图像分割特征提取识别分类分析
使用计算机视觉技术进行图像分析的步骤

使用计算机视觉技术进行图像分析的步骤图像分析是利用计算机视觉技术对图像进行解析、提取信息和获取有用知识的过程。
通过图像分析,我们可以理解图像中的内容、结构、特征,并为后续的处理和决策提供参考。
图像分析的步骤可以分为以下几个方面:1. 图像获取和预处理在进行图像分析之前,首先需要获取图像数据。
图像可以通过不同的传感器设备或者采集系统获得,比如数字相机、摄像机、扫描仪等。
获取到的图像数据可能会受到噪声、光照和畸变等因素的干扰,因此要进行预处理,包括去除噪声、颜色校正、几何校正等,以便得到质量更好的图像数据。
2. 特征提取和表示特征提取是图像分析中的核心步骤之一。
通过特征提取,可以从图像中提取出表达图像特点的数学描述,用于后续的分析和处理。
常见的特征包括颜色、纹理、形状、边缘等。
特征提取可以采用传统的算法,如高斯滤波、边缘检测、纹理分析等;也可以使用深度学习技术,如卷积神经网络(CNN)进行端到端的特征提取。
3. 图像分割图像分割是将图像划分成不同的区域或对象的过程。
图像分割可以通过基于像素的方法,如阈值分割、边缘分割等,或者基于特征的方法,如基于区域生长、区域分裂合并等。
图像分割可以提取出感兴趣的区域,并为后续的目标检测、识别等任务提供准确的输入。
4. 目标检测与识别目标检测与识别是图像分析的重要应用之一。
通过目标检测与识别,可以自动地识别图像中的目标物体,并进行分类、定位和跟踪等操作。
目标检测与识别可以使用传统的机器学习方法,如支持向量机(SVM)、决策树等;也可以使用深度学习方法,如卷积神经网络、循环神经网络等。
目标检测与识别可以应用于人脸识别、车辆检测、物体识别等多个领域。
5. 图像理解和分析图像理解和分析是对图像中语义信息的理解和提取。
通过图像理解和分析,可以从图像中获取更高级别的信息,如场景理解、情感分析等。
图像理解和分析可以使用传统的图像处理方法,如特征匹配、图像拼接等;也可以使用深度学习方法,如图像标注、图像生成等。
图像分割特征提取识别分类分析

Ostu, A threshold selection method from gray level histograms, IEEE Trans. Systems Man Cybernet 9, 62-66 (1979) 最小误差门限法
T. Pun, Entropic thresholding: a new approach, Computer Vision, Graphics, and Image Processing 16,210-239 (1981) 熵门限法
2. 图像分割
3. 形态学图像处理 4. 特征提取 5. 区域描述 6. 识别与分类
形态学图像处理 腐蚀与膨胀 开运算与闭运算 细化与粗化
形态学图像处理
二值图像的逻 辑运算
膨胀 dilation
形态学膨胀应用
腐蚀 erosion
形态学腐蚀应用
开操作与闭操作
轮廓光滑 开:断开狭窄的间断 和消除细的突出物 闭:消弥狭窄的间断 和长细的鸿沟,消除 小的孔洞,填补轮廓 线的断裂
S_任一图像点为目标事件;B_任一图像点为背景事件; P(S)= , P(B)=1-
目标和背景的概率分布密度为高斯分布p(z)和q(z), 则图像 的灰度概率分布密度为 d(z)= p(z)+(1- )q(z) 图像的数学期望和方差为 E= ms+(1- )mB 2= 2s+(1- ) 2B+ (1- ) (ms-mB)2
• 方向模板与统计模板
p204
• 最佳曲面拟合
型
p206
• 纹理检测-空间灰度层共生矩阵,Markov模型,Fractal模
边缘检测技术 • 经典主动边缘模型 (M. Kass, et al, 1988) • 测地线主动边缘模型 (V. Caselles, et al, ICCV, 1995) • 水平集方法(1996)
图像处理流程

图像处理流程图像处理是数字图像处理的一种形式,旨在改善或增强图像的质量,使得图像更加清晰、更鲜明,或者从图像中提取出特定的信息。
图像处理的流程一般包括以下几个步骤:1. 图像获取:首先需要采集图像,可以通过摄像机、扫描仪等设备来获取图像,或者从存储介质中读取图像文件。
