2015-2016年山东省聊城市文轩中学九年级上学期期中数学试卷及答案

合集下载

山东省聊城市九年级上学期数学期中考试试卷

山东省聊城市九年级上学期数学期中考试试卷

山东省聊城市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是()A . m≠1B . m≠2C . m≠-1且m≠2D . 一切实数2. (2分) (2019八下·新余期末) 下列二次根式中,最简二次根式是()A .B .C .D .3. (2分)下列运算正确的是()A . =9B . ()﹣2=C . (﹣a2)3=a6D . a6÷(a2)=2a44. (2分) (2019八下·秀洲月考) 方程配方后变形为()A .B .C .D .5. (2分) (2018九上·河南期中) 如图,在平面直角坐标系中,已知点 A(-3,6)、B(-9,-3),以原点 O 为位似中心,相似比为 ,把△ABO 缩小,则点 A 的对应点A′的坐标是()A . (-1,2)B . (-9,18)或(9,-18)C . (-9,18)D . (-1,2)或(1,-2)6. (2分) (2017九上·遂宁期末) 如图,P是Rt△ABC的斜边BC上异于B,C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A . 1条B . 2条C . 3条D . 4条7. (2分)如图,在Rt△ABC中,AB=3cm,BC=4cm,沿直角边BC所在的直线向右平移3cm,得到△DEF,DE 交AC于G,则所得到的△GEC的面积是()cm2 .A .B . 1C .D .8. (2分) (2015九上·新泰竞赛) 某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是().A .B .C .D .9. (2分) (2016九上·九台期末) 如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A . 3B . 4C . 5D . 610. (2分) (2017八下·青龙期末) 如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A . (﹣3,0)B . (﹣6,0)C . (﹣,0)D . (﹣,0)二、填空题 (共5题;共6分)11. (1分)(2018·白银) 使得代数式有意义的x的取值范围是________.12. (1分) (2018九上·兴化月考) 在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=________.13. (1分)(2017·成华模拟) 定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+ m=0的两实数根,则b*b﹣a*a的值为________.14. (2分)(2017·衡阳模拟) 在平行四边形ABCD中,点O是对角线AC、BD的交点,AC⊥BC,且AB=10cm,AD=6cm,则AO=________cm.15. (1分) (2018九上·镇海期末) 如图,已知在中,为直角,,,在内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在上,依次这样往上叠放上去,则第二层最多能叠放________个正方形小纸片.三、解答题 (共8题;共91分)16. (15分)计算(1) + ;(2) + ;(3)解方程: + =1;(4) 2x2﹣4x+1=0.17. (15分)按要求解方程(1) x2﹣4x+1=0(配方法)(2) 4x2﹣6x﹣3=0(运用公式法)(3)(2x﹣3)2=5(2x﹣3)(分解因式法)(4)(x+8)(x+1)=﹣12(运用适当的方法)18. (10分)(2018·黄梅模拟) △OAB是⊙O的内接三角形,∠AOB=120°,过O作OE⊥AB于点E,交⊙O于点C,延长OB至点D,使OB=BD,连CD.(1)求证: CD是⊙O切线;(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6 ,求S△GOB .19. (5分)如图,在6×6的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,△ABC是一个格点三角形.①在图①中,请判断△ABC与△DEF是否相似,并说明理由;②在图②中,以O为位似中心,再画一个格点三角形,使它与△ABC的位似比为2:1③在图③中,请画出所有满足条件的格点三角形,它与△ABC相似,且有一条公共边和一个公共角.20. (10分) (2017八上·滨江期中) 如图,平分,平分,和交于点,为的中点,连结.(1)找出图中所有的等腰三角形.(2)若,,求的长.21. (10分)曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.4元,请问哪种方案更优惠?22. (11分) (2019九上·雅安期中) 如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD 于E,交BA的延长线点F.问:(1)图中△APD与哪个三角形全等?并说明理由;(2)求证:△APE∽△FPA;(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.23. (15分)(2017·商水模拟) 如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共91分)答案:16-1、答案:16-2、答案:16-3、答案:16-4、考点:解析:答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。

