2020人教版八年级数学下册 课时作业本《四边形--菱形性质与判断》(含答案)

合集下载

八年级数学下册《菱形的性质与判定》练习题及答案解析

八年级数学下册《菱形的性质与判定》练习题及答案解析

八年级数学下册《菱形的性质与判定》练习题及答案解析1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20B.24C.40D.482.菱形的面积为12cm2,一条对角线是6cm,那么菱形的另一条对角线长为()A.3cm B.4cm C.5cm D.6cm3.如图,在菱形ABCD中,AC=AB,则∠ABC=()A.30°B.45°C.60°D.75°4.在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线相等且互相垂直C.两条对角线互相垂直D.两条对角线互相垂直平分5.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC6.如图,要使平行四边形ABCD变为菱形,需要添加的条件是()A.AC=BD B.AD=BC C.AB=CD D.AB=BC7.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD8.菱形的周长为52,一条对角线长为10,则此菱形的面积为.9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=.10.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,过点O作OH⊥AB于点H,则OH 的长为.11.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.12.如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.13.要使▱ABCD是菱形,你添加的条件是.(写出一种即可)14.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)15.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD.(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.16.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.17.如图,在▱ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.(1)求证:四边形DEBF为平行四边形;(2)当∠ADB=90°时,求证:四边形DEBF是菱形.18.如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.19.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.20.如图,在菱形ABCD中∠ABC=60°,E为对角线AC上一点,F是BC延长线上一点,连接BE,DE,AF,DF,∠EDF=60°.(1)求证:AE=CF;(2)若点G为BE的中点,连接AG,求证:AF=2AG.21.如图,在菱形ABCD中,AC,BD相交于点O.已知BC=2OC,BF=EF,G为CE中点,连接FG,AG(1)若CE=8,∠ACE=∠ACB,求AB;(2)求证:FG=AG.参考答案与解析1.解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.解:设另一条对角线长为xcm,则×6•x=12,解得x=4.故选:B.3.解:在菱形ABCD中,AB=BC,∵AC=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°.故选:C.4.解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,故选D.5.解:需要添加的条件是AB=BC;理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形(一组邻边相等的平行四边形是菱形);故选:D.6.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:D.7.解:A、对角线垂直的平行四边形是菱形.不符合题意;B、对角线相等的平行四边形是矩形.符合题意;C、邻边相等的平行四边形是菱形.不符合题意;D、邻边相等的平行四边形是菱形,不符合题意;故选:B.8.解:如图所示∵菱形的周长为52,即4AB=52,∴AB=13,∵AC=10,∴AO=AC=5,∵AC⊥BD,在Rt△AOB中,由勾股定理得BO=12,∴BD=2BO=24,∴菱形的面积=×10×24=120.故答案为:120.9.解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=24,BD=10,∴AO=12,OD=5,由勾股定理得:AD=13,∴BC=13,∴S菱形ABCD=AC•BD=BC×DE,∴×24×10=13×DE,解得:DE=,故答案为:.10.解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=3,AO=4,AO⊥BO,∴AB===5.∵OH⊥AB,∴AO•BO=AB•OH,∴OH=,故答案为:.11.证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF.12.解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.13.解:∵四边形ABCD是平行四边形,AD=AB,∴平行四边形ABCD是菱形,故答案为:AD=AB(答案不唯一).14.解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.15.解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.17.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴EB=DF,EB∥DF,∴四边形DEBF为平行四边形;(2)证明:∵∠ADB=90°,E为边AB的中点,∴DE=AB=EB,∵四边形DEBF为平行四边形,∴四边形DEBF为菱形.18.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DF A=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.19.证明:(1)∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF=∠ABC,∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,∴FH=DF,DH=FH=DF,∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC=DH=DF=6,∴DF=2,∴菱形BEDF的边长为2.20.证明:(1)∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=AD=CD,∠ADC=∠ABC=60°,∴△ADC是等边三角形,∴AD=AC=AB=BC,∴△ACB是等边三角形,∴∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ADC=∠EDF=60°,∴∠ADE=∠CDF,∵∠EDF+∠ECF+∠DEC+∠DFC=360°,∴∠DEC+∠DFC=180°,∵∠DEC+∠AED=180°,∴∠AED=∠DFC,在△ADE和△CDF中,∴△ADE≌△CDF(AAS),∴AE=CF;(2)如图,过点B作BH∥AC,交AG的延长线于点H,∵BH∥AC,∴∠H=∠GAE,∠ABH+∠BAC=180°,∴∠ABH=120°=∠ACF,∵点G为BE的中点,∴BG=GE,在△AGE和△HGB中,,∴△AGE≌△HGB(AAS),∴AE=BH=CF,AG=GH=AH,在△ABH和△ACF中,,∴△ABH≌△ACF(SAS),∴AF=AH,∴AF=2AG.21.(1)解:延长EF与BC交于点K∵菱形ABCD,∴AC⊥BD,∵BC=2OC∠OBC=30°,∴∠EBF=30°,∴∠BEF=30°,∠ABC=60°,∠EKB=90°,∠ACB=60°∠ACE=∠ACB=×60°=15°,∠ECK=45°,在Rt△CKE中,EK=CK=CE=,在Rt△EKB中,BK=∴BC=,即AB=;(2)证明:延长FG至点H,使GH=FG,连接CH,AH.∵G为CE中点,∴EG=GC,在△EFG与△CHG中,,△EFG≌△CHG(SAS),∴EF=CH,∠CHG=∠EFG,∴CH=BF,CH∥EF,由(1)可知∠EBC=60°,∠EKB=90°,∠BCD=120°,∴∠HCB=90°,∠ACH=∠BCD﹣∠HCB=120°﹣90°=30°,∴∠ABF=∠ACH,在△AFB与△AHC中,△AFB≌△AHC(SAS),∴AF=AH,∠BAF=∠CAH∵FG=GH,∴AG⊥FG,∴∠F AG=∠HAG∵∠BAC=∠BAF+∠F AC=60°,∴∠CAH+∠F AC=60°,即∠F AH=60°,∴∠F AG=∠HAG=30°,∴。