2. 图像预处理:在进行下一步处理之前,需要对图像进行预处理。
预处理的目的主要是去除图像中的噪声,使得图像更加清晰。
常用的预处理方法包括平滑滤波、去噪、去除伪影等。
3. 图像增强:图像增强是指通过一系列的算法和方法来改善图像的质量,使得图像更容易被观察和分析。
常见的图像增强方法包括灰度变换、直方图均衡化、空间滤波等。
4. 图像分割:图像分割是将图像中的物体或区域分离开来,通常是根据图像的某些特征进行分割。
图像分割常用的方法包括阈值分割、边缘检测、区域生长等。
5. 特征提取:特征提取是从图像中提取出具有代表性的特征信息,用于描述图像的内容。
常见的特征包括纹理特征、形状特征、颜色特征等。
特征提取可以利用图像处理算法和机器学习方法来实现。
6. 物体识别和分类:特征提取之后,可以利用分类算法进行物体的识别和分类。
分类的目的是将图像中的物体归类到不同的类别中,可以通过统计、机器学习等方法来实现。
7. 结果评估和应用:最后,需要对处理结果进行评估,并根据具体的需求进行应用。
评估可以根据图像质量、识别准确率等指标来进行。
根据应用需求,可以将处理结果用于图像检索、图像分类、图像匹配等领域。
总之,图像处理流程涵盖了图像获取、预处理、增强、分割、特征提取、识别和分类等多个步骤,通过一系列的算法和方法来改善图像的质量和信息提取。
图像处理在计算机视觉、图像识别、医学影像等领域具有广泛的应用。
图像分割与特征提取_图文_图文

7.3.2 其它阈值选取方法
3. 迭代式阈值的选取
迭代式阈值选取过程可描述为: ① 选取一个初始阈值T; ② 利用阈值T把给定图像分割成两组图像,记为R1和 R2; ③ 计算R1和R2均值μ1和μ2; ④ 选择新的阈值T,且
⑤ 重复第②至④步,直至R1和R2的均值μ1和μ2不再 变化为止。
7.4 基于跟踪的图像分割
2. 双峰形直方图谷底阈值的获取
通常情况下由于直方图呈锯齿形状,这时,需要利用 某些解析函数对双峰之间的直方图进行拟合,并通过对拟
合函数求微分获得最小值。
设有二次曲线方程:
(7.30)
对应于直方图双峰之间的最小值谷底阈值就为:
(7.31)
7.3.2 基于双峰形直方图的阈值选取
2. 双峰形直方图谷底阈值的获取
该类二值图像灰度分布的百分比时,就可通过试探的 方法选取阈值,直到阈值化后的图像的效果达到最佳 为止。
7.3.2 其它阈值选取方法
3. 迭代式阈值的选取 基本思路是:首先根据图像中物体的灰度分布情
况,选取一个近似阈值作为初始阈值,一个比较好的 方法就是将图像的灰度均值作为初始阈值;然后通过 分割图像和修改阈值的迭代过程来获得任可的最佳阈 值。
基于阈值的图像分割方法是提取物体与背景在灰 度上的差异,把图像分为具有不同灰度级的目标区域 和背景区域的一种图像分割技术。
7.3.1 基于阈值的分割方法
1. 阈值化分割方法
图7.3.1 基于单一阈 值分割的灰度直方图
T
利用阈值T分割后的图像可定义为:
从暗的背景上分 割出亮的物体:
(7.24)
从亮的背景上分 割出暗的物体:
7.2.3 二阶微分边缘检测
图7.3 Laplacian二阶边缘检测算子的边缘检测示例
对图像的分析方法

对图像的分析方法
图像分析是指利用计算机视觉和图像处理技术对图像进行特征提取、对象检测、图像分割、目标跟踪等操作的过程。
以下是一些常用的图像分析方法:
1. 图像预处理:包括灰度化、去噪、图像增强等操作,用于减少噪声、提升图像质量。
2. 特征提取:提取图像的局部特征或全局特征,如颜色特征、纹理特征、形状特征等,用于描述图像的特点。
3. 对象检测与识别:通过训练分类器或使用深度学习模型,检测和识别图像中的特定对象,如人脸、车辆、动物等。
4. 图像分割:将图像分割成不同的区域或对象,常见的方法有阈值分割、边缘检测、区域生长等。
5. 目标跟踪:在时间序列图像中,通过连续帧之间的关联,对特定对象进行追踪,包括基于颜色、纹理、运动等的跟踪方法。
6. 图像配准:将多个图像进行对齐,使得它们在同一坐标系下可比较或融合,
常见的方法有基于特征点、基于区域的配准方法。
