几何模型——半角模型
中考数学 几何专题——半角模型

几何模型之半角模型一、旋转性质1.图形对应边相等(易得等腰,且等腰均相似)2.对应角相等3.对应点与旋转中心连线构成旋转角,旋转角处处相等二、半角模型半角模型(90°含45°)条件模型结论①等腰直角△ABC;②∠DAE=45°DE2=BD2+CE2①等腰直角△ABC;②∠DAE=45°DE2=BD2+CE2①正方形ABCD;②∠EAF=45°①EF=BE+DF;②△CEF的周长是正方形周长的一半;③点A到EF的距离等于正方形的边长.①正方形ABCD;②∠EAF=45°EF=DF-BE三、模型演练1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的是.2.在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2,其中正确的是()A.②④B.①④C.②③D.①③3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是.5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)6.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D、E是BC边上的任意两点,且∠DAE=45°.(1)将△ABD绕点A逆时针旋转90°,得到△ACF,请在图(1)中画出△ACF.(2)在(1)中,连接EF,探究线段BD,EC和DE之间有怎样的数量关系?写出猜想,并说明理由.(3)如图2,M、N分别是正方形ABCD的边BC、CD上一点,且BM+DN=MN,试求∠MAN的大小.。
半角模型十五个结论及证明

半角模型十五个结论及证明《探索半角模型的十五个结论及证明》嗨,大家好!今天我要和大家一起探索一个超有趣的数学知识——半角模型的十五个结论及证明。
这就像是一场奇妙的数学冒险,跟我来呀!一、什么是半角模型呢?半角模型呀,就像是一个神秘的数学宝藏,藏在各种几何图形里。
想象一下,我们有一个正方形或者等腰直角三角形,然后在这个图形里出现了一个角,这个角是另外一个大角的一半,这就形成了半角模型。
比如说,在正方形里,一个角是45度,它就是直角90度的一半呢。
这时候啊,就会有好多神奇的结论冒出来。
二、结论一:线段相等我给大家举个例子哈。
在正方形ABCD中,∠EAF = 45度(E、F分别在BC、CD 上)。
我们能发现BE + DF = EF。
这是为啥呢?我们可以把△ADF绕着点A顺时针旋转90度,这样AD就和AB重合了。
旋转后的点F变成了F'。
那这个时候呀,我们就会发现△AEF和△AEF'是全等的。
为啥呢?因为AF = AF',∠EAF = ∠EAF' = 45度,AE是公共边啊。
就像两个一模一样的小积木,那EF就等于EF'了,而EF'就是BE + DF呀。
你们说神奇不神奇?这就好比是把分散的力量集中起来了,原本分开的BE和DF,通过旋转这个魔法,就变成了和EF相等的线段。
三、结论二:三角形面积关系还有一个有趣的结论呢。
三角形AEF的面积等于三角形ABE的面积加上三角形ADF的面积。
这又怎么理解呢?我们刚刚把△ADF旋转到了△ABF'的位置。
那三角形AEF的面积就等于三角形AEF'的面积啦。
而三角形AEF'的面积就是三角形ABE的面积加上三角形ABF'(也就是原来的三角形ADF)的面积。
这就好像是把两个小地块合并起来就等于一个大地块的面积一样。
四、结论三:角平分线如果我们延长CB到G,使得BG = DF,连接AG。
我们会发现AG是∠EAG的角平分线呢。
中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。
通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。
常见的半角模型是90°含45°,120°含60°。
例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。
要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。
证明过程如下:1.延长ND到E,使DE=BM。
由四边形ABCD是正方形,得AD=AB。
在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。
得AE=AM,∠XXX∠BAM。
由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。
在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。
得MN=EN。
因此BM+DN=DE+DN=EN=MN。
2.由(1)得△AMN≌△XXX。
因此S△AMN=S△AEN,即AH×MN=AD×EN。
又因为MN=EN,得AH=AD。
因此AH=AB。
在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。
要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。
1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。
2) 猜想:当DM≠DN时,仍有BM+NC=MN。
证明如下:延长AC至E,使CE=BM,连接DE。
因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。
因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。
因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。
九年级中考几何模型之半角模型详解