八年级数学下册菱形(含答案)

八年级数学下册菱形(含答案)

菱形【学习目标】1.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展主动探究的习惯.2.了解菱形的现实应用和常用的判别条件.【基础知识精讲】我们常见的活动衣帽架就是由菱形组成,观察图形4—31,你能找出有哪些线段是相等的?哪些角是相等的?答:相等的线段有AB=BC=CD=DA,AO=OC,BO=DO,相等的角有∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8.其中△ADC、△ABD、△ABC、△BCD都是等腰三角形,且对角线AC⊥BD.因此,菱形具有以下性质:四条边都相等,对角线互相垂直平分,每一条对角线平分一组对角.想一想(1)菱形是轴对称图形吗?若是,有几条对称轴?你能画出来吗?对称轴之间有什么关系?答:菱形是轴对称图形,它有两条对称轴,两条对称轴互相垂直,如图4—32.怎样用折纸、剪切的方法,很快剪出一个菱形纸片?我们看下面方法:将一张长方形纸片对折,再对折,然后沿虚线剪下,打开就是一个菱形.这样做的道理是:在对折的过程中,得到四个全等的直角三角形,即四边形各边都相等,因此得到的必是菱形.一定要记住:菱形的判别方法①一组邻边相等的平行四边形是菱形②对角线互相垂直的平行四边形是菱形③四条边都相等的四边形是菱形[例1]如图4—33,AD是△ABC的角平分线,DE∥AC,交AB于E,DF∥AB交AC于F,则四边形AEDF是菱形吗?试说明理由.解:由DE∥AF,DF∥AE,得四边形AEDF是平行四边形∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AE=ED∴AEDF是菱形.[例3]如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,则四边形AFCE是菱形吗?为什么?点拨:充分利用线段垂直平分线的性质,先证平行四边形,再证菱形.解:由ABCD得AE∥FC,∴∠1=∠2,又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF,∴EO=FO,∴四边形AFCE是平行四边形又∵EF⊥AC,∴AFCE是菱形.再想一想有没有其他方法?若证四条边都相等可不可以?自己试一试.【拓展训练】已知菱形ABCD的边长为2 cm,∠BAD=120°对角线AC、BD相交于点O,试求出菱形对角线的长和面积.解:∵四边形ABCD 是菱形,∴AC ⊥BD ,∠BAO =21∠BAD =21×120°=60°. Rt △AOB 中,∠ABO =90°-60°=30°∴AO =21AB =1,BO =322=-AO AB ∵AO =21AC,BO =21BD ∴AC =2AO =2,BD =2BO =23S 菱形ABCD =4S △AOB =4×21×1×323= 我们知道,AC =2AO ,BD =2BO ∴S 菱形ABCD =4S △AOB =4×21×AO ·BO =4×21·21AC ·21BD =21AC ·BD 因此,菱形的面积实际上等于对角线乘积的一半.。

2020年人教版八年级下册《菱形的性质及判定》拔高分类训练(教师版,含答案)

2020年人教版八年级下册《菱形的性质及判定》拔高分类训练(教师版,含答案)

知识点 A 要求B 要求C要求菱形会识别菱形 掌握菱形的概念、性质和判定,会用菱形的性质及判定解决简单问题会用菱形的知识解决有关问题1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线. 以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中 位线,再用中位线的性质.中点中点中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.知识点睛中考要求菱形的性质 及判定重点是菱形的性质及判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。

人教版数学八年级下册18.2.2 第1课时 菱形的性质1课时练习及答案.doc

人教版数学八年级下册18.2.2 第1课时 菱形的性质1课时练习及答案.doc

18.2.2 菱形第1课时菱形的性质1、菱形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、菱形的周长为100cm,一条对角线长为14cm,它的面积是()A. 168cm2B. 336cm2C. 672cm2D. 84cm23、下列语句中,错误的是()A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为_____,面积为______.5、四边形ABCD是菱形,点O是两条对角线的交点,已知AB=5, AO=4,求对角线BD 和菱形ABCD的面积.6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A)3:2 (B)3:3(C)1:2 (D)3:17、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。

8、如左下图,菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,求菱形ABCD的高DH。

9、如右上图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.10、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.11、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)12、(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、如左下图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.14、如右上图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15、【提高题】如图,在菱形ABCD中,顶点A到边BC、CD的距离AE、AF都为5,EF=6,那么,菱形ABCD的边长是_____菱形的性质答案1、【答案】 C2、【答案】 B3、【答案】 D4、【答案】 5 cm;24 cm25、【答案】BD=6,面积是24.6、【答案】B7、【答案】24 cm28、【答案】9.6cm9、【答案】60°10、【答案】(1)BD=12cm,3(2)S菱形ABCD3cm211、【答案】 A12、【答案】 C1213、【答案】5214、【答案】312515、【答案】24【提示】方程加勾股定理中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