山东省聊城市九年级上学期数学期中考试试卷

山东省聊城市九年级上学期数学期中考试试卷

山东省聊城市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)食堂买来一批大米,每天吃80千克,可吃6天,如果每天吃96千克.可吃(用比例方法解答)()A . 6天B . 5天C . 480天D . 7天【考点】2. (2分)在Rt△ABC中,∠C=90°,下列各式中正确的是()A . sinA=sinBB . tanA=tanBC . sinA=cosBD . cosA=cosB【考点】3. (2分) (2019七上·香坊期末) 在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有和;③在同一平面内,如果,,则;④直线外一点与直线上各点连接而成的所有线段中,最短线段的长是,则点到直线的距离是;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是()A . 个B . 个C . 个D . 个【考点】4. (2分)把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()A . 不变B . 缩小为原来的C . 扩大为原来的3倍D . 不能确定【考点】5. (2分)如图,菱形ABCD由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC的长为()A . 3B . 6C .D .【考点】6. (2分)下列命题中,正确的是()A . 如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边;B . 不同向量的单位向量的长度都相等,方向也都相同;C . 相似三角形的中线的比等于相似比;D . 一般来说,一条线段的黄金分割点有两个.【考点】二、填空题 (共12题;共16分)7. (1分)(2020·松江模拟) 如图,已知D是△ABC的边AC上一点,且AD=2DC .如果,,那么向量关于、的分解式是________.【考点】8. (1分) (2019八下·萝北期末) 在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.【考点】9. (1分)(2018·深圳模拟) 如图,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:① 是的中点;② 与相似;③四边形的面积是;④ ;其中正确的结论是 ________.(填写所有正确结论的序号)【考点】10. (1分)(2019·河池模拟) 如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B,C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E,设BP=x,△PCE面积为y,则y与x的函数关系式是________.【考点】11. (1分) (2020七下·巴中期中) 已知,且,则 ________【考点】12. (5分) (2018九上·南召期中) 如图,在△ABC中,,,是边上的一点,当________时,△ABC∽△ACD.【考点】13. (1分)(2017·松江模拟) 计算:(﹣3 )﹣( +2 )=________.【考点】14. (1分) (2016七下·潮南期中) 如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=________°.【考点】15. (1分)(2017·启东模拟) 如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE 与△ABC的面积之比为________.【考点】16. (1分)(2020·高新模拟) 一张三角形纸片ABC,其中∠C=90?,AC=6,BC=8.小静同学将纸片做两次折叠:第一次使点A落在C处,折痕记为m;然后将纸片展平做第二次折叠,使点A落在B处,折痕记为n.则m,n 的大小关系是________.【考点】17. (1分)(2020·浦口模拟) 如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是________.【考点】18. (1分) (2018九上·浦东期中) 已知,AB=4,P是AB黄金分割点,PA>PB,则PA的长为________.【考点】三、解答题 (共6题;共55分)19. (5分)(2020·绍兴模拟) 计算:(1)计算:|﹣3|+tan60°+ ;(2)化简:(x﹣1)2+x(x+1).【考点】20. (10分) (2020九上·泉州月考) 如图,点E是▱ABCD的边AB延长线上的一点,DE交BC于点F,=,EF=2,BF=1.5.求DF,BC的长.【考点】21. (10分)(2020·河池) 如图(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证: .(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.【考点】22. (10分) (2017九上·镇雄期末) 已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM 交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【考点】23. (10分)(2020·北京模拟) 如图,在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,连接AC,CF.求证:(1) AF=CF;(2) CA平分∠DCF.【考点】24. (10分)(2018·辽阳) 在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE= ,点E在△ABC的内部,连接EC,EB和BD,并且∠ACE+∠ABE=90°.(1)如图1,当=60°时,线段BD与CE的数量关系为________,线段EA,EB,EC的数量关系为________;(2)如图2当=90°时,请写出线段EA,EB,EC的数量关系,并说明理由;(3)在(2)的条件下,当点E在线段CD上时,若BC= ,请直接写出△BDE的面积. 【考点】参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共12题;共16分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共6题;共55分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。

聊城九年级期中试卷数学【含答案】

聊城九年级期中试卷数学【含答案】

聊城九年级期中试卷数学【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 如果 a > b,那么下列哪个式子成立?()A. a b > 0B. a + b < 0C. a b > 0D. a / b > 03. 下列哪个数是偶数?()A. 21B. 32C. 43D. 574. 下列哪个数是素数?()A. 12B. 17C. 20D. 275. 下列哪个数是无理数?()A. √9B. √16C. √25D. √36二、判断题1. 任何数乘以0都等于0。

()2. 负数的平方是正数。

()3. 所有的偶数都是2的倍数。

()4. 所有的奇数都不是2的倍数。

()5. 1是质数。

()三、填空题1. 5的相反数是______。

2. 8的平方根是______。

3. 15除以5等于______。

4. 2的3次方等于______。

5. 5大于______。

四、简答题1. 请简述偶数和奇数的定义。

2. 请简述质数和合数的定义。

3. 请简述无理数的定义。

4. 请简述绝对值的定义。

5. 请简述因数分解的定义。

五、应用题1. 计算下列各式的值:a) 3 + 5b) 8 4c) 6 2d) 10 / 52. 判断下列各数中哪些是质数,哪些是合数:a) 23b) 39c) 47d) 573. 计算下列各式的平方根:a) 9b) 16c) 25d) 364. 计算下列各式的绝对值:a) -3b) 5c) -8d) 105. 对下列各数进行因数分解:a) 12b) 18c) 20d) 24六、分析题1. 请分析下列各式的正负性:a) 5 8b) -3 + 7c) -2 4d) -6 / 32. 请分析下列各数的性质:a) 29b) 33c) 41d) 53七、实践操作题1. 请用直尺和圆规作出一个边长为5cm的正方形。