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。
如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。
【模型思想】通过旋转变化后构造全等三角形,实线边的转化。
【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。
结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。
结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。
结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。
(完整word版)初中几何-半角模型

归纳一种几何模型:半角模型
特点:
过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC之间必存在固定关系。
这种关系仅与两条相关直线及顶角A相关.
解决方法:
以点A为中心,把△ACN(顺时针或逆时针)旋转角A度,至△ABN',连接MN';
结论:
1:△AMN全等于△AMN',MN=MN';
2:关注BM,MN',N'B(=NC),
若共线,则存在x+y=z型的关系;
若不共线,则△BMN'中,∠MBN'必与∠A相关,于是由勾股定理(有时需要作垂线)或直接用余弦定理可得
三者关系.
应用环境:(限于初中)
1:顶角为特殊角的等腰三角形,如顶角为30°、45°60°、75°或它们的补角、90°;
2:正方形、菱形等也能产生等腰三角形;
3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;
4:此等腰三角形的相关弦.
以上条件可以形成数百种题目!而解决方法均可以运用此方法.。
初中几何模型:半角模型分析

初中几何模型—半角模型分析归纳一种几何模型:半角模型特点:过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC之间必存在固定关系。
这种关系仅与两条相关直线及顶角A相关。
解决方法:以点A为中心,把△ACN(顺时针或逆时针)旋转角A度,至△ABN',连接MN';结论:1:△AMN全等于△AMN',MN=MN'; 2:关注BM,MN',N'B(=NC),若共线,则存在x+y=z型的关系;若不共线,则△BMN'中,∠MBN'必与∠A相关,于是由勾股定理(有时需要作垂线)或直接用余弦定理可得三者关系.应用环境:(限于初中)1:顶角为特殊角的等腰三角形,如顶角为30°、45°60°、75°或它们的补角、90°;2:正方形、菱形等也能产生等腰三角形;3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;4:此等腰三角形的相关弦。
以上条件可以形成数百种题目!而解决方法均可以运用此方法.例题分析:已知如图:①∠2=12∠AOB;②OA=OB.OAB EF123连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′4321F'FE BAO模型分析∵△OBF≌△OAF′,∴∠3=∠4,OF=OF′.∴∠2=12∠AOB,∴∠1+∠3=∠2∴∠1+∠4=∠2。
几何模型之半角模型

半角模型
结论三:∠AEB=∠AEF=∠ANM,∠AFD=∠AEF=∠AMN
半角模型
如图,在正方形ABCD中,点E .F分别为BC .CD上一点,并且∠EAF=45°,AE .AF分别交对角线于M.N
(3)求证:∠AEB=∠AEF=∠ANM,∠AFD=∠AEF=∠AMN
结论四:
如图,在正方形ABCD中,点E .F分别为BC .CD上一点,并且∠EAF=45°,AE .AF分别交对角线于M.N
(4)
半角模型
结论五: 作GE⊥BC,证N是DG中点
半角模型
如图,在正方形ABCD中,点E .F分别为BC .CD上一点,并且∠EAF=45°,AE .AF分别交对角线于M.N
(5)作GE⊥BC,证N是DG中点,AN⊥NE,AN=NE
作FH ⊥DB ,证BM=MH,AM⊥MF,AM=MF
(Q)
(Q)
如图,在正方形ABCD中,点E .F分别为BC .CD上一点,并且∠EAF=45°,AE .AF分别交对角线于M.N
(6)
半角模型
结论七:
如图,在正方形ABCD中,点E .F分别为BC .CD上一点,并且∠EAF=45°,AE .AF分别交对角线于M.N
(7)
半角模型
小 结:
“半角模型”①共端点的等线段;②共顶点的倍半角;
结论五:作GE⊥BC,N是DG中点,AN⊥NE,AN=NE
半角模型
如图,在正方形ABCD中,点E .F分别为BC .CD上一点,并且∠EAF=45°,AE .AF分别交对角线于M.N
(5)作GE⊥BC,N是DG中点,AN⊥NE,AN=NE
作FH ⊥DB ,BM=MH,AM⊥MF,AM=MF
结论六:
半角模型结论及证明