新人教版八年级下册菱形基础知识点及同步练习、含答案

新人教版八年级下册菱形基础知识点及同步练习、含答案

学科:数学教学内容:菱形【基础知识精讲】定义:有一组邻边相等的平行四边形是菱形.定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.【重点难点解析】1.菱形的性质(1)菱形具有平行四边形的一切性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形.2.菱形的面积=底×高=对角线乘积的一半.A.重点、难点提示1.理解并掌握菱形的概念,性质和判别方法;(这是重点,也是难点,要掌握好)2.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法;3.了解菱形的现实应用和常用的判别条件;4.体会特殊与一般的关系.B.考点指要菱形是特殊的平行四边形,其性质和判别方法是中考的重要内容之一.一组邻边相等的平行四边形叫做菱形.菱形是特殊的平行四边形,具有平行四边形的一切性质.除具有平行四边形的一切性质外,菱形还具有以下性质:①菱形的四条边都相等;②两条对角线互相垂直平分;(出现了垂直,常与勾股定理联系在一起)③每一条对角线都平分一组内角.(出现了相等的角,常与角平分线联系在一起)菱形是轴对称图形,它的两条对角线所在直线是它的两条对称轴.(不是对角线,而是其所在直线,因为对称轴是直线,而对角线是线段)菱形的判别方法:(学会利用轴对称的方法研究菱形)①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.【难题巧解点拨】例1:如图4-24,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.思路分析由已知可知,图中有平行线,就可证角相等、线段相等,因此,可先证四边形AEFG 是平行四边形,再证一组邻边相等.证明:∵∠BAC=90°,EF⊥BC,CE平分∠ACB,∴AE=EF,∠CEA=∠CEF.(这是略证,并不是完整的证明过程)∵AD⊥BC,EF⊥BC,∴EF∥AD,(垂直于同一条直线的两条直线互相平行)∴∠CEF=∠AGE,(两直线平行,内错角相等)∴∠CEA=∠AGE,∴AE=AG,∴EF∥AG,且EF=AG,∴四边形AEFG是平行四边形.(一组对边平行且相等的四边形是平行四边形)又∵AE=EF,∴平行四边形AEFG是菱形.例2:已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.已知:菱形ABCD中,AB+BC+CD+DA=20cm,对角线AC=5cm.求∠ADC、∠ABC、∠BCD、∠DAB的度数.思路分析利用菱形的四条边相等,可求出各边长,从而得到等边三角形,如图4-25.解:在菱形ABCD中,∵AB=BC=CD=DA,又AB+BC+CD+DA=20cm,∴AB=BC=CD=DA=5cm,又∵AC=5cm,∴AB=BC=AC,CD=DA=AC,∴△ABC和△DAC都是等边三角形,(本题将边之间的长度关系转化为角的关系)∴∠ADC=∠ABC=60°,∠BCD=∠DAB=120°.例3:如图4-26,在平行四边形ABCD中,∠BAE=∠FAE,∠FBA=∠FBE.求证:四边形ABEF是菱形.证法一:∵AF∥BE,∴∠FAE=∠AEB (两直线平行,内错角相等)又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.(等角对等边)同理,AB=AF,BE=EF,∴AB=BE=EF=AF,∴四边形ABEF是菱形.(四条边都相等的四边形是菱形)证法二:∵AF∥BE,∴∠FAE=∠AEB,又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.又∵∠FBA=∠FBE,∴AO=OE,AE⊥FB,(等腰三角形三线合一)同理,BO=OF,∴四边形ABEF是菱形.(对角线互相垂直平分的四边形是菱形)(你还有其他的证明方法吗?不妨试一下)例4:菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.思路分析本题主要考查菱形的性质和面积公式的应用:解法一:如图4-27,∠B:∠A=1:2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°, 过A 作AE ⊥BC 于E , ∴∠BAE=30°,1AB 21BE ==∴,(直角三角形中,30°角所对的直角边等于斜边的一半) 312B E AB AE 2222=-=-=∴,(勾股定理) 32AE BC S ABCD =⋅=∴菱形.(平行四边形的面积计算方法是:底乘以高) 解法二:如图4-28,∠B ∶∠A=1∶2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°,连结AC 、BD 交于点O ,︒=∠=∠∴30B 21ABD ,AC ⊥BD . (菱形的性质:对角线平分一组对角,对角线互相垂直) 在Rt △ABO 中,1AB 21AO ==, 312AO AB B O 2222=-=-=∴,∴AC=2,32BD =, 3232221BD AC 21S ABCD =⨯⨯=⋅=∴菱形. 答:菱形的面积为32.【典型热点考题】例1 如图4-13,已知菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠B=∠EAF=60°,∠BAE=18°,求∠CEF 的度数.点悟:由∠B=60°知,连接AC得等边△ABC与△ACD,从而△ABE≌△ADF,有AE=AF,则△AEF为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF.解:连接AC.∵四边形ABCD为菱形,∴∠B=∠D= 60°,AB=BC=CD=DA,∴△ABC与△CDA为等边三角形.∴ AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF.∴ AE=AF.又∵∠EAF=60°,∴△EAF为等边三角形.∴∠AEF=60°,∵∠AEC=∠B+∠BAE=∠AEF+∠CEF,∴ 60°+18°=60°+∠CEF,∴∠CEF=18°.例2已知如图4-14,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD 于G,交AB于E,EF⊥BC于F,求证:四边形AEFG为菱形.