf

1.6
400
1.5
200
1.4
0
TA = -55oC
-200
1.3
TA = 25oC
-400
1.2
TA = 100oC
-600
1.1
-800
1.0 1 10 100
-3
-2
-1
0
1
2
3Hale Waihona Puke ON-STATE VOLTAGE - V TM (V)
IF - LED FORWARD CURRENT (mA)
Fig. 3 Trigger Current vs. Ambient Temperature
2001 Fairchild Semiconductor Corporation DS300255 10/31/01 1 OF 8
6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVER OUTPUT
(250/400 VOLT PEAK)
100
6
4
10
2
1
0 25 30 40 50 60 70 80 90
Ambient Temperature - TA (oC)
0.1 -40 -20 0 20 40 60
o
80
100
TA, AMBIENT TEMPERATURE ( C)
DS300255
10/31/01
3 OF 8

Parameters EMITTER Input Forward Voltage Reverse Leakage Current DETECTOR IF = 10 mA VR = 3 V, TA = 25°C VF IR IDRM VTM dv/dt All All All All All 1.15 0.01 10 1.8 10 1.5 100 100 3 V µA nA V V/µs Test Conditions Symbol Device Min Typ Max Units

光耦简介及常见型号

光耦简介及常见型号

常用光耦简介及常见型号光电耦合器(简称光耦)是开关电源电路中常用的器件。

光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。

常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。

非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。

线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。

开关电源中常用的光耦是线性光耦。

如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。

由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。

同时电源带负载能力下降。

在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。

常用的4脚线性光耦有PC817A----C。

PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。

常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。

经查大量资料后,以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。

光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。

MOC中文资料

MOC中文资料

M O C资料一、概述
摸出MOC3020、MOC30201、MOC30202、MOC3023是摩托罗拉生产的可控硅驱动的光电耦合器,它包含了一个砷化镓红外线发光二极管和对光敏感的双向可控硅,功能就像三端双向可控硅开关元件。

它主要用在连接控制电器控制和可控硅控制240V的交流负载。

二、特征
●有极好稳定的触发电流I FT——红外线发光二极管有很小的降落;
●很高的隔离电压——7500V的最小交流峰值;
●underwriterslaboratoryrecognized——File#E90700;
●峰值阻断电压400V;
三、应用
●欧洲主要用于240V交流电
●三端双向可控硅的驱动
●工业控制
●交通灯
●自动售货机
●电动机控制
●固态继电器
在空气温度25摄氏度时的绝对最大额定值:
储存温度范围:-40°——150°
工作温度范围:-40°——100°
二极管输入正向直流电流:50mA
二极管输入反向电压:3V
二极管输入峰值正向电流:3A(1um的脉冲,每秒300脉冲)二极管输入的功率耗散:100mw(25摄氏度左右)
线性递减(25°左右):1.33mw/o C
输出驱动:
输出断开的终端电压:400V
输出接通的均方根电流:(T A=25°)100mA
(50HZ—60HZ正弦波)(T A=70°)50mA
抽象峰值浪涌电流:1.2A(T w=10ms空比DC=10%)
总的功率损耗:300mw
四、元件特性。

光电耦合器原理及使用

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。

型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。

点击进入万联芯城点击进入万联芯城光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。

光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。

由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。

图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。

如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。

由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

光电耦合器MOC3063、4N25管脚及应用-固态继电器电路

光电耦合器MOC3063、4N25管脚及应用-固态继电器电路

光电耦合器MOC3063、4N25管脚及应用-固态继电器电路光电耦合器 MOC3063的管脚及固态继电器电路
MOC3063 管脚图:
4N25 管脚图:
元器件选择
恒流部分按图中的参数选取元件,均无特殊要求。