2. 请用直尺和圆规作出一个半径为3cm的圆。

2015~2016学年第一学期期中考试九年级数学试题卷附答案

2015~2016学年第一学期期中考试九年级数学试题卷附答案

2015〜2016学年度第一学期期中考试九年级数学试题卷2015.11・选择题(本大题共8小题,每小题3分,共24分.)1.下列方程是一元二次方程的是2,若关于x 的一元二次方程kx 2—2x —1=0有两个不相等的实数根,则3 .如图,/ADE=/ACD=/ABC,图中相似三角形共有(▲)A.1对B.2对C.3对D.4对4 .如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则4DEF 与4ABC 的面积比是(▲)A.1:2B,1:4■C.1:5D.1:65 .如图,在Rt^ABC 中,/C=90°,D 是AC 边上一点,AB=5,AC=4,若△ABCs^BDC,则CD 的值为6 .下列命题:①圆周角的度数等于圆心角度数的一半;② 个圆;④同圆或等圆中,同弧所对的圆周角相等.其中正确的是(▲)A.①②B.②③C.②④D.①④7 .如图,AB 是。

的直径,AB 垂直于弦CD,/BOC=70°,则/ABD 的度数为(▲)A.20°B,46°C.55°D,70°8 .9,若关于x 的方程x 2+3x+a=0有一个本是—1,则a=▲10 .若x :y=2:3,刃B 么x:(x+y )=-▲11 .若关于x 的方程(m —3)x |m |—1+2x —7=0是一元二次方程,则m=▲A.x+2y=1B.x 2+5=0C.x 2+3=8 xD.3x+8=6x+2B.k>—1且kw0C.k<1D.kv1且kwo3B.2C. D. 二.填空题(本大题共 10小题,每小题 2分,共20分.)90。

的圆周角所对的弦是直径;③三个点确定 PQ 的最小值为C.4D.5(第3题) (第4题) (第5题) (第8题)(第7题) A,电 如图,OO 的半径为3,点O 到直线l 的距离为4,点P 是直线l 上的一个动点,PQ 切。

山东省聊城市九年级上学期期中数学试卷

山东省聊城市九年级上学期期中数学试卷

山东省聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知抛物线y=ax2+bx+c如图所示,则下列结论中,正确的是()A . a>0B . a-b+c>0C . b2-4ac<0D . 2a+b=02. (2分) (2016九上·萧山期中) 已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 无法判断3. (2分)如图,点A、B、C都在圆O上,若∠AOB=72°,则∠ACB的度数为()A . 18°B . 30°C . 36°D . 72°4. (2分)某电视台每播放18分钟节目便插播2分钟广告,打开电视收看该台恰好遇到广告的概率是()A .B .C .D .5. (2分)(2011·衢州) 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A . a2﹣πB . (4﹣π)a2C . πD . 4﹣π6. (2分)如图,AB、AC是⊙O的弦,直径AD平分∠BAC,给出下列结论:①AB=AC;②=;③AD⊥BC;④AB⊥AC.其中正确结论的个数有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2017九上·亳州期末) 抛物线y=﹣(x﹣2)2+3的顶点坐标是()A . (﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)8. (2分)如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0 ②2a+b=0;③a+b+c>0;④当x>0.5时,y随x的增大而增大;⑤对于任意x均有ax2+ax≥a+b,正确的说法有A . 5个B . 4个C . 3个D . 2个9. (2分) (2019九上·宜兴期中) 下列说法正确的是()A . 等弧所对的圆心角相等B . 优弧一定大于劣弧C . 经过三点可以作一个圆D . 相等的圆心角所对的弧相等10. (2分)某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)11. (2分)从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是________.12. (1分) (2018九上·通州期末) 二次函数的部分图象如图所示,由图象可知,不等式的解集为________.13. (1分)(2020·松江模拟) 如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB的坡度为________.14. (1分) (2019九上·宜兴期末) 如图,AB是的直径,弦于点E,,,则 ________cm.15. (1分) (2017九上·鄞州月考) 一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为________.16. (1分) (2017八下·长春期末) 如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则值为________.三、解答题 (共7题;共75分)17. (5分)已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.18. (5分) (2018八上·上杭期中) 如图,在中,,,过B作于D,求的度数.19. (15分)(2018·毕节模拟) 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3) a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.20. (15分) (2016九上·常熟期末) 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.21. (10分)(2018·葫芦岛) 如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.22. (15分)(2019·南充模拟) 如图,抛物线y=ax2+bx+c经过A(-2,0),B(4,0),C(0,-4)三点.点P 是抛物线BC段上一动点(不含端点B,C),BD⊥BC与CP的延长线交于点D(1)求抛物线的解析式.(2)当PC=PD时,求点P的坐标。