点悟:可先证四边形AEFG为平行四边形,再证邻边相等(或对角线垂直).证明:∵∠BAC=90°,EF⊥BC,CE平分∠BCA,∴ AE=FE,∠AEC=∠FEC.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠FEC=∠AGE,∴∠AEC=∠AGE∴ AE=AG,∴∴四边形AEFG为平行四边形.又∵ AE=AG.∴四边形AEFG为菱形.点拨:此题还可以用判定菱形的另两种方法来证.例3 已知如图4-15,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE.求证:EB=OA证明:∵四边形ABCD为菱形,∴∠ABC=2∠ABD, AD∥BC,∴∠DAE=∠AEB,∵ AB=AE,∴∠ABC=∠AEB.∴∠DAE=2∠ABD.∵∠DAE=2∠BAE,∴∠ABD=∠BAE,∴ OA=OB.∵∠BOE=∠ABD+∠BAE,∴∠BOE=2∠BAE.∴∠BEA=∠BOE,∴ OB=BE,∴ AO=BE.说明:利用菱形性质证题时,要灵活选用,选不同性质,就会有不同思路.例4已知菱形的一边与两条对角线构成的两角之比为5:4,求菱形的各内角的度数.点悟:先作出菱形ABCD和对角线AC、BD(如图4-16).解:∵四边形ABCD是菱形,∴ AC⊥BD,∴∠1+∠2=90°,又∵∠1:∠2=4:5,∴∠1=40°,∠2=50°,∴∠DCB=∠DAB=2∠2=100°,故∠CBA=∠CDA=2∠1=80°.【同步达纲练习一】 一、选择题1.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( ) (A)45°, 135° (B)60°, 120° (C)90°, 90° (D)30°, 150°2.若菱形的一条对角线长是另一条对角线的2倍,且此菱形的面积为S ,则它的边长为( )(A)S (B)S 21 (c)S 321 (D)S 521二、填空题3.已知:菱形ABCD 中,E 、F 是BC 、CD 上的点,且AE=EF=AF=AB ,则∠B=________. 4.已知:菱形的两条对角线长分别为a 、b ,则此菱形周长为_______,面积为__________.5.菱形具有而矩形不具有的性质是_______.6.已知一个菱形的面积为38平方厘米,且两条对角线的比为1:3,则菱形的边长为_________.三、解答题 7.已知:O 为对角线BD 的中点,MN 过O 且垂直BD ,分别交CD 、AB 于M 、N .求证:四边形DNBM 是菱形.8.如图4-17,已知菱形ABCD 的对角线交于点O ,AC=16cm ,BD=12cm ,求菱形的高.【同步达纲练习二】1.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( ) A .2:3B .3:3C .1:2D .1:32.已知菱形的周长为40cm ,两对角线的长度之比为3:4,则两对角线的长分别为( ) A .6cm ,8cm B .3cm ,4cm C .12cm ,16cm D .24cm ,32cm 3.菱形的对角线具有( ) A .互相平分且不垂直B .互相平分且相等C .互相平分且垂直D .互相平分、垂直且相等(掌握菱形对角线的性质,注意不要增加性质)4.已知菱形的面积等于2cm 160,高等于8cm ,则菱形的周长等于____________. 5.已知菱形的两条对角线的长分别是6和8,那么它的边长是______________. 6.菱形的周长是40cm ,两邻角的比是1:2,则较短的对角线长是_________cm . 7.如图4-29,在△ABC 中,∠BAC=90°,BD 平分∠ABC ,AG ⊥BC ,且BD 、AG 相交于点E ,DF ⊥BC 于F .求证:四边形AEFD 是菱形.8.如图4-30,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O .求证:四边形AFCE 是菱形.参考答案【同步达纲练习一】一、1.B ; 2.D ;二、3.80°;4.222b a +,ab 21;5.对角线互相垂直,各边长相等. 6.4厘米.三、7.由已知MN 为BD 的垂直平分线, 有 DM=BM ,DN=BN ,又由△DOM ≌△BON ,得DM=BN ,∴ DM=BM=BN=DN .∴四边形DNBM 是菱形.8.过点D 作DH ⊥AB 于H ,则DH 为菱形的一条高. 又∵ AC 、BD 互相垂直平分于O ,∴ 821==AB OA 厘米,621==BD OB 厘米. 由勾股定理,得 1022=+=BO AO AB (厘米).又∵OA BD DH AB ⋅=⋅2121, ∴812211021⨯⨯=⨯⨯DH ,DH=9.6厘米.【同步达纲练习二】1.B ; 2.C ; 3.C ; 4.80cm ; 5.5; 6.10; 7.证法一:在Rt △ABD 和Rt △FBD 中,∵BD 为∠ABC 的平分线,∴∠ABD=∠FBD ,∠DAB=∠DFB=90°, 又∵BD=BD ,∴Rt △ABD ≌Rt △FBD ∴AD=DF ,∠ADE=∠EDF又∵DF ⊥BC ,AG ⊥BC ,∴DF//AE ,∴∠EDF=∠DEA ,∴∠ADE=∠DEA ,∴AD=AE , ∴AE=DF ,∴四边形AEFD 是平行四边形. ∵AD=DF ,∴四边形AEFD 为菱形. 证法二:同证法一得DF=DA=AE ,∵Rt △ABD ≌Rt △FBD ,∴AB=BF ,∴△ABE ≌△FBE , ∴AE=EF ,∴DF=DA=AE=EF ,∴四边形AEFD 是菱形. 证法三:同证法一:Rt △ABD ≌Rt △FBD ,∴AB=BF , ∴△ABE ≌△FBE ,∴∠GAB=∠EFB ,又∵∠C+∠ABC=90°,∠GAB+∠ABC=90°, ∴∠C=∠GAB ,∴∠C=∠EFB ,∴EF ∥AC , 又∵DF ∥AG ,∴四边形AEFD 是平行四边形, ∵AD=DF ,∴四边形AEFD 是菱形.8.∵AD ∥BC ,∴∠OAE=∠OCF ,又∵∠AOE=∠COF=90°,AO=CO , ∴△AOE ≌△COF ,∴AE=CF ,又∵AE ∥CF , ∴四边形AFCE 是平行四边形.又∵EF 是AC 的垂直平分线,∴AE=CE .(垂直平分线上的点到线段两端距离相等)∴四边形AFCE是菱形.。

