概率统计公式大全复习重点

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全1.概率公式:-概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-概率的乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)-全概率公式:P(B)=P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)-贝叶斯公式:P(Ai,B)=P(B,Ai)P(Ai)/(P(B,A1)P(A1)+P(B,A2)P(A2)+...+P(B,An)P(An))2.随机变量与分布:- 期望:E(X) = ∑(xP(X=x))或E(X) = ∫(xf(x)dx)- 方差:Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2- 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]- 标准差:SD(X) = sqrt(Var(X))-二项分布:P(X=k)=C(n,k)p^k(1-p)^(n-k)- 泊松分布:P(X = k) = (lambda^k)e^(-lambda) / k!- 正态分布:P(X = x) = (1 / (sqrt(2*pi)*sigma)) * e^(-(x-mu)^2 / (2*sigma^2))3.估计与检验:-极大似然估计:L(θ)=∏(f(x_i;θ))-似然比检验:λ=L(θ)/L(θ0)- 估计的无偏性:E(θ_hat) = θ- 估计的有效性:Var(θ_hat) ≤ Var(θ)- 中心极限定理:对于均值为μ、方差为σ^2的随机变量X,若样本容量n趋于无穷大,则样本均值X_bar的极限分布服从正态分布4.相关与回归:- 相关系数:r = Cov(X, Y) / (SD(X) * SD(Y))-简单线性回归方程:Y=β0+β1X+ε- 最小二乘估计:β1 = Cov(X, Y) / Var(X)- 线性回归预测:Y_hat = β0 + β1X5.抽样分布:- 样本均值分布:X_bar ~ N(μ, σ^2 / n)- 样本比例分布:p_hat ~ N(p, p(1-p) / n)-卡方分布:X^2~χ^2(k)-t分布:T~t(n)-F分布:F~F(m,n)以上是一些概率论与数理统计中常见的公式,希望对你的学习有所帮助。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BB⊃,则称事件A与A⊂,A事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。

本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。

一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。

例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。

解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。

2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。

解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。

二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

概率统计公式大全复习重点汇总

概率统计公式大全复习重点汇总

概率统计公式大全复习重点汇总TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这随机事件种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件与运算B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

概率论与数理统计自学考试公式大全

概率论与数理统计自学考试公式大全

概率论与数理统计重点公式1、)()()()(AB P B P A P B A P -+=2、若A 、B 独立,则)()()(B P A P AB P ⋅=3、条件概率=)/(A B P )()(A P AB P 4、乘法公式:)/()()(A B P A P AB P = 5、二项分布:),(~p n B X分布律:k n kk n p p C k X P --==)1(}{, 其中n k p ,,2,1,0,10 =<<期望:np 方差:)1(p np - 6、泊松分布:)(~λP X分布律:λλ-==e k k X P k!}{,0>λ, 2,1,0=k期望: λ 方差: λ7、均匀分布:),(~b a U X概率密度:⎪⎩⎪⎨⎧-=,0,1)(ab x f 其他, 期望:2ba + 方差:12)(2a b -8、指数分布:)(~λE X概率密度:⎩⎨⎧≤>=-0,00,)(x x e x f x λλa ≤x ≤b分布函数:⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ期望:λ1 方差:21λ9、正态分布:概率密度:222)(21)(σμσπ--=x ex f ,期望: μ方差: 2σ10、若X 是连续型随机变量,)(x F 是分布函数,则概率运算公式为: (1))(}{a F a x P =<(2))()(}{a F b F b x a P -=<< (3))(1}{a F a x P -=>11、若X 是连续型随机变量,)(x f 是概率密度,则概率运算公式为: (1)dx x f aa x P )(}{⎰∞-=<(2)dx x f a bb x a P )(}{⎰=<< (3)dx x f a dx x f aa x P )()(1}{⎰⎰∞+=∞--=>12、若X 是连续型随机变量,)(x f 是概率密度,则期望运算公式为:dx x xf X E )()(⎰∞-∞+=13、方差的简便计算公式22)]([)()(X E X E X D -=),(~2σμN X +∞<<∞-x14、期望的性质 (1)C C E =)( (2))()(X kE kX E =(3))()()(Y E X E Y X E ±=±(4)若X 与Y 独立,则)()()(Y E X E XY E ⋅= 15、方差的性质(1)0)(=C D ,)()(X D C X D =+ (2))()(2X D k kX D =(3)若X 与Y 独立,则)()()(Y D X D Y X D +=± 16、协方差与相关系数)()()(),(Y E X E XY E Y X Cov ⋅-=)()(),(Y D X D Y X Cov XY ⋅=ρ17、切比雪夫不等式2)(})({εεX D X E X P ≤≥- 2)(1})({εεX D X E X P -≥<-18、大数定律(1)1lim =⎪⎪⎭⎫ ⎝⎛<-∞→εp n m P n (2)11lim 1=⎪⎪⎭⎫⎝⎛<-∑=∞→εμn i i n X n P 19、中心极限定理(1))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ(2))()1(lim x x p np np Z P n n Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→ 20、样本均值与样本方差 样本均值∑==ni i x n x 11样本方差∑=--=n i ix x n s 122.)(11 样本标准差.)(1112∑=--=n i ix x n s μ=)(X E ,nX D 2)(σ=,22)(σ=s E21、设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本, 若未知2σ,则)1(~)1()(22222---∑n s n x x iχσσ=若已知2σ,则)(~)(222n x xiχσ∑-22、矩估计、极大似然估计x =μˆ 22ˆn s =σ,其中∑=-=ni i n x x n s 122.)(123、区间估计已知方差2σ,估计均值μ,区间⎥⎦⎤⎢⎣⎡+-n u x n u x σσαα22,未知方差2σ,估计均值μ,区间⎥⎦⎤⎢⎣⎡-+--n s n t x n s n t x )1(,)1(22αα 估计方差2σ,区间⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----)1()1(,)1()1(2212222n s n n sn ααχχ 24、假设检验两类错误第一类错误 0H 成立,拒绝0H 第二类错误 1H 成立,接受0H 25、u 检验前提:已知2σ,00:μμ=H ,01:μμ≠H 统计量nx u 0σμ-=拒绝域),(),(22+∞--∞=ααu u W26、t 检验前提:未知2σ,00:μμ=H ,01:μμ≠H 统计量ns x t 0μ-=拒绝域)),1(())1(,(22+∞----∞=n t n t Wαα27、2χ检验 前提:2020:σσ=H ,2021:σσ≠H统计量2022)1(σχs n -=拒绝域)),1(())1(,0(22221+∞--=-n n W ααχχ 28、回归方程x y 10ˆˆˆββ+= 其中∑∑∑--==221ˆxn x y x n y x L L ii ixxxy βx y 10ˆˆββ-= 即直线x y 10ˆˆˆββ+=经过点),(y x 29、回归平方和、剩余平方和∑-=ii y ys 2)ˆ(回∑-ii i y y s 2)ˆ(=剩30、单边检验。