聊城市九年级上学期期中数学试卷

聊城市九年级上学期期中数学试卷

聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)点(1,-2)关于原点的对称点的坐标是()A . (1,2)B . (-1,2)C . (-1,-2)D . (1,-2)2. (2分) (2016九上·江夏期中) 一元二次方程x2﹣3x﹣8=0的两根分别为x1、x2 ,则x1x2=()A . 2B . ﹣2C . 8D . ﹣83. (2分) (2016九上·江夏期中) 抛物线y=x2﹣2x+1与坐标轴交点个数为()A . 无交点B . 1个C . 2个D . 3个4. (2分) (2016九上·江夏期中) 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A . 5B . 7C . 9D . 115. (2分) (2016九上·江夏期中) 若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A . k<5B . k<5,且k≠1C . k≤5,且k≠1D . k>56. (2分)(2017·南岗模拟) 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A .B . 2C . 3D . 27. (2分) (2016九上·江夏期中) 若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A . y=(x﹣2)2+3B . y=(x﹣2)2+5C . y=x2﹣1D . y=x2+48. (2分) (2016九上·江夏期中) “数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4 ,乙烷的化学式是C2H6 ,丙烷的化学式是C3H8 ,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A . CnH2n+2B . CnH2nC . CnH2n﹣2D . CnHn+39. (2分) (2016九上·宜城期中) 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .10. (2分) (2016九上·江夏期中) O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A .B .C .D . 3二、填空题 (共6题;共6分)11. (1分) (2020七下·巴彦淖尔期中) 若是二元一次方程的一个解,则的值是________.12. (1分)写出以2,﹣3为根的一元二次方程是________.13. (1分)如图,点A的坐标为(﹣4,0),直线y= x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为________.14. (1分) (2016九上·市中区期末) 已知抛物线y=x2+(m+1)x+m﹣1与x轴交于A,B两点,顶点为C,则△ABC面积的最小值为________.15. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.16. (1分) (2016九上·江夏期中) 函数y= 的图象与直线y=﹣x+n只有两个不同的公共点,则n的取值为________.三、解答题 (共8题;共81分)17. (5分) (2017七下·丰城期末) 解不等式组,并把解集在数轴上表示出来.18. (5分)(2019·东台模拟) 如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?19. (5分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形的两条边长,求此等腰三角形的周长.20. (15分) (2016九上·江夏期中) 如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1 ,直接写出点A1的坐标;(2)请画出△ABC绕原点O顺时针旋转90°的图形△A2B2C2 ,直接写出点A2的坐标;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.21. (10分) (2016九上·江夏期中) 已知:关于x的方程x2+(8﹣4m)x+4m2=0(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.22. (15分) (2016九上·江夏期中) 某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利60%,此时该种商品每星期可卖出220件,市场调查发现:在八折销售的基础上,该种商品每降价1元,每星期可多卖20件.设每件商品降价x元(x为整数),每星期的利润为y元(1)求该种商品每件的进价为多少元?(2)当售价为多少时,每星期的利润最大?最大利润是多少?(3) 2015年2月该种商品每星期的售价均为每件m元,若2015年2月的利润不低于24000元,请直接写出m的取值范围.23. (11分) (2016九上·江夏期中) 如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)________写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.24. (15分) (2016九上·江夏期中) 如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(1)求A、B、C的坐标;(2)过抛物线上一点F作y轴的平行线,与直线AC交于点G.若FG= AC,求点F的坐标;(3) E(0,﹣2),连接BE.将△OBE绕平面内的某点逆时针旋转90°得到△O′B′E′,O、B、E的对应点分别为O′、B′、E′.若点B′、E′两点恰好落在抛物线上,求点B′的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7、答案:略8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共81分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