2020—2021年人教版初中数学八年级下册菱形的性质与判定专项练习题及答案(精品试题).docx

2020—2021年人教版初中数学八年级下册菱形的性质与判定专项练习题及答案(精品试题).docx

八年级数学下册菱形性质与判定练习题一选择题:1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形3.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1 B.5:1 C.6:1 D.7:15.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=•BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种B.2种C.3种D.4种6.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,若∠CDF=24°,则∠DAB等于()A.100°B.104°C.105°D.110°7.如图,在长方形ABCD中,AB=12,AD=14,E为AB的中点,点F,G分别在CD,AD上,若CF=4,且△EFG为等腰直角三角形,则EF的长为()A.10B.10C.12D.128.用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M 和N,则M+N值不可能是()A.360°B.540°C.630°D.720°9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.410.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC 的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.211.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC 为8,宽AB为4,则折痕EF的长度为()A.5B.3C.2D.312.如图,四边形ABCD,AD与BC不平行,AB=CD.AC,BD为四边形ABCD的对角线,E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH 是矩形;③HF平分∠EHG;④EG =(BC﹣AD);⑤四边形EFGH是菱形.其中正确的个数是()A.1个B.2个C.3个D.4个二填空题:13.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E 为垂足,连接DF,则∠CDF的度数=度.14.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是.15.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是.16.如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x取值范围是.17.在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为.18.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为.三解答题:19.如图,已知△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.20.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD平分线交BC于点E(尺规作图的痕迹保留在图中了),连EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.21.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF ∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).22.如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.23.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD 中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.参考答案1.A2.A3.D4.B5.D6.B7.B8.C9.C.10.A 11.C 12.C13.答案为:60.14.案为:80°.15.答案为:60.16.答案为:3<x<11.17.【解答】解:当点E在CB的延长线上时,如图1所示.∵AB=5,AE=4,∴BE=3,CE=BC+BE=8;当点E在BC边上时,如图2所示.∵AB=5,AE=4,∴BE=3,CE=BC﹣BE=2.综上可知:CE的长是2或8.故答案为:2或8.18.【解答】解:分两种情况:(1)①当∠BPC=90°时,作AM⊥BC于M,如图1所示,∵∠B=60°,∴∠BAM=30°,∴BM=AB=1,∴AM=BM=,CM=BC﹣BM=4﹣1=3,∴AC==2,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴当点P与A重合时,∠BPC=∠BAC=90°,∴BP=BA=2;②当∠BPC=90°,点P在边AD上,CP=CD=AB=2时,BP===2;(2)当∠BCP=90°时,如图3所示:则CP=AM=,∴BP==;综上所述:当△PBC为直角三角形时,BP的长为2或2或.19.ED=1,提示:延长BE,交AC于F点.20.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF 为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO=4,∴AE=2AO=8.21.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE,BC=2DE,∴BE=BC.∴▱BCFE是菱形;(2)解:①∵由(1)知,四变形BCFE是菱形,∴BC=FE,BC∥EF,∴△FEC与△BEC是等底等高的两个三角形,∴S△FEC=S△BEC.②△AEB与△BEC是等底同高的两个三角形,则S△AEB=S△BEC.③S△ADC=S△ABC,S△BEC=S△ABC,则它S△ADC=S△BEC.④S△BDC=S△ABC,S△BEC=S△ABC,则它S△BDC=S△BEC.综上所述,与△BEC面积相等的三角形有:△FEC、△AEB、△ADC、△BDC.22.【解答】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.23.略。