图1中的光电耦合器分别选用了4N25与MOC3063等便于购买的型号。

这两种光耦均采用双列直插六脚封装,外形如图2所示,图1中标注了内部结构对应的引脚排列。

功率三极管或晶闸管的选取决定了固态继电器的带负载能力,图1中T选用BT136、BCR3AM时,负载电流最大为3A;选用BCR10AM时,最大电流为10A。

若负载电流小于1A,T 可用MAC97A6等型号的小管,这将使制成的成品体积大大减小。

如果负载电流较大,必要时需要给VT4和T加装一定大小的散热器。

在负载电源为220V时,C的耐压值不小于400V。

笔者用的是彩电开关电源用的耐压1kV的安规电容。

固态继电器便可以在电路中取代电磁继电器使用了。

这种固态继电器的输入下限电压低于3V,上限电压高于30V的直流电压,输出导通电压是AV220V交流电压,因此通用性很强。

光电耦合器工作原理

光电耦合器工作原理

常用光电耦合器型号参数PartNumberIFT(mA)maxVTM(V)maxDM(V)mindv/dt(V/us)minIDRM1(nA)maxVISOACRMS]MOC30 3115325010001005.3kVMOC303210325010001005.3kVMOC30335325010001005.3kVMOC3041 15340010001005.3kVMOC304210340010001005.3kVMOC30435340010001005.3kVMOC306115 36006005005.3kVMOC30621036006005005.3kVMOC3063536006005005.3kVMOC30811538006 005005.3kVMOC30821038006005005.3kVMOC3083538006005005.3kVMOC316210360010常用光电耦合器型号参数dt h=521 border=1>Par t Number IFT(mA)maxVTM(V)maxDM(V)mindv/dt(V/us)minIDRM1(nA)maxVISOACRMS]MOC3031 15 3 250 1000 100 5.3 kV MOC3032 10 3 250 1000 100 5.3 kV MOC3033 5 3 250 1000 100 5.3 kV MOC3041 15 3 400 1000 100 5.3 kV MOC3042 10 3 400 1000 100 5.3 kV MOC3043 5 3 400 1000 100 5.3 kV MOC3061 15 3 600 600 500 5.3 kV MOC3062 10 3 600 600 500 5.3 kV MOC3063 5 3 600 600 500 5.3 kV MOC3081 15 3 800 600 500 5.3 kV MOC3082 10 3 800 600 500 5.3 kV MOC3083 5 3 800 600 500 5.3 kV MOC3162 10 3 600 1000 100 5.3 kV MOC3163 5 3 600 1000 100 5.3 kV光电耦合器工作原理光电耦合器件简介光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。