山东省聊城市九年级上学期期中数学试卷

山东省聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016九上·永嘉月考) 已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+1上的点,则()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y3<y12. (2分)(2017·天水) 下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y= .A . ①②B . ②③C . ①③D . 都不是3. (2分)(2018·衡阳) 下列命题是假命题的是A . 正五边形的内角和为540°B . 矩形的对角线相等C . 对角线互相垂直的四边形是菱形D . 圆内接四边形的对角互补4. (2分) (2016九上·南昌期中) 如图,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是()A . 38°B . 52°C . 68°D . 42°5. (2分)当m不为何值时,函数y=(m﹣2)x2+4x﹣5(m是常数)是二次函数()A . ﹣2B . 2C . 3D . ﹣36. (2分) (2019九上·吉林月考) 一个二次函数y=ax2+bx+c的图像如图所示,该二次函数二次项系数a的值可能是()A . -2B . 3C .D . 2.37. (2分)下列函数:①;②;③;④中,y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2018九上·兴义期末) 下列运动属于旋转的是()A . 足球在草地上滚动B . 火箭升空的运动C . 汽车在急刹车时向前滑行D . 钟表的钟摆动的过程9. (2分) (2017九上·上城期中) 如图,抛物线与轴交于,两点,与轴交于点,顶点为,连结,.在轴上是否存在点,使以,,为顶点的三角形与相似,则满足条件的所有点的坐标为()A . ,B . ,C . ,,D . ,10. (2分)已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是()A . a>0B . 3是方程ax²+bx+c=0的一个根C . a+b+c=0D . 当x<1时,y随x的增大而减小11. (2分) (2015九下·武平期中) 如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2 .其中一定正确的是()A . ②④B . ①③C . ①④D . ②③12. (2分)(2017·商水模拟) 如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A .B .C .D .二、填空题 (共6题;共10分)13. (1分) (2015七下·农安期中) 如图所示的花朵图案,至少要旋转________度后,才能与原来的图形重合.14. (1分)将二次函数y=﹣x2+2x﹣3配方化为形如y=a(x+h)2+k的形式是________15. (1分)(2018·南京模拟) 如图,在⊙O的内接五边形ABCDE中,∠B+∠E=210°,则∠CAD=________°.16. (1分)(2020·拉萨模拟) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=25cm,BC=15cm,则BD的长为________cm.17. (1分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________ cm.18. (5分) (2017九上·西城期中) 如图,有一个圆形工具,请利用直尺和圆规,确定这个圆形工具的圆心.三、解答题 (共7题;共82分)19. (11分) (2018八上·许昌期末) 如图,在边长为1的小正方形网格中,点A,B,C均落在格点上.(1)直接写出△ABC的面积________.(2)画出△ABC关于直线的轴对称图形△A1B1C1.(3)判断△A1B1C1的形状,并说明理由.20. (5分) (2018九上·西湖期末) 求半径为3的圆的内接正方形的边长.21. (15分)已知二次函数y=ax2+bx的图象经过点(2,0)、(﹣1,6).(1)求二次函数的解析式;(2)画出它的图象;(3)写出它的对称轴和顶点坐标.22. (10分)(2017·大连模拟) 如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.23. (15分)(2014·绍兴) 如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.24. (15分) (2017八下·东台期中) 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.25. (11分)如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是________;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共82分) 19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

山东省聊城市九年级上学期数学期中考试试卷

山东省聊城市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·龙湾期中) 下列各式中,是关于的二次函数的是A .B .C .D .2. (2分) (2018九上·萧山开学考) 已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x分别取m﹣3、m+3时对应的函数值为y1、y2 ,则y1、y2必须满足()A . y1>0、y2>0B . y1<0、y2<0C . y1<0、y2>0D . y1>0、y2<03. (2分)(2017·恩施) 如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A . 5B . 4C . 3D . 24. (2分)已知x:y=1:2,那么(x+y):y等于()A . 2:2B . 3:1C . 3:2D . 2:35. (2分) (2016九上·海淀期末) 若点A(a,b)在双曲线上,则代数式ab-4的值为()A .B .C .D . 16. (2分)飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2 ,则飞机着陆后滑行到停止下列,滑行的距离为()A . 500米B . 600米C . 700米D . 800米7. (2分) (2018九上·武昌期中) 抛物线y=x2上有三个点(1,y1),(-2,y2),(3,y3),那么,y1、y2、y3的大小关系是()A . y1<y2<y3B . y3<y2<y1C . y1<y3<y2D . y2<y3<y18. (2分)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1、y2、y3的大小关系为()A . y1>y2>y3B . y1>y3>y2C . y3>y2>y1D . y3>y1>y29. (2分) (2015九上·南山期末) 已知 = = = (b+d+f≠0),则 =()A .B .C .D .10. (2分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点C,且tan∠ACO= ,CO=BO,AB=3.则下列判断中正确的是()A . 此抛物线的解析式为y=x2+x﹣2B . 在此抛物线上的某点M,使△MAB的面积等于4,这样的点共有三个C . 此抛物线与直线y=﹣只有一个交点D . 当x>0时,y随着x的增大而增大二、填空题 (共4题;共4分)11. (1分) (2019九上·江夏期末) 已知点P是线段AB的黄金分割点,AP>BP,若AB=4,则AP=________.12. (1分)把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=2(x﹣3)2+1,则a+b+c=________.13. (1分)下表反映的是我们目前学过的函数(不是二次函数)图象上点的横坐标x与纵坐标y之间的对应关系:x346y43m则m的值可以是________ .14. (1分)(2012·苏州) 已知点A(x1 , y1)、B(x2 , y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1________y2(填“>”、“<”或“=”).三、解答题 (共9题;共80分)15. (5分) (2016九上·利津期中) 已知抛物线经过点(2,3),且顶点坐标为(1,1),求这条抛物线的解析式.16. (5分)已知a+b+c=60,且,求a、b、c的值.17. (10分) (2016九上·阳新期中) 已知抛物线y= x2﹣2x﹣1(1)用配方法把抛物线化成顶点式,指出开口方向顶点坐标和对称轴(2)用描点法画出图象.18. (10分)已知反比例函数的图象经过点(-1,-2).(1)求y与x的函数关系式;(2)若点(2,n)在这个图象上,求n的值.19. (10分) (2016九上·蕲春期中) 如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值20. (10分)(2018·肇源模拟) 如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴相交于点A(-2,0),与y轴交于点C,与反比例函数在第一象限内的图象交于点B(m,n),连结OB.若S△AOB=6,S△BOC=2.(1)求一次函数的表达式;(2)求反比例函数的表达式.21. (10分)(2017·贵港模拟) 如图,直线y=x﹣2与反比例函数y= 的图像交于点A(3,1)和点B.(1)求k的值及点B的坐标;(2)若点P是坐标平面内一点,且以A,O,B,P为顶点构成一个平行四边形,请你直接写出该平行四边形对角线交点的坐标.22. (10分) (2019九上·博白期中) 元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时,求宾馆每天的利润;(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?23. (10分) (2017九上·召陵期末) 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多能出租一次,且每辆车的日租金x(元)是5的倍数,发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆,已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)设每日净收入为w元,请写出w与x之间的函数关系式;(3)若某日的净收入为4420元,且使游客得到实惠,则当天的观光车的日租金是多少元?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共80分)15-1、16-1、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

