Hadoop大数据技术与应用01 初识hadoop

合集下载

《Hadoop大数据技术》课程理论教学大纲

《Hadoop大数据技术》课程理论教学大纲

《Hadoop大数据技术》课程教学大纲一、课程基本情况课程代码:1041139083课程名称(中/英文):Hadoop大数据技术/Hadoop Big Data Technology课程类别:专业必修课学分:3.5总学时:56理论学时:32实验/实践学时:24适用专业:数据科学与大数据技术适用对象:本科先修课程:JA V A程序设计、Linux基础教学环境:课堂、多媒体、实验机房二、课程简介《Hadoop大数据技术》课程是数据科学与大数据技术专业的专业必修课程。

《Hadoop大数据技术》主要学习当前广泛使用的大数据Hadoop平台及其主要组件的作用及使用。

通过学习Hadoop 平台框架,学会手动搭建Hadoop环境,掌握Hadoop平台上存储及计算的原理、结构、工作流程,掌握基础的MapReduce编程,掌握Hadoop生态圈常用组件的作用、结构、配置和工作流程,并具备大数据的动手及问题分析能力,使用掌握的知识应用到实际的项目实践中。

课程由理论及实践两部分组成,课程理论部分的内容以介绍Hadoop平台主要组件的作用、结构、工作流程为主,对Hadoop 平台组件的作用及其工作原理有比较深入的了解;课程同时为各组件设计有若干实验,使学生在学习理论知识的同时,提高实践动手能力,做到在Hadoop的大数据平台上进行大数据项目开发。

三、课程教学目标2.课程教学目标及其与毕业要求指标点、主要教学内容的对应关系四、教学内容(一)初识Hadoop大数据技术1.主要内容:掌握大数据的基本概念、大数据简史、大数据的类型和特征、大数据对于企业带来的挑战。

了解对于大数据问题,传统方法、Google的解决方案、Hadoop框架下的解决方案,重点了解Google的三篇论文。

掌握Hadoop核心构成、Hadoop生态系统的主要组件、Hadoop发行版本的差异及如何选择;了解Hadoop典型应用场景;了解本课程内容涉及到的Java语言基础;了解本课程实验涉及到的Linux基础。

01第一章 初识Hadoop大数据技术

01第一章 初识Hadoop大数据技术

第1章初识Hadoop大数据技术本章主要介绍大数据的时代背景,给出了大数据的概念、特征,还介绍了大数据相关问题的解决方案、Hadoop大数据技术以及Hadoop的应用案例。

本章的主要内容如下。

(1)大数据技术概述。

(2)Google的三篇论文及其思想。

(3)Hadoop概述。

(4)Hadoop生态圈。

(5)Hadoop的典型应用场景和应用架构。

1.1 大数据技术概述1.1.1 大数据产生的背景1946年,计算机诞生,当时的数据与应用紧密捆绑在文件中,彼此不分。

19世纪60年代,IT系统规模和复杂度变大,数据与应用分离的需求开始产生,数据库技术开始萌芽并蓬勃发展,并在1990年后逐步统一到以关系型数据库为主导,具体发展阶段如图1-1所示。

Hadoop 大数据技术与应用图1-1 数据管理技术在2001年前的两个发展阶段 2001年后,互联网迅速发展,数据量成倍递增。

据统计,目前,超过150亿个设备连接到互联网,全球每秒钟发送290万封电子邮件,每天有2.88万小时视频上传到YouTube 网站,Facebook 网站每日评论达32亿条,每天上传照片近3亿张,每月处理数据总量约130万TB 。

2016年全球产生数据量16.1ZB ,预计2020年将增长到35ZB (1ZB = 1百万,PB = 10亿TB ),如图1-2所示。

图1-2 IDC 数据量增长预测报告2011年5月,EMC World 2011大会主题是“云计算相遇大数据”,会议除了聚焦EMC 公司一直倡导的云计算概念外,还抛出了“大数据”(BigData )的概念。