7. 图像分析与理解:基于机器学习和深度学习技术,对大规模图像数据进行分析和理解,如图像分类、图像生成、图像描述等。
这些方法可以单独使用或结合起来,用于解决各种图像分析任务,包括图像识别、图像检索、目标跟踪、图像分析等。
图像处理中的特征提取与分类算法

图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。
在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。
本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。
一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。
颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。
常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。
直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。
颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。
颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。
1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。
纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。
常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。
灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。
小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。
局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。
1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。
形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。
常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。
轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。
生物医学成像技术研究——超声图像处理与分析

生物医学成像技术研究——超声图像处理与分析绪论近年来,生物医学成像技术在医学诊断和治疗方面发挥重要作用。
超声图像作为体内无创检测技术,被广泛应用在肿瘤、血管病、妇科病和胎儿检测等领域。
但是,目前的超声图像质量受多方面因素限制,如信噪比、分辨率等。
因此,对超声图像的处理和分析变得至关重要。
本文将围绕超声图像处理与分析展开讨论,包括超声图像预处理、图像分割、特征提取、分类识别等方面,并介绍当前研究中的一些应用实例。
超声图像预处理超声图像是由反射和散射而成像的,具有噪声和伪影。
因此,预处理步骤是超声图像分析的关键步骤。
超声图像预处理包括增强、去噪和伪影滤除等。
其中,基于小波变换的去噪方法可以克服高斯噪声对超声图像的影响,并将超声图像的对比度增强。
伪影滤除是超声图像预处理的关键步骤,例如,常用的多普勒滤波可以清除光栅伪影。
图像分割图像分割是将图像分成不同区域的过程,有助于区分不同的组织结构。
对于超声图像,常使用的分割技术包括阈值法、基于边缘的方法和基于区域的方法等。
其中,基于区域的方法包括基于区域生长的算法和基于聚类的算法。
基于区域生长的算法可以将同一组织结构区域分成不同的区块,以得到更小的区块,并提高分割精度。
基于聚类的算法将图像中的像素划分为多个簇,并将相似的像素划分为同一个簇,从而获得更准确的分割结果。