山东省聊城市九年级上学期期中数学试卷

山东省聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列式子中,是最简二次根式的是()A .B .C .D .【考点】2. (2分)方程的根是()A .B .C .D .【考点】3. (2分) (2017九上·青龙期末) 如图,若DC∥FE∥AB,则有()A .B .C .D .【考点】4. (2分) (2020九上·上思月考) 下列关于x的方程有实数根的是()A . x2-x+1=0B . x2+x+1=0C . (x-1)(x+2)=0D . (x-1)2+1=0【考点】5. (2分) (2018八上·龙岗期末) 下列计算正确的是()A .B .C .D .【考点】6. (2分)估算的大小,如果要求结果精确到1,则≈()A . 6B . 7C . 8D . 9【考点】7. (2分) (2020八下·新昌期末) 小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。

而立之年督东吴,早逝英年两位数。

十位恰小个位三,个位平方与寿同。

哪位学子算得快,多少年华数周瑜?”假设周瑜去世时年龄的十位数字是,则可列方程为()A .B .C .D .【考点】8. (2分)(2018·北区模拟) 如图,下列条件不能判定△ADB∽△ABC的是()A . ∠ABD=∠ACBB . ∠ADB=∠ABCC . AB2=AD·ACD .【考点】二、填空题 (共6题;共6分)9. (1分)(2016·双柏模拟) 函数中自变量x的取值范围是________.【考点】10. (1分)(2018·拱墅模拟) 已知,则 ________.【考点】11. (1分) (2017八上·扶余月考) 已知实数满足,则x-20132的值为________。