概率论重要公式大全必看

概率论重要公式大全必看概率论是数学的一个分支,研究随机事件的概率性质和随机现象的数学模型。

在概率论中有许多重要的公式,下面是一些概率论中常用的重要公式的介绍。

1.加法法则加法法则是计算两个事件一起发生的概率的公式。

P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法法则乘法法则是计算两个事件同时发生的概率的公式。

P(A∩B)=P(A)×P(B,A)=P(B)×P(A,B)其中P(B,A)表示已知事件A发生下事件B发生的概率。

3.全概率公式全概率公式是计算一个事件的概率的公式,通过将事件分解为若干个互斥事件并计算其概率,然后加权求和得到事件的概率。

P(A)=ΣP(A∩Bi)=ΣP(Bi)×P(A,Bi)其中Bi为一组互斥事件,且它们的并集为样本空间。

4.贝叶斯定理贝叶斯定理是根据条件概率的定义,计算事件的后验概率的公式。

P(A,B)=P(B,A)×P(A)/P(B)其中P(A,B)为已知事件B发生下事件A发生的概率。

5.随机变量与概率分布随机变量是用来描述随机现象结果的变量。

概率分布则是随机变量取不同值的概率的分布情况。

6.期望和方差期望是描述随机变量平均值的概念,可以通过加权平均的方式计算。

E(X)=Σx×P(X=x)方差是描述随机变量离散程度的概念,用来衡量随机变量取值与其期望值之间的偏差。

Var(X) = E((X - E(X))^2) = Σ (x - E(X))^2 × P(X=x)7.二项分布二项分布是描述重复进行n次独立实验中成功次数的概率分布。

P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中C(n,k)表示组合数,p为单次实验的成功概率,n为实验次数,k为成功次数。

8.泊松分布泊松分布是描述事件在一定时间或空间范围内发生的次数的概率分布。

P(X=k)=(λ^k/k!)×e^(-λ)其中λ为单位时间或单位空间范围内事件发生的平均次数,k为事件发生的次数。

概率统计公式大全复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A 等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率与统计学中的关键公式整理