2011年6月底,IBM 、麦肯锡等众多国外机构发布“大数据”相关研究报告,并予以积极的跟进。

19世纪60年代,IT 系统规模和复杂度变大,数据与应用分离的需求开始产生,数据库技术开始萌芽并蓬勃发展,并在1990年后逐步统一到以关系型数据库为主导1946年,计算机诞生,数据与应用紧密捆绑在文件中,彼此不分1946 1951 1956 1961 1970 1974 1979 1991 2001 … 网络型E-RSQL 关系型数据库 数据仓库 第一台 计算机 ENIAC 面世 磁带+ 卡片 人工 管理 磁盘被发明,进入文件管理时代 GE 公司发明第一个网络模型数据库,但仅限于GE 自己的主机 IBM E. F.Dodd 提出关系模型 SQL 语言被发明 ORACLE 发布第一个商用SQL 关系数据库,后续快速发展数据仓库开始涌现,关系数据库开始全面普及且与平台无关,数据管理技术进入成熟期 0.8ZB :将一堆DVD 堆起来够地球到月亮一个来回 35ZB :将一堆DVD 堆起来是地球到火星距离的一半IDC 报告“Data Universe Study ”预测:全世界数据量将从2009年的0.8ZB 增长到2020年的35ZB ,增长44倍!年均增长率>40%!1.1.2 大数据的定义“大数据”是一个涵盖多种技术的概念,简单地说,是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。

大数据处理之 Hadoop 原理与应用介绍

大数据处理之 Hadoop 原理与应用介绍

Input
Input Data:
A DD BB A BB A
Map Task Map
Map
0,A 1,DD
A,1 DD,1
Reduce Task
Shuffle & Sort
Reduce
map, sort, combiner, partition, spill, merge
copy partition data A,[1, 1, 1]
1、问题:
有如下数据,字段内容分别为:url,catePath0,catePath1,catePath2,unitparams
https:///confluence 0 1 8 {"store":{"fruit":[{"weight":1,"type":"apple"},{"weight":9,"type":"pear"}],"bicycle":{"price":19.951,"color":"red1"}},"email":" amy@only_for_json_udf_","owner":"amy1"} /leejun2005/blog/83058 0 1 23 {"store":{"fruit":[{"weight":1,"type":"apple"},{"weight":2,"type":"pear"}],"bicycle":{"price":19.951,"color":"red1"}},"email":"

《Hadoop大数据技术原理与应用》课程教学大纲

《Hadoop大数据技术原理与应用》课程教学大纲

《Hadoop大数据技术原理与应用》课程教学大纲课程编号:3250578学分:4学分学时:72学时(其中:讲课学时36 上机学时:36)先修课程:《Linux基础》、《关系数据库基础》、《程序设计基础》、《Java面向对象编程》后续课程:Spark,《Python编程基础》、《Python数据分析与应用》适用专业:大数据应用技术一、课程的性质与目标《大数据应用开发》本课程是软件技术专业核心课程,大数据技术入门课程。

通过学习课程使得学生掌握大数据分析的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对Hadoop平台应用与开发的一般理论有所了解,如分布式数据收集、分布式数据存储、分布式数据计算、分布式数据展示。

开设本学科的目的是让学生掌握如何使用大数据分析技术解决特定业务领域的问题。

完成本课程学习后能够熟练的应用大数据技术解决企业中的实际生产问题。

二、教学条件要求操作系统:Center OSHadoop版本:Hadoop2.7.4开发工具:Eclipse三、课程的主要内容及基本要求第1章初识Hadoop第2章构建Hadoop集群第3章 HDFS分布式文件系统第4章 MapReduce分布式计算系统第5章 Zookeeper分布式协调服务第6章 Hadoop2.0新特性第7章 Hive数据仓库第8章 Flume日志采集系统第9章 Azkaban工作流管理器第10章 Sqoop数据迁移第11章综合项目——网站流量日志数据分析系统四、学时分配五、考核模式与成绩评定办法本课程为考试课程,期末考试采用百分制的闭卷考试模式。