八年级数学下册《菱形的判定》练习及答案

八年级数学下册《菱形的判定》练习及答案

八年级数学下册《菱形的判定》练习满分100分80分过关限时30分钟一.选择题(共4小题)1.下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB BC=时,四边形ABCD是菱形;②当AC BD⊥时,四边形ABCD是菱形;③当90ABC∠=︒时,四边形ABCD是菱形:④当AC BD=时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个3.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA OC=.若要使四边=,OB OD形ABCD为菱形,则可以添加的条件是()A.AC BDAOB⊥∠=︒D.AC BD⊥C.60=B.AB BC4.如图,在四边形ABCD中,AC与BD相交于点O,OAB OAD=,那么下列条件∠=∠,BO DO中不能判定四边形ABCD是菱形的为()A.OA OC==D.AD DC=B.BC DC=C.AD BC第3题图第4题图二.填空题(共4小题)5.如图,四边形ABCD是对角线互相垂直的四边形,且OB OD=,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)6.如图在Rt ABCAC=,6BC=,D为斜边AB上一点,以CD、CB为边作平ACB∆中,90∠=︒,8行四边形CDEB,当AD=时,平行四边形CDEB为菱形.7.如图所示,四边形ABCD中,AC BDBO DO==,6==,点P为线段AC上AO CO⊥于点O,8的一个动点.(1)填空:AD CD==.(2)过点P分别作PM AD⊥于M点,作PH DC⊥于H点.连结PB,在点P运动过程中,++的最小值为.PM PH PB8.如图1,边长为a 的正方形发生形变后成为边长为a 的菱形,如果这个菱形的一组对边之间的距离为h ,我们把a h的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD 分成2个等边三角形),则这个菱形的“形变度”为2:3.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,(AEF A ∆、E 、F 是格点)同时形变为△A E F ''',若这个菱形的“形变度” 1615k =,则A E F S '''=V .三.解答题(共2小题)9.如图,在等腰三角形ABC 中,AB AC =,AH BC ⊥,点E 是AH 上一点,延长AH 至点F ,使FH EH =.求证:四边形EBFC 是菱形.10.如图(1),ABC ∆为等腰三角形,AB AC a ==,P 点是底边BC 上的一个动点,//PD AC ,//PE AB . (1)用a 表示四边形ADPE 的周长为 ;(2)点P 运动到什么位置时,四边形ADPE 是菱形,请说明理由;(3)如果ABC ∆不是等腰三角形(图2),其他条件不变,点P 运动到什么位置时,四边形ADPE 是菱形(不必说明理由).参考答案与试题解析一.选择题(共4小题)【分析】由菱形的判定依次判断可求解.【解答】解:A、一组对边平行且相等的四边形是平行四边形,不一定是菱形,故A选项不符合题意;B、对角线相等的平行四边形是矩形,故B选项不符合题意;C、对角线垂直的四边形不一定是菱形,故C选项不符合题意;D、对角线互相垂直且平分的四边形是菱形,故D选项符合题意;故选:D.【点评】本题考查了菱形的判定,掌握菱形的判定是本题的关键.【分析】根据菱形的判定定理判断即可.【解答】解:Q四边形ABCD是平行四边形,=时,四边形ABCD是菱形;故符合题意;∴①当AB BC②当AC BD⊥时,四边形ABCD是菱形;故符合题意;③当90∠=︒时,四边形ABCD是矩形;故不符合题意;ABC④当AC BD=时,四边形ABCD是矩形;故不符合题意;故选:D.【点评】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.【分析】由条件OA OC=根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四=,OB OD边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:OA OC=,Q,OB OD=∴四边形ABCD为平行四边形,A、AC BDQ,=∴四边形ABCD是矩形,故选项A不符合题意;B、AB BCQ,⊥∴四边形ABCD是矩形,故选项B不符合题意;Q,∠=︒AOBC、60不能得出四边形ABCD是菱形;选项C不符合题意;D、AC BDQ,⊥∴四边形ABCD是菱形,故选项D符合题意;故选:D.【点评】此题主要考查了菱形的判定、矩形的判定;关键是掌握对角线互相垂直的平行四边形是菱形.【分析】利用菱形的判定依次进行判断即可.【解答】解:A、若AO OC=,=,且BO DO∴四边形ABCD是平行四边形,//∴AB CD∠=∠BAO OCD∴∠=∠,且OAB OAD∴∠=∠OAD OCD∴=,AD CD∴四边形ABCD是菱形故A选项不符合题意B、若BC DC==,BO DO∴是BD的垂直平分线AC∴=AB AD则不能判断四边形ABCD是菱形故B选项符合题意,=,Q,BO DOC、OAB OAD∠=∠∴=,且BO DOAB AD=∴垂直平分BDAC=BC CD∴=,且AD BC∴===AB AD BC CD∴四边形ABCD是菱形故C选项不符合题意D、OAB OAD=,∠=∠Q,BO DO∴=,且BO DOAB AD=AC∴垂直平分BD=BC CD∴=,且AD CD∴===AB AD BC CD∴四边形ABCD是菱形故D选项不符合题意故选:B.【点评】本题主要考查了菱形的判定与性质,熟练地掌握菱形的判定,注意与矩形、正方形、平行四边形的判定进行比较,是提高同学们综合能力的关键. 二.填空题(共4小题)【分析】可以添加条件OA OC =,根据对角线互相垂直平分的四边形是菱形可判定出结论. 