山东省聊城市九年级上学期数学期中考试试卷

山东省聊城市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题:选择唯一正确的答案填在括号内(本大题共10小题,每小 (共10题;共30分)1. (3分)(a-1)x2+2x-3=0是一元二次方程,则字母a应满足()A . a>1B . a≠1C . a≠0D . a<-12. (3分)(2019·泰安模拟) 从下列4个图形中任选一个,得到的图形既是轴对称图形又是中心对称图形的概率是()A .B .C .D . 13. (3分)用公式法解方程3x2+4=12x ,下列代入求根公式正确的是()A . x=B . x=C . x=D . x=4. (3分)二次函数y=(x﹣1)2﹣2的顶点坐标是()A . (1,﹣2)B . (﹣1,2)C . (﹣1,﹣2)D . (1,2)5. (3分)若关于x的一元二次方程2x2﹣2x+3m﹣1=0有两个实数根x1、x2 ,且x1x2>x1+x2﹣4,则实数m的取值范围是()A . m>﹣B . m≤C . m<﹣D . ﹣<m≤6. (3分)点(-1,2)关于原点对称的点的坐标是()A . (1,2)B . (-1,-2)C . (2,-1)D . (1,-2)7. (3分)(2018·罗平模拟) 今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x,则根据题意可列方程为()A . 2.3 (1+x)2=1.2B . 1.2(1+x)2=2.3C . 1.2(1﹣x)2=2.3D . 1.2+1.2(1+x)+1.2(1+x)2=2.38. (3分)(2020·百色模拟) 在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A . 向左平移2个单位B . 向右平移2个单位C . 向左平移8个单位D . 向右平移8个单位9. (3分)(2017九上·东丽期末) 已知△ 和△ 都是等腰直角三角形,,,,是的中点.若将△ 绕点旋转一周,则线段长度的取值范围是()A .B .C .D .10. (3分)(2018·南山模拟) 如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为()A . 60°B . 65°C . 70°D . 75°二、填空题(每小题3分,共18分) (共6题;共18分)11. (3分)(2017·资中模拟) 如果m是从﹣1,0,1,2四个数中任取的一个数,n是从﹣2,0,3三个数中任取的一个数,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为________.12. (3分)已知是二次函数,则a=________13. (3分) (2019九上·开州月考) 如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是________.14. (3分) (2017九上·上杭期末) 已知方程x2+mx+3=0的一个根是1,则它的另一个根是________.15. (3分)抛物线y=x2﹣(m+1)x+9与x轴只有一个交点,则m的值为________ .16. (3分)在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是________ .三、解答题(本题共52分) (共7题;共52分)17. (8分)解下列方程(1)x2﹣8x+9=0(2)(2x﹣3)(x﹣4)=0(3)2(x﹣3)2=方程可变为:2x﹣3=0,x﹣4=0,解得:x1= ,x2=4x﹣3.18. (6分)(2019·云霄模拟) 如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.19. (5.0分) (2019九上·博白期中) △ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.①画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1的坐标;②将△ABC 绕点 C 顺时针旋转90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A所经过的路径长20. (7.0分) (2016九下·澧县开学考) 在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD 边上一点,且DM= AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为________.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为________;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;________③当点A′落在对角线BD上时,如图4,求的值.________21. (8分)(2016·丹东) 某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?22. (8分)(2017·海陵模拟) 如图,已知点M、N分别为▱ABCD的边CD、AB的中点,连接AM、CN.(1)证明:AM=CN;(2)过点B作BH⊥AM于点H,交CN于点E,连接CH,判断线段CB、CH的数量关系,并说明理由.23. (10.0分)(2017·宁津模拟) 如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.参考答案一、选择题:选择唯一正确的答案填在括号内(本大题共10小题,每小 (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题3分,共18分) (共6题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题共52分) (共7题;共52分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省聊城市文轩中学九年级(上)期中数学试卷一.选择题(共15小题)1.(3分)如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:2.(3分)如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对3.(3分)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC 相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.44.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m5.(3分)已知,如图,E(﹣4,2),F(﹣1,﹣1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A.(﹣2,1)B.(2,﹣1)C.(2,﹣1)或(﹣2,﹣1)D.(﹣2,1)或(2,﹣1)6.(3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.7.(3分)cos60°的值等于()A.B.C.D.8.(3分)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米9.(3分)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°10.(3分)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°11.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.12.(3分)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断13.(3分)如图⊙O是Rt△ABC的内切圆,D,E,F分别为切点,∠ACB=90°,则∠EDF的度数为()A.25°B.30°C.45°D.60°14.(3分)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB 为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm215.(3分)正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2二.填空题(共8小题,每小题3分,计24分)16.(3分)已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF 的周长是.17.(3分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.18.(3分)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=.19.(3分)如图,平面直角坐标系中,点A,B的坐标分别为(6,0),(4,﹣6),△A′B′O△ABO是以原点O为位似中心的位似图形,且△A′B′O与△ABO的位似比为1:2,则B′的坐标为.20.(3分)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=.21.(3分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.22.(3分)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是.23.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=度.三.解答题(共5小题)24.(10分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.25.(10分)如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC的外接圆⊙O于D.(1)求证:△ABE∽△ADC;(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.26.(10分)根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M距羲皇大道l(直线)的距离MN为30米(如图所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度.