概率与统计学中的关键公式整理在概率与统计学中,有许多重要的公式被广泛应用于数据分析、推断和决策过程中。

这些公式能够帮助我们对数据进行有效的统计分析,并从中获取有用的信息。

本文将对概率与统计学中的关键公式进行整理和介绍,帮助读者更好地理解和运用这些公式。

一、概率公式1. 条件概率公式条件概率是指在给定某个条件下,事件发生的概率。

条件概率可以使用以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

2. 边际概率公式边际概率是指在多个事件中某一个事件发生的概率。

边际概率可以使用以下公式计算:P(A) = ∑ P(A∩Bi)其中,P(A)表示事件A发生的概率;P(A∩Bi)表示事件A和事件Bi同时发生的概率;∑表示对所有可能的事件Bi求和。

3. 联合概率公式联合概率是指多个事件同时发生的概率。

联合概率可以使用以下公式计算:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)其中,P(A∩B)表示事件A和事件B同时发生的概率;P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B)表示事件B发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率。

二、统计学公式1. 期望值公式期望值是指随机变量的平均值,可以用来衡量数据的中心趋势。

期望值可以使用以下公式计算:E(X) = ∑ (xi * P(xi))其中,E(X)表示随机变量X的期望值;xi表示随机变量X可能取的值;P(xi)表示随机变量X取值为xi的概率;∑表示对所有可能的取值xi求和。

2. 方差公式方差是衡量数据的离散程度,可以用来评估数据的分散程度。

方差可以使用以下公式计算:Var(X) = E((X-μ)^2)其中,Var(X)表示随机变量X的方差;E表示期望值;X表示随机变量X的取值;μ表示随机变量X的期望值。

概率统计公式大全复习重点

概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。

这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。

本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。

一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章随机事件和概率
(1)排列组合公式
)!
(
!
n
m
m
P n
m-
=从m个人中挑出n个人进行排列的可能数。

)!
(!
!
n
m
n
m
C n
m-
=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B
A⊂
如果同时有B
A⊂,A
B⊃,则称事件A与事件B等价,或称A 等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B
A,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。

A B=Ø,则表示A与B不可能
同时发生,称事件A与事件B互不相容或者互斥。

基本事件是互不相容的。

Ω-A称为事件A的逆事件,或称A的对立事件,记为A。

它表示A不发生的事件。

互斥未必对立。

②运算:
结合率:A(BC)=(AB)C A ∪(B ∪C)=(A ∪B)∪C
分配率:(AB)∪C=(A ∪C)∩(B ∪C) (A ∪B)∩C=(AC)∪(BC)
德摩根率: ∞
=∞==1
1
i i
i i
A
A
B A B A =,B A B A =
(7)概率
的公理化
定义
设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:
1° 0≤P(A)≤1, 2° P(Ω) =1
3° 对于两两互不相容的事件1A ,2A ,…有
常称为可列(完全)可加性。

则称P(A)为事件A 的概率。

(8)古典概型
1° {}n ωωω 21,=Ω,
2° n
P P P n 1
)()()(21=
==ωωω 。

设任一事件A ,它是由m ωωω 21,组成的,则有
P(A)={})()()(21m ωωω =)()()(21m P P P ωωω+++
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均
匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。

对任一事件A ,
)
()
()(Ω=
L A L A P 。

其中L 为几何度量(长度、面积、体积)。

(10)加法公式
P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A+B)=P(A)+P(B) (11)减
法公式
P(A-B)=P(A)-P(AB)
当B ⊂A 时,P(A-B)=P(A)-P(B)
当A=Ω时,P(B )=1- P(B)
(12)条定义 设A 、B 是两个事件,且P(A)>0,则称
)
()
(A P AB P 为事件A 发生
件概率
条件下,事件B 发生的条件概率,记为=
)/(A B P )
()
(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1⇒P(B /A)=1-P(B/A)
(13)乘法公式
乘法公式:)/()()(A B P A P AB P =
更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有 21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …)1-n A 。

(14)独
立性
①两个事件的独立性
设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的。

若事件A 、B 相互独立,且0)(>A P ,则有
若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互独立。

必然事件Ω和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

②多个事件的独立性
设ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A 、B 、C 相互独立。

对于n 个事件类似。

(15)全概公式
设事件n B B B ,,,21 满足
1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>, 2° n
i i
B A 1=⊂,
则有
)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。

(16)贝
叶斯公式 设事件1B ,2B ,…,n B 及A 满足
1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,
n ,
2° n
i i
B A 1
=⊂,0)(>A P ,

∑==
n
j j
j
i i i B A P B P B A P B P A B P 1
)
/()()
/()()/(,i=1,2,…n 。

此公式即为贝叶斯公式。

)(i B P ,(1=i ,2,…,n ),通常叫先验概率。

)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。

贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型
我们作了n 次试验,且满足
◆ 每次试验只有两种可能结果,A 发生或A 不发生; ◆ n 次试验是重复进行的,即A 发生的概率每次均一样; ◆ 每次试验是独立的,即每次试验A 发生与否与其他次试验
A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用
)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0 =。

第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。

相关文档
最新文档