光电耦合过零触发电路moc3061

光电耦合过零触发电路moc3061

6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK)MOC3061-MMOC3062-MMOC3063-M MOC3162-M MOC3163-MDESCRIPTIONThe MOC306X-M and MOC316X-M devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver. They are designed for use with a triac in the inter-face of logic systems to equipment powered from 115/240 VAC lines, such as solid-state relays, industrial controls, motors, sole-noids and consumer appliances, etc.FEATURES•Simplifies logic control of 115/240 VAC power •Zero voltage crossing•dv/dt of 1000 V/µs guaranteed (MOC316X-M),–600 µs guaranteed (MOC306X-M)•VDE recognized (File # 94766)–ordering option V (e.g., MOC3063V-M)•Underwriters Laboratories (UL) recognized (File #E90700, volume 2)APPLICATIONS•Solenoid/valve controls •Static power switches •T emperature controls •AC motor starters •Lighting controls •AC motor drives • E.M. contactors •Solid state relays6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK) MOC3061-M MOC3062-M MOC3063-M MOC3162-M MOC3163-M ABSOLUTE MAXIMUM RATINGS (T A = 25°C unless otherwise noted)Parameters Symbol Device Value Units TOTAL DEVICEStorage T emperature T STG All-40 to +150°C Operating T emperature T OPR All-40 to +85°C Lead Solder T emperature T SOL All260 for 10 sec°C Junction T emperature Range T J All-40 to +100°C Isolation Surge Voltage(4) (peak AC voltage, 60Hz, 1 sec duration)V ISO All7500Vac(pk)T otal Device Power Dissipation @ 25°CP D All 250mWDerate above 25°C 2.94mW/°C EMITTERContinuous Forward Current I F All60mA Reverse Voltage V R All6VT otal Power Dissipation 25°C AmbientP D All 120mWDerate above 25°C 1.41mW/°C DETECTOROff-State Output T erminal Voltage V DRM All600V Peak Repetitive Surge Current (PW = 100 µs, 120 pps)I TSM All1AT otal Power Dissipation @ 25°C AmbientP D All 150mWDerate above 25°C 1.76mW/°C6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK)MOC3061-MMOC3062-MMOC3063-MMOC3162-MMOC3163-M*T ypical values at T A = 25°CNotes1.T est voltage must be applied within dv/dt rating.2.All devices are guaranteed to trigger at an I F value less than or equal to max I FT . Therefore, recommended operating I F lies between max I FT (15 mA for MOC3061-M, 10 mA for MOC3062-M & MOC3162-M, 5 mA for MOC3063-M & MOC3163-M) and absolute max I F (60 mA).3.This is static dv/dt. See Figure 9 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.4.Isolation surge voltage, V ISO , is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.ELECTRICAL CHARACTERISTICS (T A = 25°C Unless otherwise specified)INDIVIDUAL COMPONENT CHARACTERISTICSParametersTest Conditions Symbol Device Min Typ*Max Units EMITTERInput Forward Voltage I F = 30 mA V F All 1.3 1.5V Reverse Leakage Current V R = 6 VI R All 0.005100µADETECTORPeak Blocking Current, Either Direction V DRM = 600V , I F = 0 (note 1)I DRM1 MOC316X-M 10100nA MOC306X-M 10500Critical Rate of Rise of Off-State VoltageI F = 0 (figure 9, note 3)dv/dtMOC306X-M 6001500V/µsMOC316X-M1000TRANSFER CHARACTERISTICS (T A = 25°C Unless otherwise specified.)DC CharacteristicsTest ConditionsSymbolDevice MinTyp*Max UnitsLED T rigger Current (rated I FT )main terminal Voltage = 3V (note 2)I FTMOC3061-M 15mA MOC3062-M/MOC3162-M 10MOC3063-M/MOC3163-M5Peak On-State Voltage, Either Direction I TM = 100 mA peak,I F = rated I FTV TM All 1.83V Holding Current, Either DirectionI HAll500µA ZERO CROSSING CHARACTERISTICSCharacteristicsTest Conditions Symbol Device MinTyp*Max UnitsInhibit Voltage (MT1-MT2 voltage above which device will not trigger)I F = Rated I FT V INH MOC3061-M/2M/3M 1220V MOC3162-M/3M1215Leakage in Inhibited StateI F = Rated I FT ,V DRM = 600V , off stateI DRM2All150500µA ISOLATION CHARACTERISTICSCharacteristics Test Conditions Symbol Device Min Typ*Max Units Isolation Voltagef = 60 Hz, t = 1 secV ISOAll7500V6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK) MOC3061-M MOC3062-M MOC3063-M MOC3162-M MOC3163-M6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK) MOC3061-M MOC3062-M MOC3063-M MOC3162-M MOC3163-M6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK) MOC3061-M MOC3062-M MOC3063-M MOC3162-M MOC3163-M1. 100x scope probes are used, to allow high speeds and voltages.2. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removingthe current. The variable vernier resistor combined with various capacitor combinations allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τRC is measured at this point and recorded.Tneutral or hot line.R inused.6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK)MOC3061-MMOC3062-MMOC3063-MMOC3162-MMOC3163-MNOTEAll dimensions are in inches (millimeters)6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK)MOC3061-MMOC3062-MMOC3063-MMOC3162-MMOC3163-MORDERING INFORMATIONMARKING INFORMATIONOption Order Entry IdentifierDescriptionS S Surface Mount Lead Bend SR2 SR2Surface Mount; T ape and reel T T 0.4" Lead Spacing V V VDE 0884TV TV VDE 0884, 0.4" Lead Spacing SV SV VDE 0884, Surface MountSR2VSR2VVDE 0884, Surface Mount, T ape & Reel*Note – Parts that do not have the ‘V’ option (see definition 3 above) that are marked with date code ‘325’ or earlier are marked in portrait format.Definitions1Fairchild logo 2Device number3VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)4One digit year code, e.g., ‘3’5T wo digit work week ranging from ‘01’ to ‘53’6Assembly package code6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK) MOC3061-M MOC3062-M MOC3063-M MOC3162-M MOC3163-M Array NOTEAll dimensions are in inches (millimeters)LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUMEANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.6-PIN DIP ZERO-CROSSPHOTOTRIAC DRIVER OPTOCOUPLER(600V PEAK)MOC3061-MMOC3062-MMOC3063-MMOC3162-MMOC3163-M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电耦合器本词条由“科普中国”百科科学词条编写与应用工作项目审核。