半角模型结论及证明半角模型是指使用坐标原点为两点或多点,考虑以每对对角线边长占比进行分解。
一、半角模型原理半角模型的原理是根据给定的坐标多边形,把这些点拆分成若干个环状,每个环状里的顶点数量都是偶数的多边形,以使每一对对角线边长是一样的,其边长的占比等于2π/N,其中N是所拆分的顶点数量。
二、半角模型的应用(1)用于计算机图形学。
如有一个多边形,想把它拆分成若干边数相等的多边形,就可以利用半角模型,将多边形一分为二,将每一对对角线边长占比分解。
(2)用于求解由多条曲线特点或逆时针走向组成的图形。
例如,当用铅笔画出一个圆形,先画一把半径等于一半圆周长的角,然后把圆形拆分成四个同样大小的三角形,用半角模型,一次画出一整圆。
三、半角模型的证明假设多边形的直角坐标原点是(0,0),且给定的多边形有N个顶点,对角线的边长占比是2π/n,则可以证明,凡是要使用半角模型拆分多边形,必须保证多边形的边长占比与2π/n相等。
首先,设从给定多边形的第一个顶点开始,往后逆时针经过的第i个顶点的坐标是(x_i,y_i),最终能够得到的多边形的边长:ab=∑_(i=1)^N▒r↑i其中,r↑i表示第i条边的长度,由勾股定理可以求出:r↑i=(x_i-x__(i-1))^2+(y_i-y__(i-1))^2因此,多边形的面积:A=ab/2最后,把这两个式子带入:A=(1/2)∑_(i=1)^N▒(x_i-x__(i-1))^2+(y_i-y__(i-1))^2以上就是半角模型的证明。
综上所述,半角模型具有明确的原理,并能够在计算机图形学中应用。
它可以把多边形拆分成若干边数相等的多边形,使得每一对对角线边长的占比等于2π/N,其中N是给定的顶点数量。
此外,半角模型的证明也得到了佐证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本模型(1)——正方形内含半 角
如图,在正方形ABCD中,E、F分别是BC、CD边上 的点,∠EAF=45°,求证:EF=BE+DF。
(1)证明: 由旋转可得GB=DF,AF=AG,∠BAG=∠DAF, ∵四边形ABห้องสมุดไป่ตู้D为正方形, ∴∠BAD=90°, ∵∠EAF=45°, ∴∠BAE+∠DAF=45°, ∴∠BAG+∠BAE=45°=∠EAF, 在△AGE和△AFE中 ∴△AGE≌△AFE(SAS), ∴GE=EF, ∵GE=GB+BE=BE+DF, ∴EF=BE+DF;
(2)解:EF=DF﹣BE, 证明如下: 如图,把△ABE绕点A逆时针旋转90°到AD, 交CD于点G, 同(1)可证得△AEF≌△AGF, ∴EF=GF,且DG=BE, ∴EF=DF﹣DG=DF﹣BE.
基本模型(2)——等边三角形内含半 角
基本模型(3)——等腰直角三角形内 含半角
几何模型——半角模型
什么叫半角模型?
定义:我们习惯把过等腰三角形顶角的顶点引两条 射线,使两条射线的夹角为等腰三角形顶角的一半 这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形 等,解题思路一般是将半角两边的三角形通过旋转 到一边合并形成新的三角形,从而进行等量代换, 然后证明与半角形成的三角形全等,再通过全等的 性质得出线段之间的数量关系,从而解决问题。