学生的考试成绩由平时成绩(30%)和期末考试(70%)组成,其中,平时成绩包括出勤(5%)、作业(5%)、上机成绩(20%)。

六、选用教材和主要参考书本大纲是参考教材《Hadoop大数据技术原理与应用》所设计的。

七、大纲说明本课程的授课模式为:课堂授课+上机,其中,课堂主要采用多媒体的方式进行授课,并且会通过测试题阶段测试学生的掌握程度;上机主要是编写程序,要求学生动手完成指定的程序设计或验证。

Hadoop技术介绍ppt课件

Hadoop技术介绍ppt课件

ppt课件.
18
ppt课件.
19
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
4
目录
Hadoop是什么 Hadoop是如何运作的 Hadoop能做什么 大数据时代三架马车
ppt课件.
5
MapReduce
➢ 化大为小 ➢ 化繁为简
开发方式 ✓ 实现map函数 ✓ 实现reduce函数
ppt课件.
6
统计词频
➢ 方法一 写一个小程序遍历整个文件,统计每一个遇到的词的出现次数。
张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务 进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的 MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分 析。
数据存储 Table
每个表对应HDFS上一个目录。 Partition
Hadoop技术介绍
ppt课件.
1
目录
Hadoop是什么 Hadoop是如何运作的 Hadoop能做什么 大数据时代三架马车
ppt课件.
2
前言
ppt课件.
3
Hadoop是由Apache基金会研发的开源 的分布式计算框架和分布式文件系统。是对 Google的MapReduce和GFS的开源实现。
对指定列根据列值进行分区,每个区一个目录。 Bucket
对指定列进行Hash分区,每个区一个目录。 External Table
对应HDFS一个目录路径,删除表,数据不会删除
ppt课件.
15
Hbase (Hadoop DataBase) HBase是一个分布式的、面向列的开源数据库。Hbase依托于Hadoop的HDFS

Hadoop在大数据处理中的应用

Hadoop在大数据处理中的应用

Hadoop在大数据处理中的应用第一章概述Hadoop是一种跨平台、开源的分布式计算框架,由Apache开发和维护。

它能够处理海量数据,帮助我们进行数据存储、管理和处理,并可以应用于数据挖掘、机器学习、网络搜索、自然语言处理等多个领域。

在大数据处理中,Hadoop起到了至关重要的作用。

第二章 Hadoop架构Hadoop的核心组件包括Hadoop Distributed File System(HDFS)和MapReduce计算模型。

HDFS是一种分布式文件系统,它能够存储海量数据,并能够在不同的计算节点上访问这些数据。

MapReduce计算模型是用于分布式处理数据的一种编程模型。

它能够将任务分解为多个子任务,并将它们分发到不同的计算节点进行计算,最后将结果汇总。

除了核心组件之外,Hadoop还包括许多其他组件,例如YARN资源管理器,它管理计算集群的资源分配。

此外,Hadoop还支持许多数据处理工具,例如Hive,用于SQL查询,Pig,用于数据处理和清洗,以及Spark,用于迭代式计算和数据分析。

第三章 Hadoop的优势Hadoop在大数据处理中的优势主要体现在以下几个方面:1.可扩展性:Hadoop可以通过添加更多的计算节点来扩展性能,因此可以处理多达数百TB的数据。