光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。

它由发光源和受光器两部分组成。

把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。

发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。

中文名光电耦合器外文名optical coupler英文缩写OC目录.1基本资料.▪简介.2工作原理.▪基本原理.▪基本工作特性(光敏三极管).3结构特点.4仪器测试.5应用.▪开关电路.6具体应用.▪组成开关电路.▪组成逻辑电路.▪隔离耦合电路.▪高压稳压电路.▪门厅照明灯自动控制电路.7分类.▪按光路径分.▪按输出形式分.▪按封装形式分.▪按传输信号分.▪按速度分.▪按通道分.▪按隔离特性分.▪按工作电压分.8选取原则.9发展现状注意事项.10发展现状.11应用前景基本资料编辑简介光电耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。

光电耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

光电耦合器是一种把发光器件和光敏器件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

其中,发光器件一般都是发光二极管。

而光敏器件的种类较多,除光电二极管外,还有光敏三极管、光敏电阻、光电晶闸管等。

光电耦合器可根据不同要求,由不同种类的发光器件和光敏器件组合成许多系列的光电耦合器。

图1显示了一个典型的光电耦合器驱动电路。

在该例中,右边的5V副边输出将会被左边原边电路的脉宽调制器控制。

比较器A1将ZDl(结点A)的参考电压和通过分压电路R7和R8的输出电压进行比较,因而控制Q2的导通状态,可以定义发光二极管D1的电流和通过光耦合在光敏晶体管Q1的集电极电流。

然后Q1定义脉冲宽度和输出电压,补偿任何使输出电压改变的倾向。

随着光电耦合器的使用时间增加和传输比即增益的下降,为了防止控制失灵,给Q2提供充足的驱动电流裕量是很有必要的。

光电耦合器实物图光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。

(外形有金属圆壳封装,塑封双列直插等)。

工作原理编辑基本原理在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。

光电耦合器主要由三部分组成:光的发射、光的接收及信号放大。

光的发射部分主要由发光器件构成,发光器件一般都是发光二极管,发光二极管加上正向电压时,能将电能转化为光能而发光,发光二极管可以用直流、交流、脉冲等电源驱动,但发光二极管在使用时必须加正向电压。

光的接收部分主要由光敏器件构成,光敏器件一般都是光敏晶体管,光敏晶体管是利用PN 结在施加反向电压时,在光线照射下反向电阻由大变小的原理来工作的。

光的信号放大部分主要由电子电路等构成。

发光器件的管脚为输入端,而光敏器件的管脚为输出端。

工作时把电信号加到输入端,使发光器件的芯体发光,而光敏器件受光照后产生光电流并经电子电路放大后输出,实现电→光→电的转换,从而实现输入和输出电路的电器隔离。

由于光电耦合器输入与输出电路间互相隔离,且电信号在传输时具有单向性等优点,因而光电耦合器具有良好的抗电磁波干扰能力和电绝缘能力。

基本工作特性(光敏三极管)1、共模抑制比很高在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。

2、输出特性光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。

当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。

IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。

其测试连线如图2,图中D、C、E三根线分别对应B、C、E 极,接在仪器插座上。

3、隔离特性1.隔离电压Vio(Isolation Voltage)光耦合器输入端和输出端之间绝缘耐压值。

2.隔离电容Cio(Isolation Capacitance):光耦合器件输入端和输出端之间的电容值3.隔离电阻Rio:(Isolation Resistance)半导体光耦合器输入端和输出端之间的绝缘电阻值。

4、传输特性:1.电流传输比CTR(Current Transfer Radio)输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。

2.上升时间T r(Rise Time)& 下降时间T f(Fall Time)光电耦合器在规定工作条件下,发光二极管输入规定电流I FP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间t r。

从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间t f。

其它参数诸如工作温度、耗散功率等不再一一复述。

5、光电耦合器可作为线性耦合器使用。

在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。

光电耦合器也可工作于开关状态,传输脉冲信号。

在传输脉冲信号时,输入信号和输出信号之间存在一定的延迟时间,不同结构的光电耦合器输入、输出延迟时间相差很大。

结构特点编辑结构光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内, 然后利用发光器件的管脚作输入端, 而把光接收器的管脚作为输出端。