特征提取特征提取是将图像中的信息提取出来,用简洁的向量表示,以便对图像进行分类和识别。
对于超声图像,常用的特征提取包括灰度共生矩阵(GLCM)、灰度值直方图、小波变换和形态学特征等。
其中,GLCM是一种用于描述灰度图像纹理特征的统计方法,可以用于分类肿瘤和正常组织。
灰度值直方图可以描述超声图像的灰度分布特征,从而用于肿瘤分割和识别。
小波变换可以分解超声图像的高频和低频信息,并以较高的准确性提取肿瘤的边界信息。
形态学特征可以提取超声图像的形状和边缘特征,从而用于分类和识别。
分类识别分类识别是将经过预处理、分割和特征提取的超声图像进行分类的过程。
ocr识别过程

ocr识别过程OCR识别过程是指通过计算机技术对图像中的文字进行识别的过程。
OCR技术的应用场景广泛,涵盖文字识别、自然语言处理、图像处理等领域。
下面将从图像预处理、字符分割、特征提取、分类识别四个方面详细介绍OCR识别过程。
一、图像预处理OCR识别使用的文字图像多为扫描文件,经过预处理可以去除图像中的噪点和干扰,提高识别的准确度。
主要包括以下步骤:1.灰度化。
将彩色图像转化为黑白图像,便于下一步操作。
2.二值化。
将灰度图像中的像素点根据阈值进行分割,分成黑色和白色两个部分。
3.噪声去除。
对二值化图像进行平滑处理,去除图像中的杂点和毛刺,使文字轮廓更加清晰。
二、字符分割字符分割是将图像中的每个字符进行分割,便于后续的特征提取和分类识别。
对于汉字、英文字母、数字等不同类型的字符,分割方法也有所不同。
常用的分割方法有:1.基于垂直投影。
根据字符之间的空白部分进行像素点的分类,将字符分割出来。
2.基于连通区域分析。
将字符视为连通区域,通过分析字符中像素点之间的连接关系,将字符进行分割。
三、特征提取特征提取是将字符的信息进行数学建模和表达的过程,将字符上的各种纹理特征和轮廓特征提取出来,用于之后的分类识别。
一般采用各种数学方法将字符进行描述,如傅里叶变换、小波变换等。
四、分类识别分类识别是将文本进行分类,将其识别为对应的汉字、英文字母、数字等。
这个过程是对前面处理的特征进行分类,常使用的分类方法有SVM、神经网络、KNN等。
在分类之后,还需要通过后处理方法将识别结果进行校正,提高识别的准确率。
总结来说,OCR识别过程主要包括图像预处理、字符分割、特征提取和分类识别四个方面。
通过这些步骤,可以将图像中的文字信息转化为计算机可处理的形式,实现文字的自动化识别和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像分割 技术
基于点相关:依据各个象素灰度的不连续性进行分割
基于区域相关:依据同一区域具有相似的灰度特征或 组织特征,寻求不同区域的边界
方法
基于直方图 基于边缘 基于区域 基于边缘与区域
点相关分割技术
门限方法 - 选择合适的门限将目标从背
景中分割出来
边缘检测 - 先确定目标边缘轮廓象素再
计算每个象素点梯度模(增强边缘)
转梯度图为二值图 将二值图与原图相乘,得到新图 取新图直方图双峰中的谷底所对应的灰度值 为最佳门限
门限分割技术
最佳门限的选择
双极模型的直方图,选取谷底对应的灰度为门限
最小误差门限法
求使类间方差(分离度)最大的t 阈值
图像由目标与背景组成,目标点占图像的,背景则为1-
p( z )dz 1 P(t )
t
任取一图像点被误分的全概率为 P(Error)=P(S) Ps (error) +P(B) PB (error)=[1-P(t)]+(1-)Q(t)
令 P( Error ) 0
t
所求的门限是最佳门限T Otsu法(N. Otsu, 1979, IEEE SMC)
S_任一图像点为目标事件;B_任一图像点为背景事件; P(S)= , P(B)=1-
目标和背景的概率分布密度为高斯分布p(z)和q(z), 则图像 的灰度概率分布密度为 d(z)= p(z)+(1- )q(z) 图像的数学期望和方差为 E= ms+(1- )mB 2= 2s+(1- ) 2B+ (1- ) (ms-mB)2
第八章 图像分析
图像处理重要任务—
图像景物的分析与理解
把图像分割成不同的区域; 找出分开的各区域的特征;
图像分割 特征提取