2.价格效益:开源和“共享”模式使得Hadoop成本低廉,同时也让更多的开发人员可以了解和使用这种技术。

3.可靠性:Hadoop在其HDFS上使用数据备份技术,从而提高了数据的可靠性和可恢复性。

4.灵活性:Hadoop可以与多种数据处理工具和技术集成,使其具有更广泛的适用性。

第四章 Hadoop的应用Hadoop已在许多领域得到广泛应用,包括以下几个方面:1.数据挖掘和分析:Hadoop可以帮助在海量数据中找到有价值的信息。

许多公司使用Hadoop进行大规模数据挖掘和分析,以生成报告和动态信息图表。

2.机器学习:Hadoop可以在分析海量数据的基础上学习新的数据模式,从而提高预测准确性,这在电子商务和金融领域非常有用。

hadoop大数据原理与应用

hadoop大数据原理与应用

hadoop大数据原理与应用Hadoop大数据原理与应用随着信息技术的飞速发展,大数据成为当今社会的热门话题之一。

而Hadoop作为大数据处理的重要工具,因其可靠性和高效性而备受关注。

本文将介绍Hadoop大数据的原理和应用。

一、Hadoop的原理Hadoop是一个开源的分布式计算框架,可以处理大规模数据集。

其核心组件包括Hadoop分布式文件系统(HDFS)和Hadoop分布式计算框架(MapReduce)。

HDFS是一个可靠的分布式文件系统,能够将大文件分成多个块并存储在不同的计算机节点上,以实现高容错性和高可用性。

而MapReduce是一种编程模型,将大规模数据集分成多个小的子集,然后在分布式计算集群上进行并行处理。

Hadoop的工作流程如下:首先,将大文件切分成多个块,并将这些块存储在不同的计算机节点上。

然后,在计算机节点上进行并行计算,每个节点都可以处理自己所存储的数据块。

最后,将每个节点的计算结果进行整合,得到最终的结果。

Hadoop的优势在于其可扩展性和容错性。

由于其分布式计算的特性,Hadoop可以轻松地处理大规模数据集。

同时,Hadoop还具有高容错性,即使某个计算机节点发生故障,整个计算任务也不会中断,系统会自动将任务分配给其他可用节点。

二、Hadoop的应用Hadoop广泛应用于大数据分析和处理领域。

以下是几个典型的应用场景:1.数据仓库:Hadoop可以存储和处理海量的结构化和非结构化数据,为企业提供全面的数据仓库解决方案。

通过使用Hadoop,企业可以轻松地将各种类型的数据整合到一个统一的平台上,从而更好地进行数据分析和挖掘。

2.日志分析:随着互联网的普及,各种网站和应用产生的日志数据越来越庞大。

Hadoop可以帮助企业对这些日志数据进行实时分析和处理,从而发现潜在的问题和机会。

3.推荐系统:在电子商务和社交媒体领域,推荐系统起着重要的作用。

Hadoop可以帮助企业分析用户的行为和偏好,从而提供个性化的推荐服务。

hadoop大数据技术与应用第1章练习题

hadoop大数据技术与应用第1章练习题

hadoop大数据技术与应用第1章练习题第一章一、单选题1、下面哪个选项不属于Google的三驾马车?(C )A、GFSB、MapReduceC、HDFSD、BigTable2、大数据的数据量现在已经达到了哪个级别?(C )A、GBB、TBC、PBD、ZB3、2003年,Google公司发表了主要讲解海量数据的可靠存储方法的论文是?( A )A、“The Google File System”B、“MapReduce: Simplified Data Processing on Large Clusters”C、“Bigtable: A Distributed Storage System for Structured Data”D、“The Hadoop File System”4、下面哪个选项不是HDFS架构的组成部分?( C )A、NameNodeB、DataNodeC、JpsD、SecondaryNameNode5、Hadoop能够使用户轻松开发和运行处理大数据的应用程序,下面不属于Hadoop特性的是(C )A、高可靠性、高容错性B、高扩展性C、高实时性D、高效性6、2004年,Google公司发表了主要讲解海量数据的高效计算方法的论文是?( B )A、“The Google File System”B、“MapReduce: Simplified Data Processing on Large Clusters”C、“Bigtable: A Distributed Storage System f or Structured Data”D、“The Hadoop File System”7、建立在Hadoop文件系统之上的分布式的列式数据库?(A )A、HBaseB、HiveC、YARND、Mahout二、判断题1、海量数据就是大数据。

( ×)2、Google公司的GFS、MapReduce、BigTable是开源的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档