【解答】解:OA OC =, OB OD =Q ,OA OC =,∴四边形ABCD 是平行四边形,AC BD ⊥Q ,∴平行四边形ABCD 是菱形,故答案为:OA OC =.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.【分析】首先根据勾股定理求得10AB =,由菱形的性质可得OD OB =,CD CB =,根据勾股定理可得OB 的值,由2AD AB OB =-可求AD 的长. 【解答】解:如图,连接CE 交AB 于点O . Rt ABC ∆Q 中,90ACB ∠=︒,4AC =,3BC =,2210AB AC BC ∴=+=若平行四边形CDEB 为菱形时,CE BD ⊥,OD OB =,CD CB =. Q1122AB OC AC BC =g g , 245OC ∴=. 22185OB BC OC ∴=-= 1425AD AB OB ∴=-=故答案为:145【点评】本题考查了菱形的判定与性质.求出OB 的长是本题的关键.【分析】(1)在ADO ∆中,由勾股定理可求得10AD =,由AC BD ⊥,AO CO =,可知DO 是AC 的垂直平分线,由线段垂直平分线的性质可知AD DC =;(2)由PM PH +为定值,当PB 最短时,PM PH PB ++有最小值,由垂线的性质可知当点P 与点O 重合时,OB 有最小值.【解答】解:(1)AC BD ⊥Q 于点O , AOD ∴∆为直角三角形.22228610AD AO OD ∴=+=+=. AC BD ⊥Q 于点O ,AO CO =, 10CD AD ∴==.故答案为:10;(2)如图1所示:连接PD .ADP CDP ADC S S S ∆∆∆+=Q ,∴111222AD PM DC PH AC OD +=g g g ,即1111010166222PM PH ⨯⨯+⨯⨯=⨯⨯. 10()166PM PH ∴⨯+=⨯. 9648105PM PH ∴+==, ∴当PB 最短时,PM PH PB ++有最小值,Q 由垂线段最短可知:当BP AC ⊥时,PB 最短.∴当点P 与点O 重合时,PM PH PB ++有最小,最小值4878655=+=. 故答案为:10,785. 【点评】本题主要考查了勾股定理、垂线段的性质、三角形的面积公式、垂线段的性质,利用面积以及三角形的面公式求得PM PH +的值是解答问题(2)的关键;利用垂线段的性质得到BP 垂直于AC 时,PM PH PB ++有最小值是解答问题(3)的关键.【分析】求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求AEF ∆的面积,根据两面积之比=菱形的“形变度”,即可解答. 【解答】解:如图,在图2中,形变前正方形的面积为:2a ,形变后的菱形的面积为:233a =g, ∴菱形形变前的面积与形变后的面积之比:22323a = Q 这个菱形的“形变度”为23∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,112222422AEF S ∆=⨯⨯+⨯⨯=,Q 若这个菱形的“形变度” 1615k =, ∴1615AEF A E F S S ∆'''=V ,即41615A E F S '''=V , 154A E F S '''∴=V . 故答案为:154. 【点评】本题考查了正方形的性质,菱形的性质以及四边形综合,根据题意得出菱形形变前的面积与形变后的面积之比是解题关键. 三.解答题(共2小题)【分析】根据题意可证得BCE ∆为等腰三角形,由AH CB ⊥,则BH HC =,从而得出四边形EBFC 是菱形. 【解答】证明:AB AC =Q ,AH CB ⊥,BH HC ∴=,……………………………………………………3分FH EH =Q ,∴四边形EBFC 是平行四边形,………………………………6分又AH CB ⊥Q ,∴四边形EBFC 是菱形.………………………………………10分【点评】本题考查了菱形的判定和性质,以及等腰三角形的性质,是基础知识要熟练掌握.【分析】(1)由题意可得四边形ADPE 为平行四边形,由平行线的性质和等腰三角形的性质可得DB DP =,即可求四边形ADPE 的周长;(2)当P 为BC 中点时,四边形ADPE 是菱形,由等腰三角形的性质和平行线的性质可得AE EP =,则平行四边形ADPE 是菱形;(3)P 运动到A ∠的平分线上时,四边形ADPE 是菱形,首先证明四边形ADPE 是平行四边形,再根据平行线的性质可得13∠=∠,从而可证出23∠=∠,进而可得AE EP =,然后可得四边形ADPE 是菱形. 【解答】解:(1)//PD AC Q ,//PE AB∴四边形ADPE 为平行四边形AD PE ∴=,DP AE =,AB AC =Q B C ∴∠=∠, //DP AC QB DPB ∴∠=∠ DB DP ∴=∴四边形ADPE 的周长2()2()22AD DP AD BD AB a =+=+==故答案为:2a …………………………………………………………………………2分 (2)当P 为BC 中点时,四边形ADPE 是菱形.………………………………3分 理由如下:连结AP ……………………………………………………………………………4分//PD AC Q ,//PE AB∴四边形ADPE 为平行四边形…………………………………………………………5分AB AC =Q ,P 为BC 中点PAD PAE ∴∠=∠…………………………………………………………………………6分//PE AB QPAD APE ∴∠=∠ PAE APE ∴∠=∠EA EP∴=………………………………………………………………………………7分∴四边形ADPE是菱形…………………………………………………………………8分(3)P运动到A∠的平分线上时,四边形ADPE是菱形,…………………………10分PE AB,Q,//PD AC//∴四边形ADPE是平行四边形,Q平分BACAP∠,∴∠=∠,12//Q,AB EP∴∠=∠,13∴∠=∠,23∴=,AE EP∴四边形ADPE是菱形.【点评】本题主要考查了菱形的判定,等腰三角形的性质,关键是掌握一组邻边相等的平行四边形是菱形.。