(2)通过计算判断此车是否超速.27.(10分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:≈1.7)28.(11分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.2015-2016学年山东省聊城市文轩中学九年级(上)期中数学试卷参考答案与试题解析一.选择题(共15小题)1.(3分)如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:【解答】解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.2.(3分)如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对【解答】解:根据同弧所对的圆周角相等及相似三角形的判定定理可知图中相似三角形有4对,分别是:△ADE∽△BCE,△AEB∽△DEC,△PAD∽△PCB,△PBD ∽△PCA.故选C.3.(3分)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC 相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.4【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∴∠BAD+∠ADB=120°,∠ADB+∠FDC=120°∴∠BAD=∠FDC又∵∠B=∠C=60°,∴∴△ABD~△CDF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选:B.4.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.5.(3分)已知,如图,E(﹣4,2),F(﹣1,﹣1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A.(﹣2,1)B.(2,﹣1)C.(2,﹣1)或(﹣2,﹣1)D.(﹣2,1)或(2,﹣1)【解答】解:∵E(﹣4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(﹣2,1)或(2,﹣1).故选:D.6.(3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.【解答】解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.7.(3分)cos60°的值等于()A.B.C.D.【解答】解:cos60°=.故选:A.8.(3分)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米【解答】解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.9.(3分)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE,=,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选:C.10.(3分)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.11.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.【解答】解:连接BD.AB是直径,则∠ADB=90°,∴∠CDA=∠CDB+∠ADB=150°.∵∠CBA=180°﹣∠CDA=30°,∴tan∠ABC=tan30°=.故选:B.12.(3分)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断【解答】解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选:A.13.(3分)如图⊙O是Rt△ABC的内切圆,D,E,F分别为切点,∠ACB=90°,则∠EDF的度数为()A.25°B.30°C.45°D.60°【解答】解:连接OE、OF,∵⊙O是Rt△ABC的内切圆,D,E,F分别为切点,∴OE⊥BC,OF⊥AC,∵∠C=90°,∴∠EOF=90°,∴∠EDF=∠EOF=45°,故选:C .14.(3分)如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .(﹣1)cm 2B .(+1)cm 2C .1cm 2D .cm 2【解答】解:∵扇形OAB 的圆心角为90°,扇形半径为2, ∴扇形面积为:=π(cm 2), 半圆面积为:×π×12=(cm 2), ∴S Q +S M =S M +S P =(cm 2),∴S Q =S P ,连接AB ,OD ,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S 绿色=S △AOD =×2×1=1(cm 2),∴阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色=π﹣﹣1=﹣1(cm 2).故选:A .15.(3分)正六边形的边心距为,则该正六边形的边长是( )A .B .2C .3D .2 【解答】解:∵正六边形的边心距为,∴OB=,AB=OA , ∵OA 2=AB 2+OB 2,∴OA 2=(OA )2+()2,解得OA=2.故选:B .二.填空题(共8小题,每小题3分,计24分)16.(3分)已知△ABC ∽△DEF ,其中AB=5,BC=6,CA=9,DE=3,那么△DEF 的周长是 12 .【解答】解:∵△ABC ∽△DEF , ∴=,即=,∴△DEF 的周长=12.故答案为:12.17.(3分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.【解答】解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.18.(3分)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=5.【解答】解:由圆周角定理可知,∠E=∠C,∵∠ABE=∠ADC=90°,∠E=∠C,∴△ABE∽△ADC.∴AB:AD=AE:AC,∵AB=4,AC=5,AD=4,∴4:4=AE:5,∴AE=5,故答案为:5.19.(3分)如图,平面直角坐标系中,点A,B的坐标分别为(6,0),(4,﹣6),△A′B′O△ABO是以原点O为位似中心的位似图形,且△A′B′O与△ABO的位似比为1:2,则B′的坐标为(2,﹣3)或(﹣2,3).【解答】解:∵点A,B的坐标分别为(6,0),(4,﹣6),△A′B′O△ABO是以原点O为位似中心的位似图形,且△A′B′O与△ABO的位似比为1:2,则B′的坐标为:(2,﹣3)或(﹣2,3).故答案为:(2,﹣3)或(﹣2,3).20.(3分)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.【解答】解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.21.(3分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.22.(3分)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是10或8.【解答】解:由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长==20,因此这个三角形的外接圆半径为10.综上所述:这个三角形的外接圆半径等于8或10.故答案为:10或8.23.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.【解答】解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40三.解答题(共5小题)24.(10分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.【解答】证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.25.(10分)如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC的外接圆⊙O于D.(1)求证:△ABE∽△ADC;(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.【解答】证明:(1)∵∠BAC的角平分线AD,∴∠BAE=∠CAD,∵∠ABC=∠ADC,∴△ABE∽△ADC;(2)∵∠BAD=∠CAD,∴=,∵OD为半径,∴DO⊥BC(垂径定理),∵F为OD的中点,∴OB=BD,OC=CD,∵OB=OC,∴OB=BD=CD=OC,∴四边形OBDC是菱形.26.(10分)根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M距羲皇大道l(直线)的距离MN为30米(如图所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度.(2)通过计算判断此车是否超速.【解答】解:(1)在Rt△AMN中,MN=30,∠AMN=60°,∴AN=MN•tan∠AMN=30.在Rt△BMN中,∵∠BMN=45°,∴BN=MN=30.∴AB=AN+BN=(30+30)米;(2)∵此车从A点行驶到B点所用时间为6秒,∴此车的速度为:(30+30)÷6=5+5≈13.66,∵60千米/时≈16.66米/秒,∴13.66<16.66∴不会超速.27.(10分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:≈1.7)【解答】解:∵∠BCF=90°,∠CBF=45°,∴BC=CF,∵∠CAF=30°,∴tan30°====,解得:CF=≈≈1046(米).答:竖直高度CF约为1046米.28.(11分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.【解答】(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O 的半径为4.。

相关文档
最新文档