当在输入端加电信号时,发光器件发光。

这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。

从而实现了以“光”为媒介的电信号传输, 而器件的输入和输出两端在电气上是绝缘的。

这样就构成了一种中间通过光传输信号的新型半导体光电子器件。

光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。

具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等优点。

特点光电耦合的主要特点如下::①光信号单向传输,输出信号对输入端无反馈,可有效阻断电路或系统之间的电联系,但并不切断他们之间的信号传递。

②隔离性能好,输入端与输出端之间完全实现了电隔离。

③光信号不受电磁波干扰,工作稳定可靠。

④光发射器件与光敏器件的光谱匹配十分理想,响应速度快,传输效率高,光电耦合器件的时间常数通常在微秒甚至毫微秒级。

⑤抗共模干扰能力强,能很好地抑制干扰并消除噪音。

⑥无触点,使用寿命长,体积小,耐冲击能力强。

⑦易与逻辑电路连接。

⑧工作温度范围宽,符合工业和军用温度标准。

由于光电耦合器的输入端是发光器件,发光器件是阻抗电流驱动性器件,而噪音是一种高内阻微电流电压信号。

因此光电耦合器件的共模抑制比很大,光电耦合器件可以很好地抑制干扰并消除噪音。

它在计算机数字通信及实时控制电路中作为信号隔离的接口元件可以大大增加计算机工作的可靠性。

在长线信息传输中作为终端隔离元件可以大幅度提高信噪比。

所以,它在各种电路中得到了广泛的应用。

目前已成为种类最多、用途最广的光电器件之一。

输入和输出端之间绝缘, 其绝缘电阻一般都大于10Ω, 耐压一般可超过1kV , 有的甚至可以达到10kV 以上。

由于“光” 传输的单向性, 所以信号从光源单向传输到光接收器时不会出现反馈现象, 其输出信号也不会影响输入端。

由于发光器件( 砷化镓红外二极管) 是阻抗电流驱动性器件, 而噪音是一种高内阻微电流的电压信号。

因此光电耦合器件的共模抑制比很大,所以,光电耦合器件可以很好地抑制干扰并消除噪音。

它在计算机数字通信及实时控制电路中作为信号隔离的接口元件可以大大增加计算机工作的可靠性。

在长线信息传输中作为终端隔离元件可以大幅度提高信噪比。

所以,它在各种电路中得到了广泛的应用。

目前已成为种类最多、用途最广的光电器件之一。

仪器测试编辑光电耦合器的测试1、用万用表判断好坏,如图3,断开输入端电源,用R×1k档测1、2脚电阻,正向电阻为几百欧,反向电阻几十千欧,3、4脚间电阻应为无限大。

1、2脚与3、4脚间任意一组,阻值为无限大,输入端接通电源后,3、4脚的电阻很小。

调节RP,3、4间脚电阻发生变化,说明该器件是好的。

注:不能用R×10k档,否则导致发射管击穿。

2、简易测试电路,如图(4),当接通电源后,LED不发光,按下SB,LED会发光,调节RP、LED的发光强度会发生变化,说明被测光电耦合器是好的。

应用编辑在长线信息传输中作为终端隔离元件可以大幅度提高信噪比。

所以,它在各种电路中得到了广泛的应用。

目前已成为种类最多、用途最广的光电器件之一。

开关电路图1对于开关电路,往往要求控制电路和开关电路之间要有很好的电隔离,这对于一般的电子开关来说是很难做到的,但采用光电耦合器就很容易实现了。

图1中(a)所示电路就是用光电耦合器组成的简单开关电路。

在图1(a)中,当无脉冲信号输入时,三极管BG处于截止状态,发光二极管无电流流过不发光,则a、b两端电阻非常大,相当于开关“断开”。

当输入端加有脉冲信号时,BG 导通,发光二极管发光,则a、b两端电阻变得很小,图1 相当于开关“接通”。

故称无信号时开关不通,为常开状态。

图1中(b)所示电路则为“常闭”状态,因为无信号输入时,虽BG截止,但发光二极管有电流通过而发光,使a、b两端处于导通状态,相当于开关“接通”。

当有信号输入时,BG导通,由于BG的集电结压降在0.3V以下,远小于发光二极管的正向导通电压,所以发光二极管无电流流过不发光,则a、b两端电阻极大,相当于开关“断开”,故称“常闭”式。

可见,开关a、b端在电路中不受电位高低的限制,但在使用中应满足a端电位为正,b端为负,并使U&ab>3V为好,同时还应注意Uab应小于光电三极管的BVceo。

依据图1的原理,光电耦合器可以组成如图2中(a)、(b)等多种形式。

相关文档
最新文档