八年级下《菱形的性质与判定》练习题及答案

八年级下《菱形的性质与判定》练习题及答案

2017年八年级数学下册菱形性质与判定练习题一选择题:1.下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2∙下列说法中正确的是()A. 四边相等的四边形是菱形B. 一组对边相等,另一组对边平行的四边形是菱形C. 对角线互相垂直的四边形是菱形D. 对角线互相平分的四边形是菱形3∙若顺次连接四边形 ABCD 各边的中点所得四边形是菱形,则四边形4.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为(ABCD- '定是A.菱形B.对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形.5: 1.6: .7: 15.四个点A, B, C, D在同一平面内,从①AB// CD ②AB=CD③AC⊥ BD④AD=?BC⑤AD// BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有).A.1 种B.2C.3D.46.如图,在菱形ABCD中, AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,若∠ CDF=24 ,则∠A . 100°B . 104°C . 105°.110°7.如图,在长方形ABCD中,AB=12,AD=14,E为AB的中点,点F,G分别在CD,AD上,若CF=4,且厶EFG为等腰直角三C.12D.12 √28∙用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N直不可能是(A.360B.540C.630D.720))9.如图,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为()到矩形的两条对角线AC 和BD 的距离之和是11.如图,把长方形纸片 ABCD 折叠,使其对角顶点 C 与A 重合.若长方形的长BC 为8,宽AB 为4,则折痕EF 的长度 为()A.5B.3C.2D.3 √212.如图,四边形ABCD,AD 与 BC 不平行,AB=CD.AC,BD 为四边形 ABCD 的对角线,E,F,G,H 分别是BD,BC,AC,AD 的中 点•下列结论:①EGL FH;②四边形EFGH 是矩形;③HF 平分∠ EHG ④EG =二(BC- AD :⑤四边形 EFGH 是菱形•其中正确的个数是()A.1个B.2个C.3 个D.4 个填空题:13.如图,在菱形ABCD 中,∠ BAD=80 ,AB 的垂直平分线交对角线 AC 于点F,E 为垂足,连接DF,则∠ CDF 的度数=度.A.1B.2C.3D.410.如图,点 P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、 BC 的长分别是6和8,则点PB.5C.6D.7.2A.4.8GSFCC15.把一张矩形纸片 ABCD按如图方式折叠,使顶点 B和顶点D重合,折痕为EF.若BF=4, FC=2,则∠ DEF的度数是 .16∙如图,在?ABCD中 ,对角线AC BD相交于点O.如果AC=8,BD=14,AB=x,那么X取值范围是______________17. ______________________________________________________________________ 在菱形ABCD中, AE为BC边上的高,若 AB=5 AE=4,则线段CE的长为_______________________________________________18. 如图,?ABCD中,AB=2,BC=4, ∠ B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的三解答题:19. 如图,已知△ ABc中 ,D是BC⅛的中点,AE平分∠ BAC,BE1 AE于 E点,若 AB= 5,AC= 7,求ED.20. 如图,在平行四边形ABC中 ,用直尺和圆规作∠ BAD^分线交BC于点E(尺规作图的痕迹保留在图中了),连EF.(2) AE, BF相交于点Q若BF=6, AB=5求AE的长. (22.21. 如图,在△ ABC 中,D E 分别是 AB AC 的中点,BE=2DE 过点C 作CF// BE 交DE 的延长线于 F,连接CD (1) 求证:四边形BCFE 是菱形; (2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC 面积相等的所有三角形(不包括厶 BEC)22. 如图,已知在菱形ABCD^ ,F 为边BC 勺中点,DF 与对角线AC 交于M,过M 乍MELCDf E, ∠仁∠ 2.23. 如图,已知等腰 Rt△ ABC 和厶CDE AC=BC,CD=C,E 连接BE AD, P 为BD 中点,M 为AB 中点、N 为DE 中点, 连接 PM PN MN.(1) 试判断△ PMN 勺形状,并证明你的结论; (2) 若CD=5 AC=12求厶PMN 的周长.BE=3 CE=BC+BE=β当点E 在BC 边上时,如图 2所示. BE=3 CE=BC- BE=2 综上可知:CE 的长是2或8.故答案为:2或8.18. 【解答】解:分两种情况:(1)①当∠ BPC=90时,作 AML BC 于M 如图1所示,τ∠ B=60°,∙∙∙∠ BAM=30 ,二 BM=TAB=1,1.A2.A3.D4.B5.D6.B7.B8.C9.C 13. 答案为:60 . 14. 案为:80°. 15. 答案为:60 . 参考答案.10.A 11.C 12.C16. 答案为:3v X V 11. 17. 【解答】解:当点 E 在CB 的延长线上时,如图 1所示.■/ AB=5 AE=4, ■/ AB=5 AE=4, (2)求证:AM=DF+ME∙ AM= BM= , CM=BC- BM=4- 1=3, =2归,∙ A B+A 6=B 6 , •••△ ABC 是直角三角形,∠ BAC=90 ,•当点 P 与 A 重合时,∠ BPC=/ BAC=90 , ∙ BP=BA=2②当 ∠ BPC=90 ,点 P 在边 AD 上,CP=CD=AB=时,BP=J B C^ _ CP ^ =荷 (2)当 ∠ BCP=90 时,如图 3 所示:则 CP=AM 丹,∙ BPF JBC ?+C P ^=^^;V 四边形 ABC 是平行四边形,• AD// BC, ∙∠ FAE=∠ AEB ∙∠ BAE=Z AEB• AB=BE ∙ BE=FA •四边形ABEf 为平行四边形,V AB=AE •四边形ABEf 为菱形; (2)解:V 四边形 ABE 为菱形,∙ AE L BF, BO= FB=3, AE=2AQ 在 Rt△ AoB^ , AO=4 ∙ AE=2AO=8【解答】(1)证明:v D E 分别是AB AC 的中点,∙ DE// BC BC=2DE v CF// BE,∙∙∙四边形BCFE 是平行四边形.V BE=2DE BC=2DE ∙ BE=BC • ?BCFE 是菱形;(2)解:① v 由(1)知,四变形 BCFE 是菱形,∙ BC=FE BCll EF,• △ FEC 与厶BEC 是等底等高的两个三角形,• ②厶AEB 与厶BEC 是等底同高的两个三角形,贝U S A BE C F Q S A ABC 则它 S A ADC =S A BEC.【解答】(1)解:I 四边形ABC 是菱形,∙ AB// CD ∙∠ 1 = ∠ACDτ∠ 1 = ∠ 2 ,∙∠ ACD=/ 2 ,∙ MC=M P v MEL CD ∙ CD=2CE∙∙∙ CE=I ∙ CD=2 ∙ BC=CD=2(2)证明:如图,∙∙∙ F 为边 BC 的中点,∙∙∙ BF=CF= BC,二 CF=CE综上所述:当△ PBC 为直角三角形时, DBP 的长为2或2 或 ∣.∙ AC =2- 22=W3 ;21. S A FEC =S ABEC.S △ AEB F S Δ③ S A AD(FQ S A ABC FEC △ AEB △ ADC △ BDC△ ④ S A BD (= Q SS A BEC =G S A ABC 则它 S A BDC F S A BEC.在菱形 ABC中,AC平分∠ BCD ∙∙∙∠ACB=∠ ACD 22.CE=CF在厶CEM^n△ CFM中,∙∙∙二J ZAeD ,•••△CEM^△ CFM( SAS ,I Cl=CM• ME=MF 延长 AB交 DF的延长线于点 G,τ AB// CD, ∙∠ G=∠ 2,ΓZG≈Z2∙∙∙∠1 = ∠ 2,∙∙∙∠仁∠ G • AM=MG在厶 CD和△ BGFφ,∙∙∙d朗SZOTK对顶角招等),BFWF•••△CDF^△ BGF( AAS , ∙ GF=DF 由图形可知, GM=GF+MF∙ AM=DF+MEG 5JRP T S-Il ■ «ri!!r-BrB!rBT9B B -CST23.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020人教版八年级数学下册课时作业本
《四边形--菱形性质与判断》
一、选择题
1.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DC
B.AC=BD
C.AC⊥BD
D.OA=OC
2.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )
A.5
B.10
C.15
D.20
3.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,且
∠CDF=24°,则∠DAB等于( )
A.100°
B.104°
C.105°
D.110°
4.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠
DAC=28°,则∠OBC的度数为( )
A.28°
B.52°
C.62°
D.72°
5.菱形的两条对角线长分别是6和8,则此菱形的边长是( )
A.10
B.8
C.6
D.5
6.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )
A.4
B.2.4
C.4.8
D.5
7.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=
2,BD=2,则菱形ABCD的面积为 ( )
8.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值
为()
A.1
B.2
C.3
D.4
二、填空题
9.如图所示,在菱形ABCD中,AE垂直平分BC,垂足为E,AB=4 cm.那么,菱形ABCD的面积是
________,对角线BD的长是________.
10.如图,在菱形ABCD中,AC=6,BD=8,则这个菱形的边长为________.
11.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添
加的一个条件是________(写出一个即可).
12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和
空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为.
三、解答题
13.如图在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于
点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
14.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,
作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.
15.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点
M和点N.
(1)请你判断OM和ON的数量关系,并说明理由;
(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.
16.如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线
于点F.试问:
(1)图中△APD与哪个三角形全等?并说明理由
(2)猜想:线段PC、PE、PF之间存在什么关系?并说明理由
参考答案
1.B
2.A
3.B
4.C
5.D
6.C
7.A;
10.答案为:5;
11.答案为:C;B=BF或BE⊥CF或∠EBF=60°或BD=BF(答案不唯一)
12.答案为:15.
13.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,
又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.
∴四边形ACDE是平行四边形.
(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD=5.
又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.
∴△ADE的周长为AD+AE+DE=5+5+8=18.
14.证明:∵AF∥BC,∴∠EAF=∠ECD,∠EFA=∠EDC,
又∵E是AC的中点,∴AE=CE,∴△AEF≌△CED.∴AF=CD,
又AF∥CD,∴四边形ADCF是平行四边形.
∵AC=2AB,E为AC的中点,∴AE=AB,
由已知得∠EAD=∠BAD,又AD=AD,∴△AED≌△ABD.
∴∠AED=∠B=90°,即DF⊥AC.
∴四边形ADCF是菱形.
15.解:(1)∵四边形ABCD是菱形,
∴AD∥BC,AO=OC,∴,∴OM=ON.
(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,
∴BO==2,∴,
∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,
∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.
16.解:(1)略;(2)PC2=PE PF。

相关文档
最新文档