识别图像中要找的目标,或对图像中不同的 特征进行分类; 识别、分类 对于不同区域进行描述;或相关区域连接起 来组成有意义的结构; 分析、描述和解释
1. 模式识别与图像处理系统
f ( x, y ) T
f ( x, y ) T
门限分割技术
最佳门限的选择
已知被处理二值图灰度分布的概率,可用试探方法 双极模型的直方图,选取谷底对应的灰度为门限
T
• 计算图像的直方图,在直 方图中找出二个局部极大值 以及它们之间的极小值
• 二次曲线拟合参差不齐的直 方图的谷底部分 y=ax2+bx+c
2. 图像分割 3. 形态学图像处理
4. 特征提取
5. 区域描述 6. 识别与分类
草莓 苹 果 柠 檬
模式
香 蕉
葡萄 樱 桃
柠 檬 草莓
模式识别 过程
香蕉
葡萄 樱桃 苹果
CCD/ TV
苹 果
樱 桃
柠 檬
葡 萄
模式识别 示例
CCD/ TV
苹 果
樱 桃
柠 檬
葡 萄
CCD/ TV
苹 果
樱 桃
柠 檬
图像分割
物 体 特征提取 图 像 特征
向量
x1 分类器训练 x2 性能评估 . xN
分类
物 体 类 型
图像处理系统
连通集中的任意两个象素之间,存在一 条完全由该集合的元素构成的连通路径
象素连 通集
数字图像划分成互起以构成所需的边界
跟踪方法 - 利用前期处理过的点的信息,
判断图像当前处理点是否为目标点,再进行 跟踪运算
门限分割技术
从背景中检出对象的门限法
1 f ( x, y ) T g T ( x, y ) 0 g T ( x, y ) 0 1 f ( x, y ) T g T ( x, y ) 0 g T ( x, y ) 0
1 f ( x, y ) z g z ( x, y ) z [ g1 , g 2 ] 1 T1 f ( x, y )0T2 1 f ( x, y ) T1 , f ( x, y ) T2
门限分割技术
半门限法
二值图像 保留图像,背景变白或暗
f ( x, y ) g T ( x, y ) 0 or 1 f ( x, y ) g T ( x, y ) 0 or 1
葡 萄
CCD/ TV
苹 果
樱 桃
柠 檬
葡 萄
CCD/ TV
苹 果
樱 桃
柠 檬
葡 萄
CCD/ TV
苹 果
樱 桃
柠 檬
葡 萄
CCD/TV
模式识别 示例
苹 果
樱 桃
柠 檬
特 红色程度 征 直径
分类系统
图 葡 萄 像 处 理 系 统
模式识别过 程与实现
输入图像
物体检测器设计
特征提取
分类器设计
• 高斯曲线拟合高峰,取二曲 线交点为谷底
众数法 (J.M.S. Prewitt, et al., 1966, Ann. New York Acad. Sci.)
门限分割技术
最佳门限的选择
双极模型的直方图,选取谷底对应的灰度为门限
目标边界两侧的灰度值有明显的差异,取边 界两侧的灰度值的谷底为门限。
门限分割技术
最佳门限的选择
双极模型的直方图,选取谷底对应的灰度为门限
选取门限 t ,假定
背景点错当目标的概率为
最小误差门限法
目标点错当背景的概率为
灰度<t时,图像点为目标;灰度>=t时,图像点为背景
PB (error )
q( z)dz Q(t )
t
PS (error )
门限分割技术 全局阈值方法 大量实验表明,基于简单的统计量方法 往往可以获得较好的分割结果;而基于熵的 方法应用于有噪声图象时结果一般较差。
分割方法的评估参数-一致性U(t)与形状测量S(t)
P. K. Sahoo, S. Soltani, A. K. C. Wong and Y. C. Chen, A survey of thresholding techniques, Computer Vision, Graphics, and Image Processing 41, 233-260 (1988)
图像 识别
图像处理
图 像
分 类 与 结 构 分 析
图像
图像理解
说明复杂图像组成
描述和理解
1. 模式识别与图像处理系统 2. 图像分割
3. 形态学图像处理
4. 特征提取 5. 区域描述 6. 识别与分类 图像分割
• 门限分割技术
• 基于边缘分割技术
• 基于区域分割技术 • 轮廓跟踪
图像处理系统 • 实例